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Abstract

We present the results of the calculation of &g semileptonic form factor at zero momentum transfer(0), obtained at one-loop in partially
quenched chiral perturbation theory (with eithgr = 2, orn = 3, and with generic valence and sea quark masses). We show that fo2,
and at the one-loop level, when the masses of the valence and sea light quarks are equal, the correﬁﬂﬁM% of M3)3]. The formulae
presented here can be useful for the mass extrapolation of the results obtained in lattice simulations to the physical point.

0 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction

In the last two years we assisted to a renewed interest in theoretical calculations of the semileptonic forfa faéjoelevant
to the extraction ofV,,| from K — m v, (K¢3) decayg1-5]. In particular, it has been shown that in lattice simulations the form
factor at zero recoilf, (g2 = 0), can be extracted with the percent precision that is required for making a meaningful determination
of |V,s| [4]. Although many systematic uncertainties must still be reduced, by performing unquenched calculations at lower quark
masses and on several lattice spacings, the calculation offRéfiggered a new wave of activity and the quality of the results is
rapidly improving[5].

A key observation which allows to reach a good theoretical control of these transitions is the Ademollo—Gatto {Bgorem
which states that th& 3 form factors f, (¢2) and fo(¢?) at zero momentum transfegq = 0) are renormalised only by terms of
second order in the breaking of the @) flavour symmetry. Besides, chiral perturbation theory (ChPT) provides an excellent tool
to analyse the dependenceof o(0) on the meson (quark) masses, and a guidance for the extrapolation of the lattice form factors
to the physical point. Following Leutwyler and Roos it is convenient to express the form factor in thg/jorm

[+@ =1+ fo+ fa+---, 1)

where f,, = OMy /(4w f)"] are the terms arising at higher orders in ChPT. Because of the Ademollo—Gatto theorem, the first
non-trivial term in the chiral expansiorf,, does not receive contributions from local operators appearing in the effective theory
and can be computed unambiguously in termsfef, M, and f; [7].

Lattice calculations of th& 3 form factors have been done in quenched and partially quenetyeg ) QCD. In the latter
case simulations are performed with “valence” quark masses equal to or different from “sea” quark masses. In such a situatio
a number of subtleties related to the validity of the Ademollo—Gatto theorem arise. In this Letter we discuss the applicability of
Ademollo—Gatto theorem in various situations (quenched, partially quenched and fully unquenched), and give the main expressior
for f2 in each case. These formulae are important for the extrapolation of the form factors to the physical point. In the following we
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will always work in the isospin symmetric limit, with the mass of the strange quaykdifferent from the mass of the light quarks
(mg =my).

2. Quenched and unquenched formulae
In this section we give a brief summary of the known resultsfigmamely, in full QCD and its quenched approximation.
2.1. Full QCD

In the isospin-symmetric limit, within full QCD, the expression of the leading chiral corregtion[7]

3 3
fZZE nK+§HnKa (2)
where
2M2 M2 M2
Hpop=——— |\ M2+ M2+ P2 |og—2|. 3
re 64712f712|: Pt Q+M§,—Mé 902 ©

Note thatf> is completely specified in terms of pseudoscalar meson masses and decay cofistant82 MeV), it is negative
(f2 ~ —0.023 for physical masses), as implied by unitafityg], and vanishes a&M2 — M2)2/(f2M2) in the SU(3) limit,
following the combined constraints of chiral symmetry and the Ademollo—Gatto theorem.

2.2. Quenched QCD

The structure of chiral logarithms appearing in E, (3), is valid only in the full theory. In the quenched theory, instead,
the leading (unphysical) logarithms are those entering the one-loop functional of &RP. f> in the quenched case was first
computed in Reff4].

Normalising the lowest-order qChPT Lagrangian as in ffwith a quadratic term for the singlet fiettly = str(®) chosen as

o Mg 2
£3] 5z = g Du®oD" @0 — 2@, @)
the result is
q _ g4 q
fo =Hy g + H(XE)K’ (%)
where
M2 | M3(M2 + M2) — 2a M2 M2 M2
Hpp=—K_ oM 2 = PIog(—’z()—a , (6)
967 f7 (M2 — M3) My

with M(zm = 2M,2( — Mﬁ. As anticipated, the one-loop result in E§) is finite because of the Ademollo—Gatto theorem, which
is still valid in the quenched approximati@®], and thus the absence of contributions from local operatoy‘;z"irA proof that the
Ademollo—Gatto theorem (and more generally the Sirlin’s relgti@}) holds within qChPT beyond the one-loop level can easily
be obtained by applying the functional formalism to the demonstration in[R&f. The latter needs only flavour symmetries for
valence quarks which hold on the lattice also in the quenched case.

It is worth emphasising that the nature of the SU(3) breaking corrections in the quenched theory is completely different fro
that of full QCD: only contributions coming from the mixing with the flavour singlet state are present and onﬁz“l‘iacﬁ, which
is a signal of the non-unitarity of the theory. For typical values of the singlet paramafgrs 0.6 GeV andx ~ 0 [13]) and for
the physical values of pion and kaon masses, one fifds +0.022.

3. Partially quenched results

In this section we give the new results for various set-ups relevant to partially quenched QCD. We have used the partia
quenched ChPT Lagrangian defined in R¢f4l,15] and work with two sea quark massemﬁ), mff)), and two valence ones

(m§v>, mfiv)). We stress again that we always work in the exact isospin limityig~ m,;. The meson masses, at leading order in
ChPT, read

\% \% N
M2 =2Bm!", M2 = Bo(m') +m{"), M2, =2Bom}”, M? =2Bum'®, 7
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where By is the chiral condensate (more precisely, = —2(ciq)/fnz). In Appendix Awe give the complete formula fofzpq, as
obtained with 3 dynamical flavours and four quark masses enumerated above. Here we focus onto the limits that are particularl
interesting to the situations encountered in the partially quenched QCD simulations on the lattice.

Like in the cases of full and quenched QCD, also in the partially quenched theory the Ademollo—Gatto theorem holds non-
perturbatively to all orders in the chiral expansion. However, the generic structure of the lowest order correction in ChPT, expande
in the mass difference of the valence quark masses, reads

81 ) V) Vv (V)2 1% (V)3

21 = [+l )| =m0l ) ®
S

wheregi and g, are functions of the valence and sea quark (meson) masses. Thus we find that in the partially quenched theor

with n y = 2, which is obtained by sending!®’ — oo, the correction is at least of the third ordemil)”’ — mfiv) if the valence and

sea light quark masses are the same. This is only an accident however: at the next order in the chiral expansion, the corrections
O[(m§v) - mfiv))z], due to the effect of the higher-dimensional local operators, will appear. This implies that a numerical analysis
of the mass dependence of the form factro(0) in then ; = 2 case and witrmgls) = mfjv), could determine the constants quite
precisely since the leading non-analytic corrections fr]q?ﬁ are suppressed by this enhanced AG effect.

In the following we give the resulting expressions in two important cases:
Case 1. ny = 2 non-degenerate valence and sea light quarks. In this case we have
M2
2M2 + M2,  MEIMIME, + Mg (MG, — 2M7)1log( 375 )

f2pq — _
32m? f2 6472 f2(M2 — M2)°

2
MZ[(2M2 — M2)(2M% — M2) — M2 M3,]log(2 — A"j—%)

+ 2
6472 f2(M2 — M2)

2M% —M2+M?
(@M — MZ + M) (MZ + M) log(= )

M2+M2,
n , 9
642 f2(M7 — M2) ©)
which in the smallz — M2 limit becomes
2
(M2 — M2)“ (M2 — M2 ,))(3M2 + M2) 4
fzpq - _ K T K dd K dd + (9[(1‘412< _ M]%) ] (10)

19272 f2Myg (M% + M2))
Note that only even powers M,% — MJE appear in the expansion, as in the quenched case. The odd powers are hidden in the factor
M2 —M?,.

K dd

Case 2. ny = 2 degenerate valence and sea light quarks. By taking= M, we get the case witmzs) = mi,v). The correction is
now cubic in the SId3) breaking, namely,

2 2
oMz 4 p2  3MEMZlog(1x)  ME(4ME — M2)log(2 - 17F)
f2pq=_ Kz zﬂ_ 2 ot 2 =, (11)
3272 f2 6472 f2(Mg — M2) 64n2 f2(Mg — M2)
which after expanding im/2 — M2 leads to
3
(M — M3) 4
Pq K T 2 2
=——=——"" 40| (Mz — M , 12
f2 967T2fj.?M;$ [( K 71) ] ( )

thus showing the suppression of the SU(3)-breaking corrections at this order. In particular, in this case, the AG quadratic correctiol
extracted from lattice simulation of th€ — 7 vector form factor, will be free from thg> contributions and will start withys
where analytic contributions are present.

4. Conclusion
In this Letter we discussed the leading chiral corrections taktheform factor f(0), that are protected by the Ademollo—Gatto

theorem and thus unambiguously computable in all three forms of ChPT, i.e., the ones corresponding to the full, partially quenche
and quenched QCD. We provide the formulae for the partially quenched case which are needed for the mass extrapolation ¢
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currently accessiblg (0) computed on the lattice to the physical kaon and pion masses. The complete formula, with generic se
and valence quark (meson) masses, is giveapendix A, wheres the case o = 2 is discussed in more detail in the téxve

show that in the latter case with the valence and sea light quarks being degenerate in mass, the fofitOfastinee fromfz'"q
correction, thus allowing for ever cleaner determinatiorfofrom the lattice.
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Appendix A

In this appendix we give the formula f(ﬁzpq for n y = 3 and generic valence and sea quark masses. The gase discussed in

the textis readily obtained by sendimjs) — oo. The full case is recovered by takinds) =m" andmfls) = mflv), corresponding

to M2 =2M2 — M? andM3, = M2.
737 = M3 [ (2M — m2) (63 (213 — M2)?2 — M2 [(@0} — M) (1104 — M2) +anE 3]

— 2 (BMy — MZ)(2M% — M2)” — 3(2ME — M2)(3M§ — MZ) MY, + (3MF — M2) MM,

Iog(%)

3272 f2(M2 — M2)*(3M2 + 2M2, + M2, — 6M2)°

+ [M2M2, -+ M2 (4022 — 2022 — 302, |

S

2M2 —M2+ M2, )

; 5 ME

M2
M M2 — M2)(M% — M2)log(35) (@M% — M2 + M2)(M2 + M2) log(
AR

872 f2(M2 — M2)2(3M2 — 2M2, — M2,) 12872 f2(Mg — M2)
2M12(—M7§+M5d)

(M2 — M2 + M2 ) (M2 + M2 ) log( ST,

+
64n2f2(M2 — M2)

2 2
2Mx.r+Mdd )
3M2

 An2f23M2 — 2M2 — M2,)(2M2. + M2, — 3M2)2(3M2 + 2M2, + M2, — 6M2)>
26My — (2M2 + M3, + 3M2)(M?, + 2M3,)
6472 f2(3M2 + 2M2, + M2, — 6M2)
MZ% (39M7 — 8My, — 18 M2 (M2, + 2M2,)) + M2, (18 M2 +5M3,))
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