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1. Introduction

Let C be a nonempty closed convex subset ofRn andF be a continuous monoton
mapping fromRn into itself. The variational inequality problem is to determine a ve
x∗ ∈ C such that

VI (C,F ) (x − x∗)T F (x∗) � 0, ∀x ∈ C. (1.1)

VI(C,F ) includes nonlinear complementarity problems (whenC = Rn+) and systems o
nonlinear equations (whenC = Rn), and thus it has many important applications, e.g.,
[6,8,9].

A classical method for solving variational inequality is the proximal point algori
(abbreviated as PPA) [11,12]. Letλmin > 0 and{λk} ⊂ [λmin,+∞). For givenxk ∈ C and
λk , let xk+1∗ be the solution of following strongly monotone variational inequality:

(PPA) Findx ∈ C such that(x ′ − x)T
{(

x − xk
) + λkF (x)

}
� 0, ∀x ′ ∈ C. (1.2)

The new iteratexk+1 of the exact version of PPA is taken by

xk+1 := xk+1∗ . (1.3)

An equivalent recursion form of the exact PPA is

xk+1 = PC

[
xk − λkF

(
xk+1)], (1.4)

wherePC denotes the projection onC.
The ideal form (1.4) of PPA is often impractical since in many cases solving proble

(1.2) exactly is either impossible or expensive. In 1976 Rockafellar [11,12] set up th
damental convergence analysis for the approximate proximal point algorithm (abbreviate
as APPA) to a general maximal monotone operator. The new iteratexk+1 of Rockafellar’s
APPAs is requested to satisfy condition

∥∥xk+1 − xk+1∗
∥∥ � νk,

∞∑
k=0

νk < +∞ (1.5)

or

∥∥xk+1 − xk+1∗
∥∥ � νk

∥∥xk − xk+1
∥∥,

∞∑
k=0

νk < +∞. (1.6)

Sincexk+1∗ is necessarily unknown, some upper bounds of‖xk+1 − xk+1∗ ‖ are needful to
be evaluated in order to implement such APPAs.

Extensive developments on APPA focus on different fields such as convex pro
ming, mini-max problems, and variational inequality problems. To mention a few, se
3–5,13]. The major challenges of APPA includeaccelerating convergence and design
inexactness restrictions that are easy to implement and tight for convergence.

Throughout this paper we assume that the operatorF is monotone and Lipschitz con
tinuous onC and that the solution set of VI(Ω,F ), denoted byC∗, is nonempty. We us
x∗ to denote any point inC∗.
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2. Preliminaries and motivation

We use the concept of projection under the Euclidean norm, which is denoted byPC(·),
i.e.,

PC(z) = argmin
{‖z − x‖ | x ∈ C

}
.

It follows from this definition that{
z − PC(z)

}T {
y − PC(z)

}
� 0, ∀z ∈ Rn, ∀y ∈ C. (2.1)

Consequently, we have∥∥PC(y) − PC(z)
∥∥ � ‖y − z‖, ∀y, z ∈ Rn (2.2)

and ∥∥PC(y) − x
∥∥2 � ‖y − x‖2 − ∥∥y − PC(y)

∥∥2
, ∀y ∈ Rn, ∀x ∈ C. (2.3)

Lemma 2.1 [2, p. 267]. Letλ > 0, thenx∗ solvesVI (C,F ) if and only if

x∗ = PC

[
x∗ − λF(x∗)

]
.

Denote

e(x,λ) := x − PC

[
x − λF(x)

]
. (2.4)

Then solving VI(C,F ) is equivalent to finding a zero point ofe(x,λ). For givenx, it is
well known [7] that‖e(x,λ)‖ is a non-decreasing function ofλ.

The following lemma can be viewed as a corollary of [14, Proposition 3.4]. It give
an upper bound of‖x − xk+1∗ ‖ for anyx ∈ C.

Lemma 2.2. Let F be monotone onC and xk+1∗ be the unique solution of the strong
monotoneVI sub-problem(1.2). Then we have

∆(x) �
∥∥x − xk+1∗

∥∥2
, ∀x ∈ C, (2.5)

where

∆(x) := 2
{
x − PC

[
xk − λkF (x)

]}T {(
x − xk

) + λkF (x)
}

− ∥∥x − PC

[
xk − λkF (x)

]∥∥2
. (2.6)

Proof. For any fixedx ∈ C, we define

h(x, z) := (∥∥(
x − xk

) + λkF (x)
∥∥2 − ∥∥xk − λkF (x) − z

∥∥2)
and it follows that

h
(
x,PC

[
xk − λkF (x)

]) = max
{
h(x, z) | z ∈ C

}
.

Sincexk+1∗ ∈ C, we have

h
(
x,PC

[
xk − λkF (x)

])
� h

(
x, xk+1∗

)
,



B.-S. He et al. / J. Math. Anal. Appl. 300 (2004) 362–374 365

s

th
and this yields

2
{
x − PC

[
xk − λkF (x)

]}T {(
x − xk

) + λkF (x)
} − ∥∥x − PC

[
xk − λkF (x)

]∥∥2

� 2
(
x − xk+1∗

)T {(
x − xk

) + λkF (x)
} − ∥∥x − xk+1∗

∥∥2
. (2.7)

On the other hand, sincexk+1∗ is the solution of (1.2) andx ∈ C, we have
(
x − xk+1∗

)T {(
xk+1∗ − xk

) + λkF
(
xk+1∗

)}
� 0

and consequently
(
x − xk+1∗

)T {(
x − xk

) + λkF (x)
}

�
(
x − xk+1∗

)T {[(
x − xk

) + λkF (x)
] − [(

xk+1∗ − xk
) + λkF

(
xk+1∗

)]}
= (

x − xk+1∗
)T {(

x − xk+1∗
) + λk

(
F(x) − F

(
xk+1∗

))}
�

∥∥x − xk+1∗
∥∥2

, (2.8)

where the last inequality comes from the monotonicity ofF . Then the assertion follow
from (2.7) and (2.8) directly. �

Let yk be an approximate solution of (1.2) in the sense that

yk ≈ PC

[
xk − λkF

(
yk

)]
(2.9)

and define

ỹk := PC

[
xk − λkF

(
yk

)]
. (2.10)

It follows from Lemma 2.2 that∆(yk) is an upper bound of‖yk − xk+1∗ ‖2. In the practical
computation of Rockafellar’s APPAs [11], the new iterate is taken by

xk+1 := yk,

and instead of (1.5) and (1.6), it is requested to satisfy

∆
(
yk

)
� ν2

k ,

∞∑
k=0

νk < +∞ (2.11)

and

∆
(
yk

)
� ν2

k

∥∥xk − yk
∥∥2

,

∞∑
k=0

νk < +∞, (2.12)

respectively.
Recently, under a significantly relaxed inexactness restriction (in comparison wi

(2.12))

∆
(
yk

)
� ν

∥∥xk − yk
∥∥2

, ν < 1, (2.13)

Solodov and Svaiter [13] proposed a new APPA in which the new iterate is given by

(SS-method) xk+1 = PC

[
xk − λkF

(
yk

)]
. (2.14)
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Indeed, this is a meaningful contribution in the area of APPAs. Note that the right
side of (2.14) is just̃yk (see (2.10)). Therefore, SS-method (2.14) can be written as

xk+1 = xk − α
(
xk − ỹk

)
, α = 1, (2.15)

which can be alternatively interpreted as follows: starting fromxk , SS-method moves alon
the direction−(xk − ỹk) with the step sizeα = 1. A natural question is whether there exi
a better step size than 1 along the direction.

3. Main results

We extend the Solodov–Svaiter’s formula (2.15) and present the following algorit

Algorithm. For givenx0 ∈ C andλmin > 0, the sequence{xk} is generated by the iterativ
schemes:

Step 1. Find an approximate solution of (1.2), i.e., findyk in the sense that

yk ≈ PC

[
xk − λkF

(
yk

)]
(3.1)

under the following inexactness restriction:

∆
(
yk

)
� ν

(∥∥xk − yk
∥∥2 + ∥∥xk − ỹk

∥∥2)
, ν < 1, (3.2)

where

ỹk = PC

[
xk − λkF

(
yk

)]
(3.3)

and∆(·) is defined by (2.6).

Step 2. Compute the new iterate

xk+1(α) = PC

[
xk − α

(
xk − ỹk

)]
, (3.4)

whereα is the step size. How to chooseα will be specialized later.

An equivalent form of (3.4) is

xk+1(α) = PC

[
xk − α

(
xk − PC

[
xk − λkF

(
yk

)])]
. (3.5)

Note that (3.3) is an extragradient step. In addition, by settingyk := xk+1(α) andα := 1
in (3.5), it reduces to the classical PPA (1.4), thus the new method (3.1)–(3.4) is ca
approximate proximal-extragradient type method.

The following theorem concerns how to choose the step sizeα in (3.4). Note that the
technique developed in [7] and then extended for pseudo-monotone variational inequalitie
in [10] is useful in following analysis. For convenience, we denote

ζ k := yk − ỹk (3.6)

and then we have

∆
(
yk

) = 2
(
ζ k

)T
F

(
yk

) − ∥∥ζ k
∥∥2

. (3.7)
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Theorem 3.1. Givenxk ∈ C andλk > 0, let yk ∈ C be an approximate solution of(1.2) in
the sense of(3.1) and the new iteratexk+1(α) be given by(3.4). Then for anyα > 0 we
have

Θ(α) := ∥∥xk − x∗∥∥2 − ∥∥xk+1(α) − x∗∥∥2 � Ψ (α),

where

Ψ (α) := 2α
{∥∥xk − ỹk

∥∥2 − λk

(
ζ k

)T
F

(
yk

)} − α2
∥∥xk − ỹk

∥∥2
, (3.8)

ỹk andζ k are defined by(3.3)and(3.6), respectively.

Proof. Sincexk+1(α) = PC [xk − α(xk − ỹk)] andx∗ ∈ C, it follows from (2.2) that∥∥xk − x∗ − α
(
xk − ỹk

)∥∥ �
∥∥xk+1(α) − x∗∥∥.

Then we have

Θ(α) �
∥∥xk − x∗∥∥2 − ∥∥xk − x∗ − α

(
xk − ỹk

)∥∥2

= 2α
(
xk − x∗)T (

xk − ỹk
) − α2

∥∥xk − ỹk
∥∥2

= 2α
∥∥xk − ỹk

∥∥2 + 2α
(
ỹk − x∗)T (

xk − ỹk
) − α2

∥∥xk − ỹk
∥∥2

. (3.9)

Comparing the right-hand side of (3.9) andΨ (α) in (3.8), it remains to prove
(
ỹk − x∗)T (

xk − ỹk
)
�

(
ỹk − yk

)T
λkF

(
yk

)
. (3.10)

Sinceỹk = PC [xk − λkF (yk)] andx∗ ∈ C, it follows from (2.1) that
{
xk − λkF

(
yk

) − ỹk
}T (

ỹk − x∗) � 0

and thus(
ỹk − x∗)T (

xk − ỹk
)
�

(
ỹk − x∗)T λkF

(
yk

)
. (3.11)

Note thatx∗ ∈ C∗ andF is monotone. We have(
yk − x∗)T F

(
yk

)
�

(
yk − x∗)T

F (x∗) � 0,

which implies
(
ỹk − x∗)T λkF

(
yk

)
�

(
ỹk − yk

)T
λkF

(
yk

)
. (3.12)

Therefore, inequality (3.10) follows from (3.11) and (3.12) directly and the proof is c
plete. �

The following relation is useful in following analysis and thus we list it as a propositi

Proposition 3.1. For yk, ỹk,∆(yk), andζ k defined in Sections2 and3, we have

∥∥xk − ỹk
∥∥2 − λk

(
ζ k

)T
F

(
yk

) = 1

2

{(∥∥xk − yk
∥∥2 + ∥∥xk − ỹk

∥∥2) − ∆
(
yk

)}
. (3.13)
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Proof. Usingxk − ỹk = (xk − yk) + ζ k (see (3.6)), we rewrite
∥∥xk − ỹk

∥∥2 = 1

2

(∥∥(
xk − yk

) + ζ k
∥∥2 + ∥∥xk − ỹk

∥∥2)
.

By some regrouping, we obtain∥∥xk − ỹk
∥∥2 − λk

(
ζ k

)T
F

(
yk

)
= 1

2

(∥∥(
xk − yk

) + ζ k
∥∥2 + ∥∥xk − ỹk

∥∥2) − λk

(
ζ k

)T
F

(
yk

)

= 1

2

(∥∥xk − yk
∥∥2 + ∥∥ζ k

∥∥2 + ∥∥xk − ỹk
∥∥2) − (

ζ k
)T {(

yk − xk
) + λkF

(
yk

)}

= 1

2

(∥∥xk − yk
∥∥2 + ∥∥xk − ỹk

∥∥2) − ((
ζ k

)T ((
yk − xk

) + λkF
(
yk

)) − 1

2

∥∥ζ k
∥∥2)

(3.7)= 1

2

(∥∥xk − yk
∥∥2 + ∥∥xk − ỹk

∥∥2) − 1

2
∆

(
yk

)
. �

Now we begin to investigate how to choose the step sizeα in (3.4). Substituting (3.13
into (3.8), we have

Ψ (α) = α
{(∥∥xk − yk

∥∥2 + ∥∥xk − ỹk
∥∥2) − ∆

(
yk

)} − α2
∥∥xk − ỹk

∥∥2
. (3.14)

In fact,Ψ (α) is the tight lower bound of the improvement obtained at thekth iteration of
the proposed method. SinceΨ (α) is a quadratic function ofα, it reaches its maximum at

α∗
k = (‖xk − yk‖2 + ‖xk − ỹk‖2) − ∆(yk)

2‖xk − ỹk‖2
(3.15)

with

Ψ
(
α∗

k

) = 1

2
α∗

k

((∥∥xk − yk
∥∥2 + ∥∥xk − ỹk

∥∥2) − ∆
(
yk

))
. (3.16)

Under inexactness restriction (3.2), it follows from (3.15) and (3.16) that

α∗
k � 1− ν

2
and Ψ

(
α∗

k

)
� (1− ν)2

4

(∥∥xk − yk
∥∥2 + ∥∥xk − ỹk

∥∥2)
. (3.17)

To accelerate convergence, we propose a relaxation factorγk ∈ [γ
L
, γ

U
] ⊂ (0,2). Thus

in practice the step sizeα in (3.4) at thekth iteration is

α = γkα
∗
k . (3.18)

Therefore, the new iteratexk+1 is generated by

xk+1 = PC

[
xk − γkα

∗
k

(
xk − ỹk

)]
. (3.19)

By simple manipulations we obtain

Ψ
(
γkα

∗
k

) (3.14)= γkα
∗
k

(∥∥xk − yk
∥∥2 + ∥∥xk − ỹk

∥∥2 − ∆
(
yk

)) − (
γ 2
k α∗

k

)(
α∗

k

∥∥xk − ỹk
∥∥2)

(3.15)=
(

γkα
∗
k − 1

2
γ 2
k α∗

k

)(∥∥xk − yk
∥∥2 + ∥∥xk − ỹk

∥∥2 − ∆
(
yk

))
(3.16)= γk(2− γk)Ψ

(
α∗

k

)
. (3.20)
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It follows from Theorem 3.1 and (3.17) that
∥∥xk+1 − x∗∥∥2 �

∥∥xk − x∗∥∥2

− γ
L
(2− γ

U
)(1− ν)2

4

(∥∥xk − yk
∥∥2 + ∥∥xk − ỹk

∥∥2)
. (3.21)

Theorem 3.2. Givenxk ∈ C andλk > 0, let yk ∈ C be an approximate solution of(1.2)
in the sense of(3.1) and the new iteratexk+1 be generated by(3.19). If the inexactnes
criterion (3.2)holds, then{xk} converges to somex∞ ∈ C∗.

Proof. It follows from (3.21) that there is a constantc0 > 0 such that∥∥xk+1 − x∗∥∥2 �
∥∥xk − x∗∥∥2 − c0

(∥∥xk − yk
∥∥2 + ∥∥xk − ỹk

∥∥2)
, ∀x∗ ∈ C∗. (3.22)

This means that the sequence{xk} is bounded. In addition, we have

∞∑
k=1

c0
(∥∥xk − yk

∥∥2 + ∥∥xk − ỹk
∥∥2) �

∥∥x0 − x∗∥∥2
.

Therefore, we have

lim
k→∞

∥∥xk − yk
∥∥ = 0 and lim

k→∞
∥∥xk − ỹk

∥∥ = 0,

and consequently{yk} is also bounded. Moreover, sinceζ k = (xk − ỹk) − (xk − yk), we
have

lim
k→∞

∥∥ζ k
∥∥ = 0.

Since‖e(yk, λ)‖ is a non-decreasing function ofλ, it follows from λk � λmin that
∥∥e

(
yk,λmin

)∥∥ �
∥∥e

(
yk,λk

)∥∥ = ∥∥yk − PC

[
yk − λkF

(
yk

)]∥∥
(3.6)= ∥∥ζ k + ỹk − PC

[
yk − λkF

(
yk

)]∥∥
(3.3)

�
∥∥ζ k

∥∥ + ∥∥PC

[
xk − λkF

(
yk

)] − PC

[
yk − λkF

(
yk

)]∥∥
(2.2)

�
∥∥ζ k

∥∥ + ∥∥xk − yk
∥∥

and thus

lim
k→∞ e

(
yk,λmin

) = 0. (3.23)

Let x∞ be a cluster point of{yk} and the subsequence{ykj } converges tox∞. Since
e(x,λ) is a continuous function ofx, it follows from (3.23) that

e
(
x∞, λmin

) = lim
j→∞ e

(
ykj , λmin

) = 0.

According to Lemma 2.1,x∞ is a solution point of VI(C,F ).
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From limk→∞ ‖xk − yk‖ = 0 and limj→∞ ykj = x∞, we know limj→∞ xkj = x∞.
Note that inequality (3.22) is true for all solution points of VI(C,F ), hence we have∥∥xk+1 − x∞∥∥2 �

∥∥xk − x∞∥∥2
, ∀k � 0; (3.24)

and it follows that the sequence{xk} converges tox∞. �

4. Relation to Solodov–Svaiter’s method

The method proposed by Solodov and Svaiter in [13] is a specific implementation
proposed method whereα = 1. In [13] the inexactness restriction for findingyk is set as

∆
(
yk

)
� ν

∥∥xk − yk
∥∥2

, ν < 1, (4.1)

and then the new iterate is generated by

xk+1 = PC

[
xk − λkF

(
yk

)]
. (4.2)

It is clear that condition (4.1) is more restrictive than condition (3.2). Under restrictio
(4.1), it follows from (3.15) that

α∗
k = ‖xk − ỹk‖2 + ‖xk − vk‖2 − ∆(yk)

2‖xk − ỹk‖2 > 0.5.

Therefore, SS-method can be viewed as a special form of (3.19) by setting

γk := 1

α∗
k

∈ (0,2). (4.3)

From Eq. (3.14) we have

Ψ (1) = ∥∥xk − yk
∥∥2 − ∆

(
yk

)
and applying the inexactness restriction (4.1), we obtain

Ψ (1) � (1− ν)
∥∥xk − yk

∥∥2
. (4.4)

It follows from Theorem 3.1 that the sequence{xk} generated by SS-method satisfies∥∥xk+1 − x∗∥∥2 �
∥∥xk − x∗∥∥2 − (1− ν)

∥∥xk − yk
∥∥2

. (4.5)

Hence, convergence of SS-method follows from (4.5) immediately.

5. Numerical example for network equilibrium problems

In this section, we compare the efficiency of the proposed method with SS-metho
an application we use the example in the traffic equilibrium problems [15].

Consider a network [N,L] of nodesN and directed linksL, which consists of a finite
sequence of connecting links with a certain orientation. Leta, b, etc., denote the links, an
let p,q , etc., denote the paths. We letω denote an origin/destination (O/D) pair of nod
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ern
of the network andPω denotes the set of all paths connecting O/D pairω. Let xp represent
the traffic flow on pathp anddω denote the traffic demand between O/D pairω, which
must satisfy

dω =
∑
p∈Pω

xp,

wherexp � 0, ∀p. Let fa denote the link load on linka, which must satisfy the following
conservation of flow equation:

fa =
∑
p∈P

δapxp,

whereδap = 1, if link a is contained in pathp, and 0, otherwise. Lett = {ta | a ∈ L} be the
row vector of link costs, withta denoting the user cost of traversing linka which is given
by

ta(fa) = t0
a

[
1+ 0.15

(
fa

Ca

)4]
, (5.1)

wheret0
a is the free-flow travel cost on linka andCa is the designed capacity of linka.

A user travelling on pathp incurs a (path) travel costθp satisfying

θp =
∑
a∈L

δapta.

Let A be the path-arc incidence matrix of the given problem. Sincex is the path-flow, the
arc-flowf is given by

f = AT x.

For given link travel cost vectorta , the path travel cost vectorθ is given by

θ = At.

Hence, the path travel cost vectorθ is a mapping of the path-flowx and its mathematica
form is

θ(x) = At
(
AT x

)
.

Associated with every O/D pairω, there is a travel disutilityλω, which is defined as

λω(d) = −mω log(dω) + qω. (5.2)

Note that both the path costs and the travel disutilities are functions of the flow pattx.
The traffic network equilibrium problem is to seek the path flow patternx∗, which induces
a demand patternd∗ = d(x∗), for every O/D pairω and each pathp ∈ Pω,

Fp(x) = θp(x) − λω

(
d(x)

)
.

The problem is a monotone variational inequality in the space of path-flow patternx:

Find x∗ � 0 such that
(
x − x∗)T F (x∗) � 0, ∀x � 0. (5.3)
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Fig. 1. The network used for the numerical test.

Table 1
The free-flow travel cost and the designed capacity of links in (5.1)

Link Free-flow travel timet0a CapacityCa Link Free-flow travel timet0a CapacityCa

1 6 200 7 5 150
2 5 200 8 10 150
3 6 200 9 11 200
4 16 200 10 11 200
5 6 100 11 15 200
6 1 100 – – –

Table 2
The O/D pairs and the coefficientm andq in (5.2)

No. of the pair O/D pair mω qω

1 (1,7) 25 25 log 600
2 (2,7) 33 33 log 500
3 (3,7) 20 20 log 500
4 (6,7) 20 20 log 400

For the test we take the example used in [15]. The network is depicted in Fig. 1
free-flow travel cost and the designed capacity of links in (5.1) are given in Table
O/D pairs and the coefficientm andq in the disutility function (5.2) are given in Table
For this example, there are together 12 paths for the 4 given O/D pairs as listed in T

We test the problem with SS-method and the proposed method. Since the m
F(x) contains logarithmic function, we begin with starting pointx0 = (1,1, . . . ,1). We
takeλk ≡ 50 and use the improved extra-gradient method [7] to solve the sub-pro
(1.2) approximately. Compared with SS-method, the inexactness restriction of th
posed method is further relaxed (see (4.1) and (3.2)). However, for comparison, we
same inexactness restriction (2.13) withν = 0.9. The relaxation factorγk in (3.19) should
lie in [1,2). In the test, we takeγk ≡ 1.5. All codes are written in Matlab and run o
an IBM T40 notebook computer. The computation stops as soon as‖e(xk,1)‖∞ � 10−6

(see (2.4)). We report the iteration numbers and the CPU time in Table 3. Since th
problems are solved approximately by the iterative method in [7], the number of total
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Table 3
Iteration numbers and CPU time of different methods

Method No. of outer iterations No. of total inner iterations CPU-time (sec)

SS-method 20 182 0.22
New-method 12 111 0.13

Table 4
The optimal path flow

O/D pairs Path no. Link on the path Optimal path-flow

1 (1,3) 165.3145
O/D pair(1,7) 2 (2,4) 0

3 (11) 138.5735

4 (5,1,3) 82.5281
5 (5,2,4) 0

O/D pair(2,7) 6 (5,11) 55.7871
7 (8,6,4) 0
8 (8,9) 87.0260

O/D pair(3,7) 9 (7,3) 19.7549
10 (10) 229.9747

O/D pair(6,7) 11 (9) 178.5600
12 (6,4) 0

Table 5
The optimal link flow

Link no. Link flow Link no. Link flow Link no. Link flow Link no. Link flow

1 247.8426 4 0 7 19.7549 10 229.9747
2 0 5 138.3152 8 87.0260 11 194.3606
3 267.5974 6 0 9 265.5860 – –

iterations is also reported. The optimal path flow and link flow are given in Tables 4 a
respectively.

By choosing the optimal step sizeα∗
k (see (3.15)), we extended SS-method in [13

a new version. The computational load for choosingα∗
k is quite tiny. Comparison with

SS-method shows that the new method is attractive in practice.
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