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We develop a combinatorial model of the associated Hermite poly-
nomials and their moments, and prove their orthogonality with a
sign-reversing involution.We find combinatorial interpretations of
the moments as complete matchings, connected complete match-
ings, oscillating tableaux, and rooted maps and show weight-
preserving bijections between these objects. Several identities,
linearization formulas, the moment generating function, and a
second combinatorial model are also derived.
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The associated Hermite polynomials are a sequence of orthogonal polynomials considered by Askey
and Wimp in [5], who analytically derived a number of results about these polynomials. They are
also treated in [13, Section 5.6]. In Section 1 we provide a combinatorial interpretation of these
polynomials, their moments, and describe an involution that proves the orthogonality and L2 norms
of the polynomials with respect to those moments. Then in Section 2 we shall describe several
linearization formulas involving associated Hermite polynomials. We finish with weight-preserving
bijections between a number of classes of combinatorial objects whose generating functions all yield
the moments of the associated Hermites, and a second combinatorial model for the polynomials.
We will assume that the reader is familiar with Viennot’s general combinatorial theory of

orthogonal polynomials [29,30] and with the combinatorics of Hermite polynomials; see [3,9,19] and
also [29, Section II.6]. In this paper we use [n] to mean the set of integers 1 to n, inclusive, and write
[n] t [m] for the disjoint union of two such sets.

1. Definition and orthogonality

The associated Hermite polynomials may be defined by shifting the recurrence relation for the
usual Hermite polynomials, which is

Hn+1(x) = xHn(x)− nHn−1(x),
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Fig. 1.1. A matching on 7 points using the rightmost-choice weighting. This weighting is used throughout this paper.

to

Hn+1(x; c) = xHn(x; c)− (n− 1+ c)Hn−1(x; c), (1.1)

with H0(x) = H0(x; c) = 1 and polynomials with negative indices equal to zero. Askey andWimp use
a different normalization than we do; one obtains our normalization from plugging x/

√
2 and c − 1

into their associated Hermites and dividing by
(√
2
)n
.

The usual Hermite polynomialHn+1(x) is the generating function for incompletematchings of [n+
1], in which fixed points have weight x and edges have weight−1; that combinatorial interpretation
can be derived from the recurrence relation as follows: the vertex n+ 1 may be fixed with weight x,
times the weight of all matchings on [n]; or we may connect vertex n + 1 to any of the n vertices to
its left, give the edge weight−1 and multiply by all matchings on the n− 1 remaining vertices.
For the associated Hermites, we’ll build the matchings recursively as described above and

think of the parameter c as meaning that one special choice for the edge from n + 1 will have
weight −c. Two natural choices are to make the special choice be the leftmost available vertex,
or the rightmost available vertex. Choosing the rightmost available vertex happens to make the
orthogonality involution easy to prove, and yields the following result:

Theorem 1.1. The nth associated Hermite polynomial is the sum over weighted incomplete matchings M
of [n]:

Hn(x; c) =
∑

wt(M), (1.2)

in which fixed points have weight x, edges that nest no fixed points or edges and have no left crossings have
weight −c, and all other edges have weight −1.

Proof. Webuild thematching from right to left, and if at somepointwe add an edge and do not choose
the rightmost available vertex, then that edgewill nest a vertex, andwhenwe come to that vertex, we
will either leave it fixed (resulting in a fixed point underneath that edge), connect to another vertex
underneath the edge (resulting in an edge nested by the original edge), or connect to a vertex to the
left of the edge, resulting in a left crossing for the original edge. Any of these possibilities indicate that
the rightmost vertex was not chosen, so edges for which none of those happen must have weight−c.

�

An example of such a weighted matching is shown in Fig. 1.1.
With nothing more than this model, we can easily explain an ‘‘unexpected’’ limit that Askey and

Wimp derive [5, eq. (5.9)]. (In their paper, there is a small typo: it should be Hn(x
√
2c; c).) Using our

normalizations, the limit is

lim
c→∞

c−n/2Hn(x
√
c; c) = Un(x), (1.3)

where {Un(x)}n≥0 are the Chebyshev polynomials of the second kind, also known as Fibonacci
polynomials [29, Section II.1], [9]. Un(x)may be thought of as the generating function for incomplete
matchings on n vertices in which edges always connect adjacent vertices and have weight −1, and
fixed points have weight x.
Using that combinatorial interpretation forUn(x) and the above interpretation forHn(x; c), there is

nothing unexpected about this limit: take Hn(x
√
c; c) and give each vertex, whether fixed or incident

to an edge, weight 1/
√
c , so that c−n/2Hn(x

√
c; c) is the generating function for incompletematchings

with fixed points weighted x, and all edges weighted −1/c except those which nest no fixed points
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Fig. 1.2. A complete matching on 6 points under the leftmost-choice weighting for the moments, in which nonnested edges
have weight c and others have weight 1.

Fig. 1.3. The same complete matching under the rightmost-choice weighting, in which edges with no right crossing have
weight c and others have weight 1. This is used in the orthogonality proof.

or edges, and have no left crossings—such edges have weight−1. As c goes to infinity, we effectively
restrict the generating function tomatchings in which no edge has weight−1/c; i.e., every edge nests
no fixed points or edges, and has no left crossings, so every edge must connect adjacent vertices.
We want a linear functional Lc with respect to which the associated Hermite polynomials are

orthogonal. This linear functional is determined by its momentsLc(xn), which according to Viennot’s
general combinatorial theory of orthogonal polynomials, can be expressed as a sum over weighted
Dyck paths in which a northeast edge has weight 1 and a southeast edge leaving from height j has
weight j − 1 + c. There are no Dyck paths of odd length, so the odd moments are zero. The first few
nonzero moments are

µ0 = 1, µ4 = 2c2 + c,
µ2 = c, µ6 = 5c3 + 7c2 + 3c.

Using the bijection from weighted Dyck paths to complete matchings from [29, Section II.6], we have
two combinatorial interpretations for the moments:

Theorem 1.2. The nth moment µn(c) of the associated Hermite polynomials is the generating function
for complete matchings of [n] weighted by either: (1) edges which are not nested by any other edge have
weight c, and all other edges have weight 1; or (2) edges with no right crossings have weight c and all
other edges have weight 1.

The two weightings correspond to giving weight c to the leftmost and rightmost choice,
respectively, in the matchings. These interpretations also explain why the odd moments are zero,
since there are no complete matchings on an odd number of vertices. For the proof of orthogonality,
we shall use the rightmost weighting; later we shall use the leftmost weighting. Figs. 1.2 and 1.3 show
a matching using the two weightings.

1.1. Proof of orthogonality

We wish to prove the following theorem in a combinatorial manner:

Theorem 1.3. The associated Hermite polynomials Hn(x; c) are orthogonal with respect to the linear
functionalLc with the above moments. They satisfy

Lc(Hn(x; c)Hm(x; c)) =
{
0 n 6= m,
(c)n n = m. (1.4)

Here (a)n denotes the rising factorial a(a+ 1) · · · (a+ n− 1).
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Fig. 1.4. A paired matching for n = 5 andm = 3.

Proof. The proof proceeds very similarly to the proof of orthogonality for usual Hermite polynomials.
The product Hn(x; c)Hm(x; c) is the generating function for pairs of matchings with, say, black edges,
using the rightmost weighting. Applying Lc has the effect of putting a complete matching with
the rightmost weighting with, say, dotted edges on the fixed points. We will use the phrase paired
matching to refer to such an object, with black homogeneous edges and arbitrary dotted edges,
weighted as above. This is not standard terminology; it is only for our convenience. Wewill also think
of dotted edges as being a different color than the black edges.
Using Theorems 1.1 and 1.2, the left side of (1.4) is the generating function for paired matchings,

where black edges have weight −c if they nest no edges, have no dotted crossings and no left black
crossing; otherwise black edges have weight −1. Dotted edges have weight c if they have no right
dotted crossing and weight 1 otherwise. See Fig. 1.4 for an example of such an object for n = 5 and
m = 3.
We need an involution that shows the generating function for paired matchings equals zero

when n 6= m, and equals (c)n otherwise. Assume that n ≥ m and put [n] to the left of [m]. The
involution is the very similar to that used in the combinatorial proof of orthogonality for usual Hermite
polynomials:

Find the leftmost homogeneous edge that nests no other edges and change its color. (That is,
make the edge dotted if it is black, and vice versa.)

For example, in Fig. 1.4, one would change the ‘‘color’’ of the leftmost dotted edge that connects
vertices 2 and 4 to black. This operation is evidently an involution and will certainly change the sign;
we need to verify that the weight of no other edge is affected by this change, and that if we change
the color of an edge weighted±c or±1, the new edge has weight of∓c or∓1, respectively.
We begin with the following observation: the leftmost homogeneous edge in [n] that nests no

edges can have no left crossing. We must check the four possibilities of color and weight for the edge
whose color we flip:

• Edge is black, weight−1: the edge has no left crossing, andwe’ve assumed the edge nests no edges,
so if it has weight −1 it must have a right crossing by a dotted edge—so as a dotted edge, it will
have weight+1.
• Edge is black, weight −c: to get weight −c , the edge must in particular have no dotted crossing,
and therefore as a dotted edge, it will have weight c.
• Edge is dotted, weight 1: the edge must have a right crossing by a dotted edge, so as black it will
have weight−1.
• Edge is dotted, weight c: the edge nests no edges by assumption, and has no right dotted crossing.
By our observation above, it has no left crossings, hence will be eligible for weight −c as a black
edge.

Thus theweight of the edge is preserved and the sign is reversed.We leave it to the reader to check
that the weight and sign of no other edge is affected by this operation. It is only necessary to consider
an edge that has a left crossing by the edge whose color changes.
If n > m, there must be a homogeneous edge in [n]; in that case, the above involution has no fixed

points, and we have proved that Hn(x; c) is orthogonal to Hm(x; c).
Now we shall prove that the L2 norm of the associated Hermites is (c)n by interpreting the paired

matchings as something whose generating function is known to be (c)n: permutations weighted
by left-to-right maxima. See [8,11] for proofs of this fact in the context of Laguerre polynomials.
(‘‘Left-to-right maxima’’ is ‘‘éléments saillants inférieurs gauches’’ in French.) This bijection naturally
generalizes the usual combinatorial proof that the L2 norm of the Hermite polynomials is n!.
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Fig. 1.5. The permutation 3142 as a matching. The right side is the domain, the left is the range. The digits 3 and 4 are left-
to-right maxima in the permutation, and indeed the dotted edges connecting to 3 and 4 on the left have weight c under the
associated Hermite moment weighting.

First, apply the above involution to paired matchings with n = m; that involution will cancel all
matchings with a homogeneous edge. To set up the bijection, begin with a matching on [n] t [n]with
no homogeneous edges. (Recall that [n] t [n]means the disjoint union of [n]with itself, or, what will
work equally well, the ordinary union {1, . . . , n} ∪ {n + 1, . . . , 2n}.) Number the vertices as shown
in Fig. 1.5 and think of the right side as the domain, and the left side as the range. A simple induction
argument demonstrates that edges that get weight c correspond exactly to digits in the permutation
that are left-to-right maxima.
This bijection from the fixed points of the involution to permutations preserves weight, hence the

L2 norms of the associated Hermite polynomials are (c)n. This completes the proof of Theorem 1.3.
�

Wealso note that by [11, Lemma2.1], the L2 normcan also be interpreted as the generating function
for permutations with cycles weighted by c.

2. Linearizations

In [20, theorem 3.1], Markett shows that the linearization coefficients in

HN(x; c)HM(x; c) =
min(N,M)∑
j=0

f (N,M, j) HN+M−2j(x; c) (2.1)

are

f (N,M, j) = (N +M − 2j+ c)j 3F2

(
j− N j−M −j

j− N −M − c + 1 1

)
, (2.2)

where the 3F2 notation indicates a hypergeometric function evaluated at x = 1. We can prove

Theorem 2.1. The linearization coefficients f (N,M, j) of Eq. (2.2) are polynomials in c with nonnegative
integer coefficients.

Proof. Take the rising factorial in front and reverse the order of multiplication: it becomes (−1)j(j−
N−M−c+1)j. We have two k! factors in the denominator of the 3F2; combine themwith the (j−N)k
and (j−M)k in the numerator to get (−1)k

(
N−j
k

)
and (−1)k

(
M−j
k

)
. The (−1)k factors cancel. Finally

rewrite (−j)k = (j− k+ 1)k(−1)k.
Put (−1)j(j − N − M − c + 1)j inside the sum. There is a factor of (j − N − M − c + 1)k in the

denominator; those cancel and yield (−1)j(j− N − M − c + 1+ k)j−k in the numerator of the sum.
Reverse the order again and it turns into (−1)k(N+M−2j+ c)j−k. This (−1)k cancels with the earlier
one from the (−j)k.
The sum is now∑

k≥0

(
N − j
k

)(
M − j
k

)
(j− k+ 1)k(N +M − 2j+ c)j−k.

This is clearly a polynomial in c with nonnegative coefficients. �
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Note that when c = 1, the 3F2 of (2.2) sums by the Pfaff–Saalschütz identity to

(N + 1− j)j(M + 1− j)j
j!

,

and we recover the linearization coefficients for usual Hermite polynomials; the expression above,
after multiplying by (N +M − 2j)!, counts inhomogeneous matchings on [N] t [M] t [N +M − 2j],
as shown by de Sainte-Catherine and Viennot in [9] and, using different methods, by Zeng in [31]. A
combinatorial interpretation of the coefficients (2.2), refining the results of [9,31], is quite desirable,
but the problem is still open; see Conjecture 2.1.
Since the linearization coefficients are known to be multiples of a 3F2 hypergeometric series, the

best starting points for a combinatorial interpretation seem to be [4,21,1]; the first two papers concern
the usual Pfaff–Saalschütz identity, the third features a combinatorial proof of the q-Pfaff–Saalschütz
identity. It seems very difficult to even prove, in analogy to the case for usual Hermite polynomials,
thatLc(HN(x; c)HM(x; c)HN+M−2j(x; c)) is the generating function for inhomogeneous matchings on
[N] t [M] t [N +M − 2j].
In fact, using the ‘‘nonnested’’ weighting for the moments, the generating function for inhomo-

geneous matchings doesn’t even equal the integral of three associated Hermites: Lc(H2(x; c)3) =
c3+4c2+3c , but the 8 inhomogeneousmatchings on [2]t [2]t [2] have total weight 2c3+4c2+2c.
However, even if we use the ‘‘no left crossing’’ moments, it can be shown that no involution

that simply flips the color of an edge can work with this model of the polynomials. For example,
in Lc(H1(x; c)H2(x; c)H3(x; c)), the matching (1, 2)(3, 5)(4, 6) has a homogeneous edge—the one
connecting 4 and 6—which as a black edge has weight −1 and as a dotted edge has weight +c. That
matching has only one inhomogeneous edge, but changing its color does not preserve weight.
One might try different weightings for the polynomials and the moments. We could reverse the

matchings with the rightmost-choice weighting and give edges with no left crossing weight c . For the
polynomials, one could build them from left to right or right to left, and have weight−c given to the
rightmost or leftmost choice. That yields two moment weightings and four polynomial weightings,
and counterexamples like the one above are known for all eight combinations of weightings.
The order in which the sets of vertices are arranged is also important. The integral Lc(H3(x; c) ·

H3(x; c) ·H4(x; c)) equals c(c+1)(c+2)(c+3)(c+8), but even if one considers only inhomogeneous
matchings, the three ways to arrange the sets of vertices yield three different generating functions for
inhomogeneous matchings with the rightmost-choice moment weighting:

[3] t [3] t [4] : c(c + 1)(c + 2)(c + 3)(c + 8)
[3] t [4] t [3] : c(c + 1)(c + 2)(c2 + 7c + 28)
[4] t [3] t [3] : c(c + 1)(c + 2)(c2 + 8c + 27).

The nonnested weighting for the moments also fails in all three of these cases: it gives 6c(c+ 1)2(c+
2)2 for [3] t [4] t [3] and 3c(c + 1)(c + 2)2(c + 3) for the other two. To get the correct answer, we
had to order the sets of vertices in weakly increasing order by size: [3] t [3] t [4]. This observation
(and much computational evidence) leads us to conjecture the following:

Conjecture 2.1. Let n1, n2, . . . , nk be positive integers. The integral

Lc

(
k∏
i=1

Hni(x; c)

)
is the generating function for inhomogeneous matchings on

⊔k
i=1[ni] in which the sets of vertices are

arranged in weakly increasing order by size and the edges are weighted with the rightmost-choice moment
weighting (so edges with no right crossing have weight c).

2.1. A mixed linearization formula

In this section we will prove
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Theorem 2.2. If n ≥ m− 1, then

Hn(x; c)Hm(x) =
∑
k

(
n− 1+ c
k

)(m
k

)
k!Hn+m−2k(x; c), (2.3)

where the sum runs from 0 tomin(m, b(n+m)/2c).

Proof. Fix n; we’ll induct on m. For m = 0 and m = 1 the formula is a tautology and the recurrence
relation, respectively. Assume that the formula works for some m ≤ n; multiply both sides of the
formula by x and use the recurrence:

Hn(x; c)(Hm+1(x)+mHm−1(x))

=

∑
k

(
n− 1+ c
k

)(m
k

)
k!(Hn+m+1−2k(x; c)+ (n+m− 2k− 1+ c)Hn+m−1−2k(x; c)).

If we move the mHn(x; c)Hm−1(x) term over and use the induction hypothesis, we find that the
coefficient of Hn+m+1−2k(x; c) on the left side is(

n− 1+ c
k

)(m
k

)
k! + (n+m− 2k+ 1+ c)

(
n− 1+ c
k− 1

)(
m
k− 1

)
(k− 1)!

−m
(
n− 1+ c
k− 1

)(
m− 1
k− 1

)
(k− 1)!

which simplifies to(
n− 1+ c
k

)(
m+ 1
k

)
k!,

exactly the coefficient we want. �

One must be careful with that recurrence, though. If k gets too large the recurrence fails, because

xH−1(x; c) = H0(x; c)+ (−2+ c)H−2(x; c)

is false. The induction argumentworks to go fromm = n tom = n+1because xH0 = H1+(−1+c)H−1,
as long as one assumes polynomials with negative indices are zero.
Is there is a natural extension or modification of the sum in (2.3) when n < m− 1? The coefficient

of Hn+m−2k(x; c) given in the sum is correct for 0 ≤ k ≤ n regardless of the relationship between n
andm because of the recurrence argument above, but there appears to be no particularly nice or easy
pattern to the coefficients of Hn+m−2k(x; c) for k > nwhen n < m− 1.

3. Associated Hermite moments and oscillating tableaux

In this section we will describe a statistic on oscillating tableaux, also known as up-down
tableaux, and a bijection between these tableaux and completematchingswhich isweight-preserving
when using the weight for associated Hermite moments. Oscillating tableaux were described by
Sundaram [26]; see Section 5 of [6] for discussion of their origins and the bijection to complete
matchings, and [17] for an extension of the results of [6] to fillings of Ferrers diagrams.
Briefly, an oscillating tableau is a path in the Hasse diagram of the Young lattice in which at each

point one eithermoves up to a partition that covers the current partition, ormoves down to a partition
covered by the current partition. For our purposes, the pathwill always begin and endwith the empty
shape. The length of an oscillating tableau is the number of edges in the path. Fig. 3.2 has an example
of an oscillating tableau of length 8.
In this section, we use Theorem 1.2’s ‘‘leftmost-available’’ weighting of complete matchings, in

which edges that are not nested by other edges have weight c , and all other edges have weight 1.
Roughly speaking, the bijection from complete matchings to oscillating tableaux works by RSK-

inserting numbers when edges start, and deleting them when edges end. More precisely, given a
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Fig. 3.1. A complete matching and the corresponding oscillating tableau. The numbers in the Ferrers shapes are not, strictly
speaking, part of the oscillating tableau; they are only used in the bijection from the matching to the tableau.

Fig. 3.2. An oscillating tableau that corresponds to the complete matching (13)(26)(48)(57).

completematching, number the edges from right to left as in Fig. 3.1. (Equivalently,write thematching
as a double occurrence word; see Section 4.) We will map this matching to a sequence of Ferrers
shapes. Begin with the empty Ferrers shape and read the matching left to right. When edge j starts,
RSK-insert a j into the tableau; when edge j ends, delete the box containing j. When done, erase the
numbers in the Ferrers shapes. Fig. 3.1 has an example.
There is a possible point of confusion here. A tableau in this context is a path in the Hasse diagram

of the Young lattice—a sequence of Ferrers shapes. A standard Young tableau is a path that continually
moves up, and therefore it is simple to record the path with a single Ferrers shape filled with numbers
that strictly increase in rows and columns. In Fig. 3.1, the Ferrers shapes arewritten as Young tableaux,
which is only for our convenience. The actual image of the complete matching is the same sequence
without the numbers in the shapes. The reason for this is that RSK is a bijection, and one can unbump
numbers.
Fig. 3.2 describes the inverse map from tableaux to matchings. We read the sequence of Ferrers

shapes from right to left. Because of how we number the edges, the first box must have a 1 in it. In
general, when the shape gets larger, we put the next-largest number into the new box, because we’ve
started a new edge. The third shape from the right is 1 2

3 , and the shape to its left must be 13 , because
unbumping the 2 is the only way to produce the second shape. This oscillating tableau corresponds to
the matching 43412321, using the vertex-numbering scheme described above.
Let us weight oscillating tableaux with the following statistic: numbers that appear in the first

column only have weight c , and all other numbers have weight 1. That statistic is exactly what we
need to prove the following theorem.

Theorem 3.1. There is a weight-preserving bijection between oscillating tableaux of length 2n weighted
with the above statistic and complete matchings weighted with the leftmost-available associated Hermite
weighting.

We will use several preliminary results to prove this theorem.

Lemma 3.1. In an oscillating tableau, when a number is added to a shape, the corresponding edge is nested
by all edges whose corresponding number in the shape is smaller, and has a left crossing from all edges
whose corresponding number in the shape is bigger. Edges whose corresponding numbers never appear
together in a shape neither nest nor cross one another.

For example, when we move from 2 4 to 2 3
4 in Fig. 3.1, edge 3 is nested by edge 2 and has a

left crossing from edge 4. The proof of this is left to the reader; it follows from the way the edges are
numbered and in what order we add numbers to the tableau.
The above lemma implies the following facts:
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Proposition 3.1. In an oscillating tableau, edges that get nested by other edges are exactly those whose
number appears in the 2nd, 3rd, etc, column of a shape. Edges that have a right crossing are exactly those
whose number appears in the 2nd, 3rd, etc row of a shape.

Proof of Theorem 3.1. The bijection between complete matchings and oscillating tableaux clearly
preserves weight: edges that do not get nested by another edge must appear in the first column only.
Note also that we could have used the rightmost-available weighting from Theorem 1.2; in that case,
we would have needed to change our statistic to ‘‘entries that appear in the first row and stay there
have weight c ’’. �

4. Associated Hermite moments, rooted maps, and connected matchings

In addition to the weight-preserving bijection between associated Hermite moments and
oscillating tableaux of Section 3, there is a weight-preserving bijection between associated Hermite
moments and rootedmaps. See [28,15] for introductions tomaps, whichmay be thought of as a graph
along with an embedding into a surface. A rooted map is a map in which one edge has been oriented.
There is an axiomatic construction ofmaps thatmakes it natural to think of the edges in amap as pairs
of half-edges or edge ends and we will speak of edge ends in this section.
This connection is motivated by the normalizations used byMarkett [20] and Askey andWimp [5],

both of which use (rescaled versions of)Hn(x; c+1). The first fewmoments for those polynomials are

µ0(c + 1) = 1, µ4(c + 1) = 2c2 + 5c + 3,
µ2(c + 1) = c + 1, µ6(c + 1) = 5c3 + 22c2 + 32c + 15.

On the one hand, those moments are simply the moments we’ve been working with all along, except
that now edges with no right crossing (or nonnested edges, depending on which weighting one uses)
may have weight 1 or weight c. On the other hand, if those polynomials in c are generating functions
for some objects in which c , and not c + 1, is the weight, setting c to 1 gives us a count of how many
objects there are, which facilitates searching. Doing so yields

1, 1, 2, 10, 74, 706, 8162, 110 410, 1708 394, . . .

which is A000698 in [25]. This sequence likely first appeared in [27]; it counts connected matchings
(see below).
In Table 1 of [2, page 10], Arquès and Béraud count rooted maps by number of edges and vertices;

that table also describes associated Hermitemoments: the entry in the nth row andmth column is the
number of rooted maps with n edges andm vertices, and is also the coefficient of cm−1 in µ2n(c + 1).
We will weight each vertex in such a map by c except the vertex at the head of the root edge, and use
the bijection between rootedmaps in orientable surfaces and connectedmatchings found in the work
of Ossona de Mendez and Rosenstiehl [24,22]. A connected matching on 2n vertices is one in which
all vertices except 1 and 2n are nested by an edge. Equivalently, one can write a matching as a double
occurrence word in the letters 1, 2, . . . , n where each letter appears exactly twice; then a matching
is connected if the corresponding double occurrence word cannot be written as the concatenation of
two double occurrence words.
A double occurrence word corresponds to the vertex-numbering scheme used in Section 3. We

shallweight connectedmatchings by givingweight c to all nonnested edges except the edge containing
vertex 1. Then we have

Theorem 4.1. The function given in [24,22] is a weight-preserving bijection from rooted maps in
orientable surfaces with k vertices and n edges to connected matchings on 2n+ 2 vertices of weight ck−1.

Proof. The idea of the bijection is this: number the edges in the rooted map, add a new loop at the
vertex adjacent to the root, then build a double occurrence word by visiting each vertex and adding
the edge numbers adjacent to the vertex to the word.
The bijection is weight-preserving because when deciding the next vertex to visit, the algorithm

chooses the vertex in the rootedmap corresponding to the leftmost unattached vertex in the partially-
constructed matching. As we add edge ends to the list, we will add a new edge to the matching that
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Fig. 4.1. A rooted map to which we’ll apply the bijection to connected matchings. ‘‘Hollow’’ vertices have weight c. We have
already added the extra edge, labeled α; the original root was the end of edge 1 incident with vertex A.

Fig. 4.2. The steps of the tail-swapping bijection applied to the connectedmatching corresponding to the rootedmap in Fig. 4.1;
the result is a complete matching (in the lower right) in which nonnested edges are eligible for weight c .

contains that leftmost unattached vertex. No edge can then nest the newly created edge, so every visit
to a new vertex in the rooted map results in exactly one nonnested edge in the matching. �

Fig. 4.1 shows an example of the bijection. Vertices of weight c in the rooted map will be drawn
‘‘hollow’’, and edges of weight c will be dotted in the connected matching. We start at the head of
edge α and read counterclockwise around vertex A; our double occurrence word begins with

α 1 2 3 α.

We have visited both ends of α, so we move to the unvisited end of edge 1, go around vertex B and
add 4 4 5 2 5 1 to the word, which is now

α 1 2 3 α 4 4 5 2 5 1.

Now move to the unvisited end of edge 3 and do the same thing; we just append 3 to the word. We
end up with

α 1 2 3 α 4 4 5 2 5 1 3,

which is double-occurrence word for the connected matching (1, 5)(2, 11)(3, 9)(4, 12)(6, 7)(8, 10)
where the edges (2, 11) and (4, 12) have weight c because edges 1 and 3 in the rooted map were the
edges along which we first visited vertices B and C , and 1 and 3 appeared in the double-occurrence
word n positions 2 and 11, and 4 and 12 respectively.
Nowwe need another weight-preserving bijection, this time fromweighted connected matchings

to one of our original definitions for µn(c + 1), the moments of associated Hermite polynomials. We
will demonstrate such a bijection to the moments weighted with the leftmost-available weighting of
Theorem 1.2, in which nonnested edges are may have weight 1 or c. Call the edge containing vertex 1
the ‘‘fake edge’’.
The bijectionworks as follows: If the fake edge has no crossings, remove it; the remainingmatching

on 2n vertices, of weight 1, is the result of the bijection. Otherwise, swap the tails of the fake edge and
that edge crossing the fake edgewhichhas the leftmost endpoint. That crossing edgemust haveweight
c; give the new edge, which is now nested by the fake edge, weight c also. Continue this tail-swapping
process with the fake edge until the fake edge has no crossings, then remove it. An example is shown
in Fig. 4.2.
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This map is a bijection because it can be reversed: given such a weighted matching on 2n vertices,
add a new edge that nests the entire matching, and swap tails with the dotted edges (those of
weight c) from right to left. Observe that the dotted edges in the connected matching—which are
nonnested—will end up nonnested after the tail-swapping bijection, and vice versa, so this bijection
is weight-preserving. Note that in the example of Fig. 4.2 and Table 1, the connected matching
corresponded to a complete matching which was also connected. Of course this does not always
happen: the connected matching (1, 5)(2, 4)(3, 8)(6, 7) corresponds to the unconnected complete
matching (1, 3)(2, 4)(5, 6) under this bijection.
Theorem 4.1 established that the generating functions for rooted maps and connected matchings

are the same; that theorem, together with the bijection between connected matchings and arbitrary
complete matchings, provides a proof of the following theorem.

Theorem 4.2. The generating functions for rooted maps with n edges, connected matchings on 2n + 2
vertices, and complete matchings on 2n vertices all equal themoment µ2n(c+1) of the associated Hermite
polynomials.

4.1. The moment generating function

Let f (t; c) be the ordinary generating function for the moments of the associated Hermite
polynomials:

f (t; c) :=
∑

µn(c)tn.

With the results of this section,we see that a continued fraction for f (t; c) is implicit in [2, Theorem3]:
their functionM(y, z) counts rootedmapswith the exponent of y counting the number of vertices, and
the exponent of z counting the number of edges. We know that µ2n(c + 1) is the generating function
for rooted maps with n edges, in which all vertices except one get weight c , which means

f (t; c + 1) =
M(c, t2)
c

=
1

1− (c+1)t2

1− (c+2)t2

1− (c+3)t
2

1−···

. (4.1)

This continued fraction can also be obtained with the method of [29, p. V-4], where Viennot
shows a continued fraction expansion for the moment generating function for any set of orthogonal
polynomials where the recurrence coefficients are known.
In the last two sections, we’ve shown bijections between the moments of the associated Hermites,

connected matchings, rooted maps and oscillating tableaux. We summarize these correspondences
by going all the way from a rooted map, to a connected matching, to a regular complete matching, to
an oscillating tableau in Table 1.

4.2. A second model for associated Hermite polynomials

The above discussion of connectedmatchingsmeshes nicely with a second combinatorial model of
the associated Hermites, which is motivated by identity (4.2). The key features of this second model
are very similar to those of the connected matching model for the moments: we are using c + 1 but
there are no choices for the weights of parts of thematching, and the resultingmatching is connected.
The identity is found in Askey and Wimp [5, Equation (4.18)] and we present a combinatorial proof.

Theorem 4.3. The associated Hermites may be written as a sum of usual Hermite polynomials:

Hn(x; c + 1) =
∑
k≥0

(−1)k(c)k

(
n− k
k

)
Hn−2k(x). (4.2)

We will need two lemmas to prove Theorem 4.3.
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Fig. 4.3. A matching on 6 vertices of the type described by Lemma 4.1. If the new edge on the right is to have weight−1 and
satisfy the conditions of the lemma, it must connect to a new vertex in one of the three available slots, indicated by the solid
arrows.

Lemma 4.1. (−1)k(c)k is the generating function for complete matchings on 2k vertices, with the c + 1
associated Hermite polynomial weighting, such that all edges of weight −1 have a left crossing by an edge
of weight −c. Furthermore, in such matchings there are exactly k ‘‘slots’’ available underneath the edges
weighted −c where one could place the left endpoint of a new edge of weight −1, and only one ‘‘slot’’
available for the left endpoint of a new edge of weight −c.

Fig. 4.3 shows an example of such a configuration.

Proof. The proof goes by induction. The base cases are clear, and if true for some k, given any
configuration for that k, we can either:

• add a new edge connecting vertices 2k+1 and 2k+2which hasweight−c , and hencewemultiply
the generating function for 2k vertices by−c and add a new slot, or
• add a new edge from the rightmost vertex and put its left endpoint in any one of the k ‘‘slots’’
underneath one of the−c edges. Such an edgemust have weight−1, and there are kways to place
this edge, hence we effectively multiply the generating function by k, and since we put a new edge
into one of the k slots, there are now k+ 1 slots available below edges weighted−c .

See Fig. 4.3 for an example of case 2. Altogetherwe’vemultiplied (−1)k(c)k, the generating function
for 2k vertices, by−(c + k), so the lemma is true by induction. �

Lemma 4.2. For such a configuration on 2k vertices as described in Lemma 4.1, there are k + 1 places
where the left endpoint of one or more dotted edges of weight 1 could be placed without affecting the
weight of the configuration.

Proof. Induction again. The dotted edges cannot cross the −c edges. For example, in Fig. 4.3, there
are four places where one could place such an edge, indicated by the dotted arrows. �

Proof of Theorem 4.3. Since Hn(x; c) is an even or odd polynomial if n is even or odd, respectively,
we can certainly write

Hn(x; c + 1) =
∑
k≥0

ankHn−2k(x) (4.3)

for some coefficients ank. We show that those coefficients equal (−1)k(c)k
(
n−k
k

)
. Fix k between 0 and

n/2, multiply both sides by Hn−2k(x), and apply the usual Hermite linear functional L1. On the right
side, we use orthogonality and Eq. (4.3) becomes

L1(Hn(x; c + 1)Hn−2k(x)) = ank(n− 2k)!.

Thinking of the left side as paired matchings on [n] and [n − 2k] with black edges of weight −1 and
−c as appropriate, and dotted edges all of weight 1, we may apply the following involution: find the
leftmost homogeneous edge of weight±1 in [n] or [n−2k] and flip its color, unless that edge has a left
crossing with an edge of weight−c . Swapping the colors on such edges does not preserve the weight
of the paired matching.
Lemma 4.1 tells us the generating function of the configurations of edges that remain in [n] after

applying the involution; Lemma 4.2 tells us that such configurations may be viewed as consisting of
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Fig. 4.4. A matching on 9 vertices that contributes cx to H7(x; c + 1) using the combinatorial interpretation of Theorem 4.4.
Note the ‘‘fake edge’’ of weight+1.

k ‘‘chunks’’ of vertices. Placing the dotted edges into those chunks is equivalent to forming a weak
composition of k into n− 2k+ 1 parts; there are

(
n−k
k

)
such compositions, and having chosen where

the n − 2k edges in [n] start, we can choose their endpoints in [n − 2k] in (n − 2k)! ways. Together
we have

(−1)k(c)k

(
n− k
k

)
(n− 2k)! = L1(Hn(x; c)Hn−2k(x)) = ank(n− 2k)!

which proves the identity of Theorem 4.3. �

The above proof relies crucially on being able to giveweight−1 or−c to edges; if we usedHn(x; c),
the above involution would not cancel as many edges, and we would need to replace Lemma 4.1 with
something more complicated in order to handle the (c − 1)k factor.
Our first model for the associated Hermite polynomials (Theorem 1.1) involved incomplete

matchings on n vertices; the above identity motivates the following model for Hn(x; c + 1) as
matchings on n+ 2 vertices.

Theorem 4.4. The associated Hermite polynomial Hn(x; c + 1) is the generating function for certain
connected incomplete matchings on n+ 2 vertices with the following weights:

• The edge containing vertex 1 has weight 1. Call this edge the ‘‘fake edge’’.
• Fixed points have weight x.
• Non-nested edges (except the fake edge) have weight −c.
• Nested edges have weight −1.

In such matchings, fixed points must be nested by the fake edge. All edges other than the fake edge must
either cross or be nested by the fake edge.

An example of such a matching for H7(x; c+ 1) is shown in Fig. 4.4. It is clear that the requirement
for nesting and crossing the fake edge yields a connectedmatching. Note that the connectedmatching
moments of Section 4 also have a fake edge.

First proof. Consider the kth term in the sum (4.2):

(−1)k(c)k

(
n− k
k

)
Hn−2k(x).

Beginwith the fake edge andput k vertices to the right of it. Put the remainingn−k vertices underneath
the fake edge and choose k of them to connect with the edges that will come from the k vertices on
the right of the fake edge; that accounts for the binomial coefficient. On the remaining n−2k vertices
underneath the fake edge, we put a regular Hermite-style matching; all the edges will have weight
−1 since they are nested by the fake edge.
The last thing to do is account for the k edges that come from the right of the fake edge and

show that they contribute (−1)k(c)k. According to Lemma 4.3, the generating function for such a
configuration with edges of weight +1 and +c is (c + 1)k−1, but in our subset, the leftmost edge
also gets weight c , so the correct factor is (c + 1)k−1 · c = (c)k. Also, we must correct for the signs:
our edges have weight−1 and−c , so we multiply by (−1)k. �
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Second proof. Verify that the generating function described in the theorem satisfies the three-term
recurrence for the associatedHermites (1.1).Weproceed verymuch like the usual combinatorial proof
of the recurrence relation for Hermite polynomials: any such restricted matching on n + 3 vertices
may be obtained by placing the fake edge and considering the rightmost vertex nested by the fake
edge. There are three possibilities: one, we can leave that vertex fixed, and fill in the remaining n+ 2
vertices with any restrictedmatching; two, we can add an edge from that vertex to the very rightmost
vertex, and fill in the remaining n+1 vertices with any restricted matching; three, we can attach that
vertex to any vertex except the rightmost vertex and fill in the remaining n+ 1 vertices as before. The
first case contributes x times the generating function for n+ 2 vertices. The second cases contributes
−c times the generating function for n + 1 vertices, since that new edge cannot be nested, and it
will not nest any of the other edges. In the third case, there are n vertices to choose from and all of
them will result in a nested edge of weight−1, so we add−n times the generating function for n+ 1
vertices. This exposition is simply another way of stating (1.1):

Hn+1(x; c + 1) = xHn(x; c + 1)− (n+ c)Hn−1(x; c + 1). �

The following lemma was used in the first proof of Theorem 4.4. It may be proved by induction,
similar to Lemma 4.1 and Theorem 1.3.

Lemma 4.3. The generating function for complete matchings on 2n vertices in which all edges go from
the ‘‘left n’’ vertices to the ‘‘right n’’ vertices, with all nonnested edges having weight c except the edge
containing the leftmost vertex, is (c + 1)n−1.
There is a weight-preserving bijection between such matchings and permutations π of [n]weighted by

cLRM(π)−1 where LRM(π) is the number of left-to-right-maxima of the permutation.

At this point, we have a combinatorial interpretation for both the associated Hermite polynomials
(Theorem4.4) and theirmoments (Theorem4.2) in termsof connectedmatchingswith a fake edge; the
natural thing to do is combine these to get another proof of orthogonality. This will be quite difficult
because it is not at all obvious how to combine a pair of matchings for the polynomials and amatching
for the moments to get a paired matching; one would have two fake edges from the polynomials
and would need to somehow incorporate the fake edge from the moments into that configuration.
However, it is interesting to note that the above theorem tells us how we would derive the L2 norm
using such a setup: Hn(x; c)2 would be a pair of matchings on 2n+4 vertices, but because of the extra
fake edgementioned above, after canceling all homogeneous edgeswewould effectively get complete
matchings on 2n+ 2 vertices in which all the edges go from the left n+ 1 vertices to the right n+ 1.
The generating function for such a configuration, according to Lemma 4.3, is (c + 1)n, which agrees
with the known L2 norm for the associated Hermites at c + 1.

5. Unanswered questions and future directions

We have taken the basic combinatorial model in Section 1 for associated Hermite polynomials and
their moments and gone in two directions: to oscillating tableaux, and to rooted maps. The appeal of
oscillating tableaux is in the recent flurry of work on k-crossings and k-nestings in matchings and set
partitions; see [6,17,7,16,18,14]. The moments of Charlier polynomials are generating functions for
set partitions and it seems likely that some of this work could be used to treat the associated Charlier
polynomials.
Observe that in the connectedmatchings, the rootedmaps, and in the second combinatorial model

for the associate Hermite polynomials of Theorem 4.4, each model has some sort of ‘‘fake edge’’.
Combining the models for the moments and polynomials which both involve connected matchings
would be interesting, but this has not yet shown promise. A major problem is that each incomplete
matching for the polynomial is weighted by x to the number of fixed points—say there are 2k fixed
points—but the corresponding matchings are matchings on 2k + 2 vertices. It is not clear how to
combine these two objects in a geometric or graph-theoretical way that allows a natural and easy
proof of orthogonality.
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Using rooted maps holds promise, though: Ossona de Mendez and Rosenstiehl have generalized
the bijection between connectedmatchings and rootedmaps to a bijection between permutations and
hypermaps [23,22]. This suggests an intriguing connection to Laguerre polynomials since hypermaps
are built out of permutations in the same way that maps are built out of complete matchings.
The paper of Askey and Wimp [5] which inspired this work devotes much more attention to the
associated Laguerres than to Hermites—about two thirds of the article. It is natural, then, to work
out a corresponding combinatorial treatment of those polynomials, especially given the connections
between rooted maps and hypermaps. There is also the work of Ismail et al. [12] who work with the
associated Laguerres as birth and death processes—there has been work on birth and death processes
and lattice paths [10] which suggests another avenue for a combinatorial theory of those polynomials.
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