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Abstract

We study the multiple-sets split feasibility problem that requires to find a point closest to a family of
closed convex sets in one space such that its image under a linear transformation will be closest to another
family of closed convex sets in the image space. By casting the problem into an equivalent problem in
a suitable product space we are able to present a simultaneous subgradients projections algorithm that
generates convergent sequences of iterates in the feasible case. We further derive and analyze a perturbed
projection method for the multiple-sets split feasibility problem and, additionally, furnish alternative proofs
to two known results.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. The multiple-sets split feasibility problem

The multiple-sets split feasibility problem requires to find a point closest to a family of closed
convex sets in one space such that its image under a linear transformation will be closest to an-
other family of closed convex sets in the image space. It serves as a model for inverse problems
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where constraints are imposed on the solutions in the domain of a linear operator as well as in
the operator’s range. It generalizes the convex feasibility problem and the two-sets split feasi-
bility problem. Formally, given nonempty closed convex sets Ci ⊆ Rn, i = 1,2, . . . , t, in the
n-dimensional Euclidean space Rn, and nonempty closed convex sets Qj ⊆ Rm, j = 1,2, . . . , r,

and an m × n real matrix A, the multiple-sets split feasibility problem (MSSFP) is

find a vector x∗ ∈ C :=
t⋂

i=1

Ci such that Ax∗ ∈ Q :=
r⋂

i=1

Qj . (1)

Such MSSFPs, formulated in [14], arise in the field of intensity-modulated radiation therapy
(IMRT) when one attempts to describe physical dose constraints and equivalent uniform dose
(EUD) constraints within a single model, see [12]. In the present paper we (i) cast the MSSFP
into an equivalent problem in a suitable product space, (ii) formulate a simultaneous subgradient
algorithm for solving the MSSFP and study its convergence, and (iii) propose a perturbed projec-
tion algorithm for the MSSFP. En route we give alternative proofs of two earlier results, shading
further light on the problem. The real-world application of IMRT inspired us to investigate this
problem but we present in this report only theoretical results of algorithmic developments and
convergence theorems. Our experimental computational work in [12], which involves nonlinear
convex sets, shows the practical viability of this class of algorithms.

The problem with only a single set C in Rn and a single set Q in Rm was introduced by Censor
and Elfving [13] and was called the split feasibility problem (SFP). They used their simultaneous
multiprojections algorithm (see also [17, Subsection 5.9.2]) to obtain iterative algorithms for
the SFP. Their algorithms, as well as others, see, e.g., Byrne [5], involve matrix inversion at
each iterative step, which is time-consuming, particularly if the dimensions are large. Therefore,
Byrne [6] devised the CQ-algorithm with the iterative step:

xk+1 = PC

(
xk + γAT (PQ − I )

(
Axk

))
, (2)

where xk and xk+1 are the current and the next iteration vectors, respectively, γ ∈ (0,2/λ),
where λ is the spectral radius (in our case, the largest eigenvalue) of the matrix AT A (T stands
for matrix transposition), I is the unit matrix or operator and PC and PQ denote the orthogonal
projections onto C and Q, respectively.

The CQ-algorithm converges to a solution of the two-sets-SFP, for any starting vector x0 ∈ Rn,
whenever the two-sets-SFP has a solution. When the two-sets-SFP has no solutions, the CQ-
algorithm converges to a minimizer of ‖PQ(Ax) − Ax‖ over all x ∈ C, whenever such a min-
imizer exists. The MSSFP, posed and studied in [14], was handled, for both the feasible and
the infeasible cases, with a proximity function minimization approach. If the MSSFP problem
is consistent then unconstrained minimization of the proximity function yields the value 0, oth-
erwise, in the inconsistent case, it finds a point which is least violating the feasibility by being
“closest” to all sets, as “measured” by the proximity function.

In Section 2 we formulate a simultaneous subgradient projections algorithm for the MSSFP.
Such projections are actually not projections onto the convex sets of the problem but onto half-
spaces determined by the subgradient of the function that defines the convex set, calculated at
the current (available) iterate. The algorithm is inherently parallel, and hence, suitable for imple-
mentation on multiple-processors machines. The use of such subgradient projections to replace
projections onto convex sets in various projection algorithms was done before by several authors,
see Censor and Lent [16], Bauschke and Borwein [2, Section 7] and references therein, and Yang
[28] for the two-sets-SFP. We analyze the algorithm in a suitable product space framework. This
same framework enables also an alternative proof for the convergence theorem in [14].
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In Section 3 we formulate a perturbed projections algorithm for the MSSFP that allows to do
orthogonal projections onto a sequence of supersets of the original sets of the problem instead of
projections onto the latter. This development is based on results of Santos and Scheimberg [25]
and includes earlier findings of Zhao and Yang [31] as a special case.

Finally, in Appendix A at the end of the paper, we supply an alternative proof, based on
properties of averaged operators, of Yang’s convergence result [28, Theorem 1]. We moved this
proof to the appendix because it currently contains a nonempty-interior assumption that is not
present in Yang’s result. We conjecture that this extra assumption can be removed—but do not
know at this time how to do so. Additional recent developments on the split feasibility problem
appear in Cegielski [9,10], where the linear split feasibility problem is studied, in Qu and Xiu
[23] who modify algorithms by adopting Armijo-like searches, in Yang [29] where algorithms
that do not depend on the calculation of the spectral radius of the matrix AT A are derived, in
Yang and Zhao [30] where the algorithms for the SFP are shown to be special instances of more
general algorithms designed to solve a variational inequalities problem (VIP), and in Byrne and
Censor [8].

1.2. Projection methods and their advantage

The reason why the MSSFP is looked at from the viewpoint of projection methods can be
appreciated from the following brief comments that we made in earlier publications regarding
projection methods in general. Projections onto sets are used in a wide variety of methods in
optimization theory but not every method that uses projections really belongs to the class of
projection methods. Projection methods are iterative algorithms that use projections onto sets
while relying on the general principle that when a family of (usually closed and convex) sets is
present then projections onto the given individual sets are easier to perform then projections onto
other sets (intersections, image sets under some transformation, etc.) that are derived from the
given individual sets.

A projection algorithm reaches its goal that is related to the whole family of sets by performing
projections onto the individual sets. Projection algorithms employ projections onto convex sets
in various ways. They may use different kinds of projections and, sometimes, even use different
projections within the same algorithm. They serve to solve a variety of problems which are either
of the feasibility or the optimization types. They have different algorithmic structures, of which
some are particularly suitable for parallel computing, and they demonstrate nice convergence
properties and/or good initial behavior patterns. This class of algorithms has witnessed great
progress in recent years and its member algorithms have been applied with success to fully-
discretized models of problems in image reconstruction and image processing, see, e.g., Stark
and Yang [26], Bauschke and Borwein [2] and Censor and Zenios [17].

Apart from theoretical interest, the main advantage of projection methods, which makes
them successful in real-world applications, is computational. They commonly have the ability
to handle huge-size problems of dimensions beyond which other, more sophisticated currently
available, methods cease to be efficient. This is so because the building bricks of a projection al-
gorithm are the projections onto the given individual sets (assumed and actually easy to perform)
and the algorithmic structure is either sequential or simultaneous (or in-between). Sequential
algorithmic structures cater for the row-action approach (see Censor [11]) while simultaneous
algorithmic structures favor parallel computing platforms, see, e.g., Censor, Gordon and Gor-
don [15]. The field of projection methods is vast and we can only mention here a few recent
works that can give the reader some good starting points. Such a list includes, among many oth-
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ers, the works of Crombez [18,19], the connection with variational inequalities, see, e.g., Aslam
Noor [21], Yamada’s [27] which is motivated by real-world problems of signal processing, and
the many contributions of Bauschke and Combettes, see, e.g., Bauschke, Combettes and Kruk
[3] and references therein.

2. A simultaneous subgradient algorithm for the MSSFP

In some cases, notably when the convex sets are not linear, the exact computation of the
orthogonal projections calls for the solution of a separate optimization problem for each projec-
tion. In such cases the efficiency of methods that use orthogonal projections is seriously reduced.
Yang [28] proposed a relaxed CQ-algorithm where orthogonal projections onto convex sets are
replaced by subgradient projections. The latter are orthogonal projections onto, well-defined and
easily derived, half-spaces that contain the convex sets, and are, therefore, easily executed. We
use a product space formulation of the MSSFP. Assume, without loss of generality, that the sets
Ci and Qj are expressed as

Ci = {
x ∈ Rn

∣∣ ci(x) � 0
}

and Qj = {
y ∈ Rm

∣∣ qj (y) � 0
}
, (3)

where ci :Rn → R, and qj : Rm → R are convex functions for all i = 1,2, . . . , t and all i =
1,2, . . . , r , respectively. For convenience reasons only we introduce yet another set as follows.

Definition 1. [14] Given an additional closed convex set Ω ⊆ Rn, the constrained multiple-sets
split feasibility problem (CMSSFP) is to find x∗ ∈ Ω such that x∗ solves (1).

We define the product spaces V =Rn and W = RS , where S = tn + rm with r , t , n and m

as in the CMSSFP and adopt the notational convention that the product spaces and all objects in
them are represented in boldface type. Define the product set

Q :=
(

t∏
i=1

√
αiCi

)
×

(
r∏

j=1

√
βjQj

)
, (4)

and the block-matrix

A : = (√
α1 I,

√
α2 I, . . . ,

√
αt I,

√
β1 AT ,

√
β2 AT , . . . ,

√
βr AT

)T
, (5)

where αi > 0, for i = 1,2, . . . , t , and βj > 0, for j = 1,2, . . . , r , are arbitrary. This yields a two-
sets split feasibility problem, with the sets Ω ⊆ V and Q ⊆ W and the matrix A, whose solution
solves the original CMSSFP. We represent the norm in W by � ·�, meaning that if w ∈ W has the
form w = (y1, y2, . . . , yt , z1, z2, . . . , zr ) then �w�2 = ∑t

i=1 ‖yi‖2 + ∑r
j=1 ‖zj‖2. Projections

in the product space W can be calculated by the following lemma.

Lemma 2. Let M = ∏s
l=1 Ml be a product of s convex subsets of Rn, in a product space U =Rns

and let y ∈ U have the form y = (y1, y2, . . . , ys). Then

PM(y) = (
PM1

(
y1),PM2

(
y2), . . . ,PMs

(
ys

))
. (6)

Proof. See Pierra [22, Lemma 1.1(i)] or [17, Lemma 5.9.2]. �
For the relaxed CQ-algorithm the sets C and Q in the two-sets split feasibility problem are

given by

C = {
x ∈ Rn

∣∣ c(x) � 0
}

and Q = {
x ∈ Rm

∣∣ q(x) � 0
}
, (7)
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where c :Rn → R and q :Rm → R are convex functions, whose subdifferential sets are denoted
by ∂c and ∂q , respectively.

Algorithm 3 (The relaxed CQ-algorithm). [28]
Initialization: Let x0 be arbitrary.
Iterative step: For k � 0 let

xk+1 = PCk

(
xk + γAT (PQk

− I )
(
Axk

))
. (8)

Here γ ∈ (0,2/λ), where λ is the spectral radius of AT A,

Ck = {
x ∈ Rn

∣∣ c
(
xk

) + 〈
ξk, x − xk

〉
� 0

}
, (9)

where ξk is a subgradient of c at the point xk , i.e., ξk ∈ ∂c(xk), and

Qk = {
x ∈ Rm

∣∣ q
(
xk

) + 〈
ηk, y − Axk

〉
� 0

}
, (10)

where ηk ∈ ∂q(Axk).

The following convergence result was established by Yang.

Theorem 4. [28, Theorem 1] If the solution set of the [two-sets] SFP is nonempty then any
sequence {xk}∞k=0, generated by Algorithm 3, converges to a solution of the SFP.

Applying Algorithm 3 to the two-sets split feasibility problem in the product space setting
with C = Rn and Q of (4), for sets given as in (3), we obtain the following new simultaneous
subgradient algorithm for the MSSFP.

Algorithm 5.
Initialization: Let x0 be arbitrary.
Iterative step: For k � 0 let

xk+1 = xk + γ

(
t∑

i=1

αi

(
PCi,k

(
xk

) − xk
) +

r∑
j=1

βjA
T
(
PQj,k

(
Axk

) − Axk
))

. (11)

Here γ ∈ (0,2/L), with L = ∑t
i=1 αi + λ

∑r
j=1 βj , where λ is the spectral radius of AT A, and

Ci,k = {
x ∈ Rn

∣∣ ci

(
xk

) + 〈
ξ i,k, x − xk

〉
� 0

}
, (12)

where ξ i,k ∈ ∂ci(x
k) is a subgradient of ci at the point xk , and

Qj,k = {
x ∈ Rm

∣∣ qj

(
xk

) + 〈
ηj,k, y − Axk

〉
� 0

}
, (13)

where ηj,k ∈ ∂qj (Axk).

Theorem 6. If the MSSFP has a nonempty solution set then any sequence {xk}∞k=0, generated by
Algorithm 5, converges to a solution of MSSFP.

Proof. Applying Theorem 4 to the two-sets split feasibility problem in the product space setting
with C = Rn and Q of (4), for sets given as in (3), the proof follows. �
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Algorithm 3 can be applied to the MSSFP in the consistent case in a direct manner by defining

c(x) := sup
{
ci(x) | i = 1,2, . . . , t

}
(14)

and

q(y) := sup
{
qj (y) | j = 1,2, . . . , r

}
. (15)

But the resulting algorithm will be inferior to our Algorithm 5 because it will have slow practical
convergence due to the need to compare r + t constraint violations at each iterative step.

Next we make a different use of the product space formulation to derive an alternative proof
of convergence for the projection algorithm presented in [14]. Applying the CQ-algorithm (2) to
the two-sets split feasibility problem, with the sets Ω ⊆ V and Q ⊆ W and the matrix A, we take
an arbitrary x0 ∈ V and use the iterative process

xk+1 = PΩ

(
xk + γ AT (PQ − I)Axk

)
, k � 0. (16)

By Byrne’s convergence theorem [6, Theorem 2.1], any sequence {xk}∞k=0, generated in this
manner, converges to

argmin
{
(1/2)�PQ(Ax) − Ax�2 ∣∣ x ∈ Ω

}
, (17)

assuming such a minimum exists. Translating the iterative step (16), using the relation

PQ(Ax) = (√
α1 PC1x, . . . ,

√
αt PCt x,

√
β1 PQ1(Ax), . . . ,

√
βr PQr (Ax)

)T
, (18)

which follows from Lemma 2, we rewrite (17) as

argmin
{
p(x) | x ∈ Ω

}
, (19)

where the proximity function p(x) is

p(x) = (1/2)

t∑
i=1

αi

∥∥PCi
(x) − x

∥∥2 + (1/2)

r∑
j=1

βj

∥∥PQj
(Ax) − Ax

∥∥2
, (20)

and obtain the following algorithm.

Algorithm 7. [14, Algorithm 1]
Initialization: Let x0 be arbitrary.
Iterative step: For k � 0 let

xk+1 = PΩ

(
xk + γ

(
t∑

i=1

αi

(
PCi

(
xk

) − xk
) +

r∑
j=1

βjA
T
(
PQj

(
Axk

) − Axk
)))

, (21)

where γ ∈ (0,2/L), L = ∑t
i=1 αi + λ

∑r
j=1 βj and λ is the spectral radius of the matrix AT A.

Our alternative convergence proof, based on the formulations presented above, now follows.

Theorem 8. [14, Theorem 3] Let Ci , i = 1,2, . . . , t , and Qj , j = 1,2, . . . , r , be nonempty closed
convex sets in Rn and Rm, respectively, let Ω ⊆ Rn be a nonempty closed convex set, and let A

be an m × n real matrix. If αi , i = 1,2, . . . , t , and βj , j = 1,2, . . . , r , are some positive scalars,
and γ ∈ (0,2/L), where L = ∑t

i=1 αi + λ
∑r

j=1 βj then any sequence {xk}∞k=0, generated by
Algorithm 7, converges to a minimizer of the function (20) if such a minimizer exists.

Proof. Applying Byrne’s result [6, Theorem 2.1] to the problem (17) with the algorithm (16) the
proof follows. �
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3. A perturbed projection method

In this section we derive a perturbed projection method for the MSSFP. Our work is based
on Santos and Scheimberg [25] who suggested replacing each nonempty closed convex set of
the convex feasibility problem by a convergent sequence of supersets. If such supersets can be
constructed with reasonable efforts and if projecting onto them is simpler then projecting onto
the original convex sets then a perturbed algorithm becomes useful. Here we devise an algorithm
for the CMSSFP, based on Algorithm 7. We will need the following definitions.

Definition 9. (i) Let N and {Nk}∞k=0, be operators on Rn. If for all x ∈ Rn,

lim
k→∞

∥∥Nk(x) − N(x)
∥∥ = 0

then we say that {Nk}∞k=0 converges to N .
(ii) Given any ρ � 0, the ρ-distance between two operators N1 and N2 on Rn is defined by

Dρ(N1,N2) := sup
{∥∥N1(x) − N2(x)

∥∥ ∣∣ ‖x‖ � ρ
}
. (22)

The following notion of convergence of sequences of sets in Rn is called Mosco-convergence
(see, e.g., [2]).

Definition 10. Let C and {Ck}∞k=0 be a subset and a sequence of subsets of Rn, respectively. The

sequence {Ck}∞k=0 is said to be Mosco-convergent to C, denoted by Ck
M−→ C, if

(i) for every x ∈ C, there exists a sequence {xk}∞k=0 with xk ∈ Ck for all k = 0,1,2, . . . , such
that limk→∞ xk = x and

(ii) for every subsequence {xkj }∞j=0 with xkj ∈ Ckj
for all j = 0,1,2, . . . , such that

limj→∞ xkj = x one has x ∈ C.

Using the notation NCCS(Rn) for the family of nonempty closed convex subsets of Rn, let C

and Ck , for k = 0,1,2, . . . , belong to NCCS(Rn). If the sequence {Ck}∞k=0 converges to C in
the Mosco sense, then the sequence of projections {PCk

}∞k=0 converges to PC (see, e.g., [2,
Lemma 4.2]).

Definition 11. Let C1 and C2 belong to NCCS(Rn). The ρ-distance between C1 and C2 is defined
by

dρ(C1,C2) := sup
{∥∥PC1(x) − PC2(x)

∥∥ ∣∣ ‖x‖ � ρ
}
. (23)

The following theorem which generalizes the Krasnoselskii–Mann (KM) theorem (see, e.g.,
[31, Theorem 2.1]) is necessary for our convergence analysis.

Theorem 12. Let N and Nk , for k = 0,1,2, . . . , be nonexpansive operators on a Hilbert
space H , with limk→∞ Nk = N and let {εk}∞k=0 be a sequence in (0,1) satisfying

∞∑
εk(1 − εk) = +∞. (24)
k=0
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Then the sequence {xk}∞k=0, defined by the iterative step

xk+1 = (1 − εk)x
k + εkNk

(
xk

)
(25)

converges weakly to a fixed point of N , provided that
∑∞

k=0 εkDρ(Nk , N) < +∞ for any ρ > 0,
whenever such fixed points exist.

Now we return to the CMSSFP. Let Ωk and Ω be sets in NCCS(Rn), such that, Ωk
M−→ Ω

as k → ∞. Let Ci and Ci,k be sets in NCCS(Rn), for i = 1,2, . . . , t , and Qj and Q
j,k

be sets in

NCCS(Rm), for j = 1,2, . . . , r , such that, Ci,k
M−→ Ci , and Q

j,k

M−→ Qj as k → ∞. Define the
operators

N(x) := PΩ

{
x + s

(
t∑

i=1

αi

(
PCi

(x) − x
) +

r∑
j=1

βjA
T
(
PQj

(Ax) − Ax
))}

, (26)

Nk(x) := PΩk

{
x + s

(
t∑

i=1

αi

(
PCi,k

(x) − x
) +

r∑
j=1

βjA
T
(
PQj,k

(Ax) − Ax
))}

. (27)

From [14, Theorem 2] we know that the operator

t∑
i=1

αi(PCi
− I ) +

r∑
j=1

βjA
T (PQj

− I )A (28)

is Lipschitz continuous with Lipschitz constant L = ∑t
i=1 αi + λ

∑r
j=1 βj , where λ is the spec-

tral radius of AT A. Therefore, it is ν-inverse strongly monotone (ν-ism) with ν = 1/L (see (A.3)
in Appendix A), and so are the operators

∑t
i=1 αi(PCi,k

− I ) + ∑r
j=1 βjA

T (PQj,k
− I )A, for

k = 0,1,2, . . . . Combining these facts with [31, Proposition 2.1], and using Definition A.1 in
Appendix A, we obtain the following conclusion.

Lemma 13. Let Ωk and Ω be sets in NCCS(Rn), such that, Ωk
M−→ Ω as k → ∞. Let Ci

and Ci,k be sets in NCCS(Rn), for i = 1,2, . . . , t , and Qj and Q
j,k

be sets in NCCS(Rm),
for j = 1,2, . . . , r , such that Ci,k

M−→ Ci , and Q
j,k

M−→ Qj as k → ∞. Then the operators N

and Nk , defined in (26) and (27), are nonexpansive operators for 0 < s < 2/L, where L =∑t
i=1 αi + λ

∑r
j=1 βj and λ is the spectral radius of AT A. Moreover, the operator sequence

{Nk}∞k=0 converges to N.

Algorithm 14 (The perturbed projection algorithm for the CMSSFP).
Initialization: Let x0 ∈ Rn be arbitrary.
Iterative step: For k � 0, given the current iterate xk , calculate the next iterate xk+1 by

xk+1 = (1 − εk)x
k + εkNk

(
xk

)
, (29)

where Nk and εk are as defined above.

The next theorem provides a convergence result for this algorithm.
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Theorem 15. If the assumptions of Lemma 13 are satisfied and εk ∈ (0,1) for k = 0,1,2, . . . ,

then any sequence {xk}∞k=0, generated by Algorithm 14, converges to a fixed point of N , provided
that such a fixed point exists and that

∞∑
k=0

εk

{
dρ̄(Ωk,Ω) + s

(
t∑

i=1

αidρ̄(Ci,k,Ci) + λ1/2
r∑

j=1

βjdρ̄(Qj,k,Qj )

)}
< ∞ (30)

for any ρ̄ > 0, and any {εk}∞k=0 for which
∑∞

k=0 εk(1 − εk) = +∞.

Proof. Denote

yk := x + s

(
t∑

i=1

αi

(
PCi,k

(x) − x
) +

r∑
j=1

βjA
T
(
PQj,k

(Ax) − Ax
))

(31)

and

y := x + s

(
t∑

i=1

αi

(
PCi

(x) − x
) +

r∑
j=1

βjA
T
(
PQj

(Ax) − Ax
))

. (32)

For any x ∈ Rn with ‖x‖ � ρ, ρ > 0, we have∥∥Nk(x) − N(x)
∥∥ = ∥∥PΩk

(
yk

) − PΩ(y)
∥∥

�
∥∥PΩk

(
yk

) − PΩk
(y)

∥∥ + ∥∥PΩk
(y) − PΩ(y)

∥∥. (33)

By the nonexpansiveness of orthogonal projections, we obtain∥∥PΩk

(
yk

) − PΩk
(y)

∥∥ � s
∥∥yk − y

∥∥. (34)

Substituting (31) and (32) into (33) and using (34) we get∥∥Nk(x) − N(x)
∥∥

� s

(
t∑

i=1

αi

∥∥PCi,k
(x) − PCi

(x)
∥∥ +

r∑
j=1

βj

∥∥AT
(
PQj,k

(Ax) − PQj
(Ax)

)∥∥)

+ ∥∥PΩk
(y) − PΩ(y)

∥∥. (35)

Applying to the norm in the second summand above the well-known relation 〈Bx,x〉 �
ρ(B)‖x‖2, which holds for any matrix B and its spectral radius ρ(B), we obtain∥∥Nk(x) − N(x)

∥∥
� s

(
t∑

i=1

αi

∥∥PCi,k
(x) − PCi

(x)
∥∥ + λ1/2

r∑
j=1

βj

∥∥PQj,k
(Ax) − PQj

(Ax)
∥∥)

+ ∥∥PΩk
(y) − PΩ(y)

∥∥. (36)

Finally, from (22) and (23) we obtain

Dρ(Nk,N) � dρ̄(Ωk,Ω) + s

(
t∑

i=1

αidρ̄(Ci,k,Ci) + λ1/2
r∑

j=1

βjdρ̄(Qj,k,Qj )

)
, (37)

where ρ̄ � max(‖x‖,‖Ax‖,‖y‖). Therefore, from Theorem 12 and (30) the result follows. �
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The last theorem shows that any sequence generated by Algorithm 14 converges to a mini-
mizer of the function (20) over the set Ω , provided that such minimizers exist, just as in the case
of Algorithm 7. Zhao and Yang in [31] developed a perturbed projections method for the SFP
based on the CQ-algorithm. Their method can be viewed as a special case of Algorithm 14.
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Appendix A. Applying averaged operators

In this appendix we furnish an alternative and shorter proof of Yang’s convergence result [28,
Theorem 1], that uses properties of averaged operators. To the best of our knowledge, the term
“averaged mapping” to describe operators of the form T = (1 − α)I + αN , was first used by
Reich and co-workers [1,4], see also Reich [24]. However, in this route we are forced to make
an additional assumption on the two-sets-SFP that is not present in Yang’s work and which we
are unable to get rid of at this time. The additional assumption is that the solution set Θ of the
two-sets-SFP must have a nonempty interior, i.e.,

intΘ := int{x ∈ C | Ax ∈ Q} �= ∅. (A.1)

In the sequel we use definitions and results on averaged operators and their properties as they
appear in Bauschke and Borwein [2] and in Byrne [7], which are also sources for references on
the subject.

Definition A.1. An operator N :Rn → Rn is called nonexpansive (abbreviated, ne) if
‖N(x) − N(y)‖ � ‖x − y‖, for all x and y in Rn.

Definition A.2. Given an ne operator N , let T := (1 − α)I + αN for some α ∈ (0,1). The
operator T is called averaged operator (abbreviated, av).

Lemma A.3. If A and B are av then T := AB is av.

Any operator T is related to its complement G = I − T by

‖x − y‖2 − ∥∥T (x) − T (y)
∥∥2 = 2

〈
G(x) − G(y), x − y

〉 − ∥∥G(x) − G(y)
∥∥2

. (A.2)

An operator G is called ν-inverse strongly monotone (ν-ism) (see, e.g., [20]) if there is a ν > 0,
such that〈

G(x) − G(y), x − y
〉
� ν

∥∥G(x) − G(y)
∥∥2

. (A.3)

From (A.2) it follows that N is ne if and only if its complement G = I − N is a (1/2)-ism. It is
also true that if G is a ν-ism and γ > 0 than the operator γG is a (ν/γ )-ism.

Lemma A.4. [7, Lemma 2.1] An operator T is av if and only if its complement G = I − T is a
ν-ism for some ν > 1/2.
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Theorem A.5. If (A.1) holds then any sequence {xk}∞k=0, generated by Algorithm 3, converges
to a solution of the SFP.

Proof. Define the following operators, which depend on the sequence {xk}∞k=0:

Tk(x) := PCk

(
x + γAT (PQk

− I )(Ax)
)
. (A.4)

From [7, Lemma 8.1] it follows that if A is an m × n matrix whose spectral radius is λ and if Φ

is a nonempty closed convex set, then for every γ ∈ (0,2/λ) the operator I + γAT (PΦ − I )A

is av. Therefore, Lemma A.3 shows that every operator Tk is av with

Θ ⊆ Fix(Tk), (A.5)

for all k = 0,1, . . . , where Fix stands for the fixed points set. Since Tk is av, there is an ne
operator Nk such that, for some α ∈ (0,1), Tk = (1 − α)I + αNk. Taking z ∈ Θ and using (A.5)
we have Tk(z) = z. Denoting Gk = I − Tk we get, from (A.2),∥∥z − xk

∥∥2 − ∥∥Tk(z) − xk+1
∥∥2 = 2

〈
Gk(z) − Gk

(
xk

)
, z − xk

〉
− ∥∥Gk(z) − Gk

(
xk

)∥∥2
. (A.6)

Lemma A.4 guarantees that Gk is a (1/2)α-ism, thus, we have∥∥z − xk
∥∥2 − ∥∥z − xk+1

∥∥2 �
(
(1/α) − 1

)∥∥xk − xk+1
∥∥2

. (A.7)

Therefore, a sequence {xk}∞k=0, generated by Algorithm 3, is Fejér-monotone with respect
to Θ. Then, from the assumption (A.1) and [2, Lemma 2.16] follows that {xk}∞k=0 converges
to some x∗ ∈ Rn.

To complete the proof, we show that x∗ ∈ Θ by verifying that c(x∗) = 0 and q(Ax∗) = 0,
where c and q are defined in (14) and (15), respectively. To see that q(Ax∗) = 0, rewrite (A.7) as∥∥z − xk

∥∥2 − ∥∥z − xk+1
∥∥2 �

(
λγ 2 − 2γ

)∥∥(PQk
− I )

(
Axk

)∥∥2
. (A.8)

The left-hand side of the last inequality tends to 0 as k → ∞, hence

lim
k→∞

∥∥(PQk
− I )

(
Axk

)∥∥ = lim
k→∞

∣∣q(Axk)
∣∣

‖ηk‖ = 0. (A.9)

The sequence {‖ηk‖}∞k=0, where ηk are the subgradients defined in (10), is bounded by [2, Propo-
sition 7.8], therefore, q(Ax∗) = 0. To see that c(x∗) = 0 denote

ϕk := γAT (PQk
− I )

(
Axk

)
, (A.10)

so that the iterative step (8) becomes

xk+1 = PCk

(
xk + ϕk

)
, (A.11)

where Ck is the half-space (9). Calculating the projection we obtain

xk+1 = xk + ϕk − (
c
(
xk + ϕk

) + 〈
ξk, ϕk

〉)(
ξk/

∥∥ξk
∥∥2)

, (A.12)

where ξk are the subgradients defined in (9). In (A.12) we have:

(i) the sequence {ϕk}∞ tends to zero by (A.9) and (A.10),
k=0
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(ii) the Schwartz inequality shows that

lim
k→∞

〈
ξk, ϕk

〉(
ξk/

∥∥ξk
∥∥2) = 0, (A.13)

(iii) {xk}∞k=0 converges to x∗, as shown above, and

(iv) lim
k→∞ c

(
xk + ϕk

) = c
(
x∗). (A.14)

Therefore, c(x∗) = 0. �
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