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Abstract

Proximal point algorithms (PPAYa attractive methods for monotowariational inequalities. The
approximate versions of PPA are more applicable in practice. A modified approximate proximal
point algorithm (APPA) presented by Solodov and Svaiter [Math. Programming, Ser. B 88 (2000)
371-389] relaxes the inexactness criterion significantly. This paper presents an extended version of
Solodov-Svaiter's APPA. Building the direction from current iterate to the new iterate obtained by
Solodov-Svaiter’'s APPA, the proposed method improves the profit at each iteration by choosing the
optimal step length along this direction. In addition, the inexactness restriction is relaxed further.
Numerical example indicates the improvement of the proposed method.
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1. Introduction

Let C be a nonempty closed convex subsetrRdf and F be a continuous monotone
mapping fromR" into itself. The variational inequality problem is to determine a vector
x* e C such that

VI(C,F) (x—xTFx*) >0, VxeC. (1.1)

VI(C, F) includes nonlinear complementarity problems (wi@g= R’ ) and systems of
nonlinear equations (whefi = R"), and thus it has many important applications, e.g., see
[6,8,9].

A classical method for solving variational inequality is the proximal point algorithm
(abbreviated as PPA) [11,12]. Likin > 0 and{Ax} C [Amin, +00). For givenx* € C and
Ak, let x¥+1 pe the solution of following stmgly monotone varigonal inequality:

(PPA)  Findx € C such thatx’ —x)"{(x —x*) + M F ()} >0, vx'eC. (1.2)
The new iterate’*+1 of the exact version of PPA is taken by

X+ = xijrl. (1.3)
An equivalent recursion form of the exact PPA is

X = pexk — e F (x ], (1.4)

where P¢c denotes the projection an.

The ideal form (1.4) of PPA is often imprtcal since in many cases solving problem
(1.2) exactly is either impossible or expensive. In 1976 Rockafellar [11,12] set up the fun-
damental convergence analysis for the appr@te proximal point algorithm (abbreviated
as APPA) to a general maximal monotone operator. The new itefateof Rockafellar's
APPAs is requested to satisfy condition

o0
ka+1 — xi+lH <, Z Vp < +00 (1.5)
k=0
or
o0
R I T T g (1.6)
k=0

Sincex**+1 is necessarily unknown, some upper boundgdft! — x¥+1|| are needful to
be evaluated in order to implement such APPAs.

Extensive developments on APPA focus on different fields such as convex program-
ming, mini-max problems, and variational inequality problems. To mention a few, see [1,
3-5,13]. The major challenges of APPA inclualecelerating convergence and designing
inexactness restrictions that are easimplement and tight for convergence.

Throughout this paper we assume that the oper&ts monotone and Lipschitz con-
tinuous onC and that the solution set of Y&, F), denoted byC*, is nonempty. We use
x* to denote any point iiC*.
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2. Preliminariesand motivation
We use the concept of projection under the Euclidean norm, which is denotgd by
ie.,
Pc(z) =argmin{||z — x|/ | x € C}.

It follows from this definition that

{z—Pc@) {y—Pcx)} <O, VzeR" VyeC. 2.1)
Consequently, we have
|Pc(y) = Pc@| <lly—zll. Vy.zeR" (2.2)

and
HPc(y) —X||2< IIy—XIIZ— ||y — Pc(y) 2, VyeR", Vx eC. (2.3)

Lemma2.1[2, p. 267] Letx > 0, thenx™ solvesVI(C, F) if and only if
x*=Pc [x* - AF(x*)].

Denote
e(x,\):=x— Pc [x — AF(x)]. (2.4)

Then solving VIC, F) is equivalent to finding a zero point efx, ). For givenx, it is
well known [7] that|le(x, 1)|| is @ non-decreasing function bf

The following lemma can be viewed as a corollary of [14, Proposition 3.4]. It gives us
an upper bound ofx — x**1|| foranyx € C.

Lemma 2.2. Let F be monotone o and x*** be the unique solution of the strongly
monotoné/| sub-problen{1.2). Then we have

Ax) > Hx —xi""l 2

, VxeC, (2.5)
where
Ax) :=2{x = Pe[xk = FO]) {(x = x%) + M F ()}
- Hx — Pc [xk — AkF(x)] HZ (2.6)

Proof. For any fixedx € C, we define

hx2) = (| (x =)+ F ) |* = |4 = (o) = 2[)
and it follows that

h(x, Pc[xk —MmF(x)])=maxh(x,z)|z€C}.
Sincext*! e C, we have

h(x, Pc[xk — kkF(x)]) > h(x,xf+l),
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and this yields
2{x — Pe[x* = FO]} {(x = %) + M F (0} = | x = Pe[x* = mF0)]|?
>2(x—xf,§+l)T{(x—x")+)\kF(x)} | — x +1|| (2.7
On the other hand, sinoé*! is the solution of (1.2) and € C, we have
(v = )T (3 = x) P ()} > 0
and consequently

(x — k“) {(x = x%) + M F ()}

> (e =) [ =) i F @] = [ =) 2 F ()]
= (r =™ (r =) 4 2 (F @) = F(aET))
> [ — 12, (2.8)

where the last inequality comes from the monotonicityFofThen the assertion follows
from (2.7) and (2.8) directly. O

Let y* be an approximate solution of (1.2) in the sense that

yE & Pe[x* — e F (Y] (2.9)
and define
5= Pe[x* — M F (Y] (2.10)

It follows from Lemma 2.2 thair (y¥) is an upper bound dfyf — xk+1|12. In the practical
computation of Rockafellar's APPAs [11], the new iterate is taken by

ALk,

and instead of (1.5) and (1.6), it is requested to satisfy

o0
A <vE Y we<+oo 2.11)
k=0
and
o0
A(yk) < v,fok —y* HZ, Z Vg < 100, (2.12)

respectively.
Recently, under a significantly relaxed im&tness restriction (in comparison with
(2.12))

AGR) <vlx =45 v<1, (2.13)
Solodov and Svaiter [13] proposed a new APPA in which the new iterate is given by
(SS-method) x** = Pc[x* — i F(yY)]. (2.14)
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Indeed, this is a meaningful contribution in the area of APPAs. Note that the right-hand
side of (2.14) is jusf* (see (2.10)). Therefore, SS-method (2.14) can be written as

xk+l:xk_a(xk_§k), a=1, (2.15)
which can be alternatively intpreted as follows: starting front, SS-method moves along
the direction—(x* — %) with the step sizer = 1. A natural question is whether there exists
a better step size than 1 along the direction.

3. Main results

We extend the Solodov—Svaiter’s formula (2.15) and present the following algorithm.

Algorithm. For givenx® € C andimin > 0, the sequenci*} is generated by the iterative
schemes:

Step 1. Find an approximate solution of (1.2), i.e., fipllin the sense that

yE & Pel[xk — mF(5¥)] (3.1)
under the following inexactness restriction:

AGF) <vo(x* = 342+ 4 = 54)7), v<1, (3.2)
where

7% = Po[x* — M F (59)] (3.3)

andA(.) is defined by (2.6).

Step 2. Compute the new iterate
xk+l(a) = Pc [xk — a(xk - ik)], (3.4)
whereq is the step size. How to choosewill be specialized later.

An equivalent form of (3.4) is
) = Pe [xk - a(xk — Pc [xk — AkF(yk)])]. (3.5)

Note that (3.3) is an extragradient step. In addition, by settfhg= x**1(«) ando :=1
in (3.5), it reduces to the classical PPA (1.4), thus the new method (3.1)—(3.4) is called an
approximate proximal-extragradient type method.

The following theorem concerns how to choose the stepire(3.4). Note that the
technique developed in [7] drthen extended for pseudoemotone variational inequalities
in [10] is useful in following analysis. For convenience, we denote

fk — yk _ yk (36)
and then we have

A(Y) =20 F ()~ e (3.7)
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Theorem 3.1. Givenx* € C and; > 0, let y* € C be an approximate solution ¢..2)in
the sense of3.1) and the new iterata*+1(«) be given by(3.4). Then for anyx > 0 we
have

? - @ @) - 2P > v @),

Oa) := ||xk — x*H
where
W (e) = 20" = 5% = e (ch) P ()} - o2t = 7)1 (3.8)

j* and¢* are defined by3.3)and(3.6), respectively.

Proof. Sincex**1(a) = Pc[x* — a(xk — $%)] andx* e C, it follows from (2.2) that
et = — e = )| > [ — 7).
Then we have
O@) > [ —x7[* = |a* — 2" —a (et~ )
= 2a (s ) (x — ) — a2 — 342
= 2ok — 7|7 + 20 (7% — x*) " (x* = 35) — o?[xF = 752 (3.9)
Comparing the right-hand side of (3.9) a¥dw) in (3.8), it remains to prove
(7 =) (2% = 7 = (5% = Y9 P (5Y). (3.10)
Sincej* = Pe[x* — AxF(y¥)] andx* € C, it follows from (2.1) that
[ = nF (1) =74 (5 =27 2 0
and thus
(7 =) (K =35 = (5F =) 0 F (). (3.11)
Note thatx* € C* and F is monotone. We have
(=2 F(*) = (F =) Fem >0,
which implies
(* = x*) M F(5F) = F = y9) e F (). (3.12)

Therefore, inequality (3.10) follows from (3.11) and (3.12) directly and the proof is com-
plete. O

The following relation is useful in followig analysis and thus we list it as a proposition.
Proposition 3.1. For y*, 3%, A(y¥), and¢* defined in Sectiorgand 3, we have

[ =542 PO = 2 P e - D) - a0 @13)
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Proof. Usingx* — % = (x* — y*) + ¢* (see (3.6)), we rewrite
2 1 2 k|2
[ =57 = S UG =) + 17+ [ = 5.
By some regrouping, we obtain
[t = 541% = 2 () F ()
1 k k k|2 k_ k|2 KnT k
=S =)+ 87+ [ = 3) =2 (65) F ()

= %(lek AP I e = 417 = )0 )+ aF (1)

e G F o B (O M (A S R O B I
D APt =) - 3404 o

Now we begin to investigate how to choose the step gize(3.4). Substituting (3.13)
into (3.8), we have

W e = af(xt =47 [ = 547) - a0} - et - 54 (3.14)

In fact, ¥ (@) is the tight lower bound of the improvement obtained atktieiteration of
the proposed method. Singg(«) is a quadratic function af, it reaches its maximum at

(xR = YR 4 11 = 51D — AN

*

o 2]lxF = 5112 (319
with

1 ~

W (o) = zoi (| =+ ¢ = 3[%) = a0Y)). (3.16)

Under inexactness restriction (3.2), it follows from (3.15) and (3.16) that
1- 1—v)? 3
>0 and wiep) > S (P AP @

4

To accelerate convergence, we propose a relaxation factofy, , y,1 C (0, 2). Thus
in practice the step sizein (3.4) at thekth iteration is

o = Yy . (3.18)
Therefore, the new iteraté*1 is generated by
x* = Pe[xk — prag (xF = 54)]. (3.19)

By simple manipulations we obtain
v (o) 27 v (|5 = P+ 6 = 4P = A0Y) - () e | - 507
. 1 ~
o (ykaz - —sza2‘> (= 7+ e = 5417 = 2 (%)

2
3.16
G20 2=y (af). (3.20)
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It follows from Theorem 3.1 and (3.17) that

[+t =P < et -2

2—y,)(1—v)? .
R O T M e

Theorem 3.2. Givenxf e C and i, > 0, let y* e C be an approximate solution dfl.2)
in the sense of3.1) and the new iterata**1 be generated by3.19) If the inexactness
criterion (3.2) holds, ther{x*} converges to some™® e C*.

Proof. It follows from (3.21) that there is a constaft> O such that
[t — P < e =P = o = 4P =547, wrtect. 322)

This means that the sequer{aé} is bounded. In addition, we have
o
2 k112 #112
2ol =y 7 o = 547) < 20 =)
k=1

Therefore, we have
lim |x*—y¥|=0 and lim |x*—3*| =0,
k— 00 k—o00
and consequentlfy*} is also bounded. Moreover, singé = (x* — %) — (xk — y*), we
have

lim || =o0.
lim ¢4
Since|le(y*, A)| is a non-decreasing function f it follows from A; > Amin that

le* Amin)| < e, ) = | = Pe[y* = mcF ()]

D)k 45 = Py~ nF (1]

e el - a6 - Pl — O]

(2.2)
<l + 1 =

and thus
lim e(y*, Amin) = 0. (3.23)

k— 00

Let x> be a cluster point ofy*} and the subsequeng¢e’i} converges toc™. Since
e(x, 2) is a continuous function of, it follows from (3.23) that

E(xoo, )\,mm) = ]lL)moo E(ykj B )\,mm) =0.

According to Lemma 2.1x* is a solution point of VIC, F).



370 B.-S. He et al. / J. Math. Anal. Appl. 300 (2004) 362-374
From lime_ oo [Ix* — y¥| = 0 and limjo0 y% = x*°, we know lim;_, oo x*/ = x.
Note that inequality (3.22) is true for all solution points of(¢l F), hence we have
|4 — x> P < ok = x|, VE>0; (3.24)

and it follows that the sequen¢e®} convergesta>. O

4. Relation to Solodov—Svaiter’smethod

The method proposed by Solodov and Svaiter in [13] is a specific implementation of the
proposed method whete= 1. In [13] the inexactness restriction for findip§ is set as

A(yk) gvka—yk 2, v <1, (4.1)

and then the new iterate is generated by
xk+l = PC [xk — )\kF(yk)]. (42)

It is clear that condition (4.1) is more restive than condition (3.2). Under restriction
(4.1), it follows from (3.15) that

e = 5402+ I = M2 - 400
2|jxk — yk||2
Therefore, SS-method can be viewed as a special form of (3.19) by setting

o =

0.5.

1
voi=— €(0,2). (4.3)
¥
From Eq. (3.14) we have
v (D = & =% - a(%)
and applying the inexactness restriction (4.1), we obtain
WD) > 1—v) |t =% (4.4)
It follows from Theorem 3.1 that the sequer(@é} generated by SS-method satisfies
2 2 2
R N P R e | (@5)

Hence, convergence of SS-method follows from (4.5) immediately.

5. Numerical examplefor network equilibrium problems

In this section, we compare the efficiency of the proposed method with SS-method. As
an application we use the example in the traffic equilibrium problems [15].

Consider a networky, L] of nodesN and directed linkd., which consists of a finite
sequence of connecting links with a certain orientationd,ét etc., denote the links, and
let p, g, etc., denote the paths. We letdenote an origin/destination (O/D) pair of nodes
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of the network andP,, denotes the set of all paths connecting O/D paitet x, represent
the traffic flow on pathp andd,, denote the traffic demand between O/D pajrwhich
must satisfy

do= ) Xp,
PEPy

wherex, > 0, Vp. Let f, denote the link load on link, which must satisfy the following
conservation of flow equation:

Jfa= Z (Sapxp,
peP

whered,, =1, if link a is contained in patlp, and 0, otherwise. Let= {7, | « € L} be the
row vector of link costs, with, denoting the user cost of traversing linkvhich is given

by
f 4
ta(f2) =t3[1+ 0.15(C—“) } (5.1)

a

wheretg is the free-flow travel cost on link andC, is the designed capacity of link
A user travelling on patlp incurs a (path) travel cost, satisfying

0, = Zaapta.

acl

Let A be the path-arc incidence miatof the given problem. Since is the path-flow, the
arc-flow f is given by

f=ATx.
For given link travel cost vectay, the path travel cost vectéris given by
0 = At.

Hence, the path travel cost vectbis a mapping of the path-flow and its mathematical
formis

0(x) = At(ATx).
Associated with every O/D pais, there is a travel disutility.,,, which is defined as
ro(d) = —m, 109(dy) + go- (5.2)

Note that both the path costs and the travel disutilities are functions of the flow pattern
The traffic network equilibrium problem is to seek the path flow patt&grwhich induces
a demand patterd* = d(x*), for every O/D paitw and each patlp € P,,,

Fp(x) =0,(x) — Ao (d(x)).
The problem is a monotone vational inequality in the space of path-flow pattern

Find x* >0 such tha(x —x*)" F(x*) >0, Vx>0. (5.3)
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Fig. 1. The network used for the numerical test.

Table 1
The free-flow travel cost and the designed capacity of links in (5.1)
Link Free-flow travel timerg CapacityC, Link Free-flow travel timeraO CapacityC,
1 6 200 7 5 150
2 5 200 8 10 150
3 6 200 9 11 200
4 16 200 10 11 200
5 6 100 11 15 200
6 1 100 - - -

Table 2

The O/D pairs and the coefficient andg in (5.2)

No. of the pair O/D pair My 9o

1 @47 25 25log 600

2 2,7 33 33log 500

3 3.7 20 20log 500

4 (6,7) 20 20log 400

For the test we take the example used in [15]. The network is depicted in Fig. 1. The
free-flow travel cost and the designed capacity of links in (5.1) are given in Table 1, the
O/D pairs and the coefficiemt andg in the disutility function (5.2) are given in Table 2.

For this example, there are together 12 paths for the 4 given O/D pairs as listed in Table 4.

We test the problem with SS-method and the proposed method. Since the mapping
F(x) contains logarithmic function, we begin with starting paift= (1,1,...,1). We
take 1 = 50 and use the improved extra-gradient method [7] to solve the sub-problem
(1.2) approximately. Compared with SS-method, the inexactness restriction of the pro-
posed method is further relaxed (see (4.1) and (3.2)). However, for comparison, we use the
same inexactness restriction (2.13) with= 0.9. The relaxation factop, in (3.19) should
lie in [1,2). In the test, we takey = 1.5. All codes are written in Matlab and run on
an IBM T40 notebook computer. The computation stops as soda@s$, 1)||e < 1076
(see (2.4)). We report the iteration numbers and the CPU time in Table 3. Since the sub-
problems are solved approximately by the iterative method in [7], the number of total inner
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Table 3
Iteration numbers and CPU time of different methods
Method No. of outer iterations ~ No. obtal inner iterations  CPU-time (sec)
SS-method 20 182 .22
New-method 12 111 Q3
Table 4
The optimal path flow
O/D pairs Path no. Link on the path Optimal path-flow
1 1,3 1653145
O/D pair(1,7) 2 2,9 0
3 (11) 1385735
4 (5,13 825281
5 (5,2,%) 0
O/D pair (2, 7) 6 (5,11 55.7871
7 (8,6,4) 0
8 8,9 87.0260
O/D pair (3,7) 9 7,3 19.7549
10 (20) 2299747
O/D pair (6, 7) 11 9) 1785600
12 (6,4 0
Table 5
The optimal link flow
Link no. Link flow Link no. Link flow Link no. Link flow Link no. Link flow
1 2478426 4 0 7 197549 10 229747
2 0 5 1383152 8 870260 11 1943606
3 2675974 6 0 9 265860 - -

iterations is also reported. The optimal path flow and link flow are given in Tables 4 and 5,
respectively.

By choosing the optimal step siz¢ (see (3.15)), we extended SS-method in [13] to
a new version. The computational load for choosijgis quite tiny. Comparison with
SS-method shows that the new method is attractive in practice.

Acknowledgment

The authors thank the anonymous referee for his carefuling of earlier versions of this paper and construc-
tive suggestions.



374 B.-S. He etal. / J. Math. Anal. Appl. 300 (2004) 362-374

References

[1] A. Auslender, M. Teboulle, Entropic proximal decposition methods for convex programs and variational
inequalities, Math. Programming 91 (2001) 33-47.
[2] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Bilmited Computation, Nume@l Methods, Prentice Hall,
Englewood Cliffs, NJ, 1989.
[3] X.J. Chen, M. Fukushima, Proximal quasi-Newtmethods for nondifferentiable convex optimization,
Math. Programming 85 (1998) 313-334.
[4] J. Eckstein, Nonlinear proximal point algorithmsing Bregman functions, with applications to convex
programming, Math. Oper. Res. 18 (1993) 202-226.
[5] J. Eckstein, Approximate iterations in Bregman-ftion-based proximal algorithms, Math. Programming 83
(1998) 113-123.
[6] M.C. Ferris, J.S. Pang, Engineering and econorpjgiaations of complementarity problems, SIAM Rev. 39
(1997) 669-713.
[7] B.S. He, L.-Z. Liao, Improvements of some peofion methods for monotone nonlinear variational inequal-
ities, J. Optim. Theory Appl. 112 (2002) 111-128.
[8] M.A. Noor, Some recent advances in variational inequalities, Part |. Basic concepts, New Zealand J. Math. 26
(1997) 53-80.
[9] M.A. Noor, Some recent advances in variational inequalities, Part 1l. Other concepts, New Zealand J.
Math. 26 (1997) 229-255.
[10] M.A. Noor, Extragradient method for pseudomaoree variational inequalities, J. Optim. Theory Appl. 117
(2003) 475-488.
[11] R.T. Rockafellar, Augmented Lagrangians andl@ggions of the proximal point algorithm in convex pro-
gramming, Math. Oper. Res. 1 (1976) 97-116.
[12] R.T. Rockafellar, Monotone operators and theximal point algorithm, SIAM J. Control Optim. 14 (1976)
877-898.
[13] M.V. Solodov, B.F. Svaiter, Error bounds for prmal point subproblems and associated inexact proximal
point algorithms, Math. Programming, Ser. B 88 (2000) 371-389.
[14] K. Taji, M. Fukushima, T. Ibaraki, A globally coevgent Newton method fasolving strongly monotone
variational inequalities, M. Programming 58 (1993) 369—-383.
[15] H. Yang, M.G.H. Bell, Traffic restraint, road pricing and network equilibrium, Transportation Res. B 31
(1997) 303-314.



