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Regular Two-graphs from the Even Unimodular Lattice E;® E;

VIATCHESLAV GRISHUKHIN

Starting from the even unimodular lattice Eq® Eg, one constructs odd systems (i.e. sets of
vectors with odd inner products) of 546 vectors using results of Deza and Grishukhin. One
studies the subsystems consisting of 36 pairs of opposite vectors spanning equiangular lines.
These subsystems represent regular two-graphs. This gives 100 such two-graphs and they
coincide with the first 100 in a list of 227 two-graphs generated by E. Spence. Using the root
systems of the sublattices generated by the 100 odd systems, the set of the 100 two-graphs is
divided into seven classes. The first four classes correspond to the 23 Steiner triple system on 15
points containing a head, i.e. a Fano plane.
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1. INTRODUCTION

A two-graph J is a pair (V, E), where V is a set and E is a set of three-subsets of the
ground set V with the property that every four-subset of V contains an even number of
elements of E. The three-subsets of E are called coherent triples. A detailed
consideration of two-graphs can be found in [10] and [12].

Let V be a set of vectors of norm (= squared length) m with inner products +1. We
say that V represents a two-graph 7 if the ground set of J is V and three vectors v,, v,
and v; compose a coherent triple of 7 iff (v,v,)(v,v3)(v3vy) = —1, where vv; is the
inner product of vectors v; and v;. Obviously, vectors of V span a set of equiangular
lines such that the acute angle between lines is equal to arccos(1/m). We say also that
this set of equiangular lines represents the two-graph J.

Sets of equiangular lines of a sufficiently large size in a space of fixed dimension exist
only if m is an odd integer. There is a special bound on the maximal number n(m, d) of
equangular lies at the angle arccos(1/m), m is an odd integer, in a space of dimension
d:

d(m*—1)

,d) <
nim, d) m>—d

This bound is achieved iff the corresponding two-graph is regular. A two-graph is
regular if every pair of points belongs to the same number of coherent triples.

It is a considerable problem to classify all regular two-graphs 7 (m, d) with
parameters m and d; and in particular, to find a number N,,(d) of all non-isomorphic
two-graphs with the same parameters.

For m =3, a regular two-graph J(3, d) exists only for d =5, 6 and 7, and (3, d) is
unique in each dimension; i.e. N3(d) =1 for d =5, 6, 7.

We are interested here in regular two-graphs J (5, 15) with m =5 and d = 15, when
n(5,15)=36. A set of equiangular lines at angle arccos: representing a regular
two-graph J (5, d) may exist only in dimensions d =5, 10, 13, 15, 19, 20, 21, 22 and 23.
Regular two-graphs J (5, d) are known for all of these d # 19, 20. The number Ns(d) of
all non-isomorphic two-graphs 7 (5, d) for d =5, 10, 13, 23—namely, Ns5(5) = N5(10) =
Ns5(23) =1, N5(13) = 4—is also known.

Seidel mentions in [10] for the first time results of E. Spence on computing non-
isomorphic two-graphs on 36 points. Spence found that Ns(15) =227. The number 227
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is composed of 11 two-graphs from Latin squares of order 6, of 80 two-graphs from
Steiner triple systems of order 15, and 136 new ones discovered by use of a computer
[11]. In [10] Seidel describes a large subclass of Spence’s family. Every two-graph of
this subclass is related to a 2-(10,4,2) design, and it is shown in [8] that it is a special
gluing of the unique two-graphs 7 (5, 10) and J(3,5).

We show in this paper that every two-graph J (5, 15) from E3® Ej is a similar gluing
of the unique two-graphs J(3,7) and (7, 7). More precisely, a projection of the set of
equiangular lines representing a two-graph from E3 & E onto a 7-dimensional space X
is a set of equiangular lines representing 7 (3, 7). A restriction of the set of equiangular
lines onto another 7-dimensional space orthogonal to X is a set of equiangular lines
represenging J(7,7).

An inspection of the list of two-graphs computed by Spence [11] shows that the new
two-graphs discovered by Spence which are not related to 2-(10,4,2) designs are
two-graphs from E3® Eg.

Denote by a class D and a class E the classes of two-graphs which are gluing 7(5, 10)
with 7(3,5), and J(3,7) with J(7,7), and can be obtained from the lattices D and
Eg® Eg, respectively.

All in all, we have the following 4 main classes of two-graphs on 36 points:

(1) 80 two-graphs from Steiner triple systems on 15 points, the class STS;
(2) 11 two-graphs from Latin squares of order 6, the class LSQ;

(3) 100 two-graphs of the class D from D;

(4) 100 two-graphs of the class E from Eg©® Eg.

The numbers of two-graphs in each class are obtained from the list of 227 two-graphs
in [11]. The Latin square class is disjoint with all other classes. The 3 classes D, E and
STS are not disjoint. Classes D and E have 41 two-graphs in common. Class E contains
23 two-graphs from STS with a head. Class D contains 7 two-graphs from STS with a
head.

A more detailed description of two-graphs of class E can be found in [9].

2. Opp SYSTEMS AND LATTICES

A set of vectors of an odd norm m with +1-inner products spanning equiangular
lines is a special case of an odd system. An odd system 7"is a set of vectors v such that
the inner product vv' of any (possibly equal) two vectors of 7" is an odd integer. (We
denote the inner product of two vectors v and v’ by its juxtaposition vv’.) The inner
product v> =wvv of a vector v with itself is called the norm of v. Hence norms of all
vectors of an odd system are odd. An odd system is called uniform (of norm m) if the
norms of all of its vectors are equal (to m). As we use only uniform odd systems here,
in what follows, we sometimes omit the word ‘uniform’.

We call an odd system regular if it represents a regular two-graph. We also consider
reduced odd systems such that from two opposite vectors only one belongs to the odd
system. We call an interchanging of a subset of vectors of a reduced odd system by its
opposite, switching of the odd system. Similarly, we call the operation of changing the
sign of a vector v switching v.

We call odd systems %" and 7" isomorphic if there is a bijection ¢: ¥"— ¥ such that
d(V1v2) = P (v1)P(v2).

Let % be an odd system related to a two-graph (i.e. spanning equiangular lines).
Since vv’' = £1 for v, v' € U, v+ +v’, we can introduce a graph G(4U) with U as the
set of its vertices. Two vertices v, v’ of G(%U) are adjacent iff vv’ = —1. If U represents
a regular two-graph and it is reduced, the graph thus obtained is a strong graph. One
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obtains a Taylor (distance-regular) graph of diameter 3 (see [1]) if with every vector
the opposite vectors also occurs.

Let % be a reduced odd system. A switching of 4 corresponds to a switching of
G(U). Fix vy € U By a switching, we can isolate vy, i.e. G(U™) = {vo} U H,, where
Hy=G(%) and AU, = A" —{ve}. If U relates to a regular two-graph, then H, is a
strongly regular graph. The (*1)-adjacency matrix A of H, has minimal eigenvalue
—m. Hence the matrix m/l + A is positive semidefinite, and it is the Gram matrix of the
set of vectors of %, For example, H, has parameters (35,16,6,8) for a regular
two-graph (5, 15) on 36 points.

A lattice L of dimension n is a free Abelian group of rank »n of vectors. A lattice is
called integral if the inner products of all of its vectors are integral. An integral lattice is
called even if the norms of all of its vectors are even. An even lattice L is called doubly
even if (1/ \fZ)L is even. Norms of all vectors of a doubly even lattice are multiples of 4,
and all inner products are even. Hence the minimal norm of a non-zero vector of a
doubly even lattice L is not less than 4. The set L, of all vectors of norm 4 of L is, up
to the multiple \[2, a root system. Hence, below, we call a vector of norm 4 a root.

Each root system is a direct sum of irreducible root systems, called its components. A
root system is called irreducible if it cannot be partitioned into two subsystems such
that roots of one of these systems are orthogonal to all roots of other. All irreducible
root systems are known. These are A,,, D, and E,,, where n and m are the dimensions
of the corresponding root systems, and m = 6, 7, 8. Following [4], we denote the direct
sum of components R, R,,..., R, by the product RR, - - R,. In particular, the
direct sum of k equal components R is denoted by R*. A lattice generated by a root
system is called a root lattice, but it is denoted by the direct sum of the corresponding
components. For example, the root lattice E5@® Eg is generated by the root system E3.

In [5] and [6], a construction of uniform odd systems from a doubly even lattice is
indroduced. Here we describe this construction for uniform odd systems of norm 5.

Let L be a doubly even lattice, and let Lg be the set of alla € L of norm 8. Letc € L
have norm 12. We set

A(c)={a € Lg: ac = 6}.

It is easy to see that a € #(c) implies a* =c —a € H(c), and aa* = —2. Conversely,
any two vectors a, a’ € Lg with aa’ = —2 provide a vector ¢ =a +a’ of norm 12.
For a € H(c), define

v(a)=a —ic.

Then we have v(a)v(a') =aa’ — 3. Since the inner products of all a € L are even, the
inner product v(a)v(a’) is odd. In particular, v*(a) = 5. In other words, the set

V(c)={v(a): a € (c)}

is a uniform odd system of norm 5.

The construction can be reversed. Let ¢ be a vector of norm 12, which is orthogonal
to the space spanned by an odd system %" of norm 5. Then the vector a(v) = v + ¢ has
norm 8, and a(v) + a(—v)=c. Let L be the lattice linearly generated by a(v) for all
v e V. Then a(v) e Lg. Hence the odd system ¥'(c) from this lattice contains the
original odd system 7" as a subsystem.

Now we define the closure of an odd system. This notion is very useful for
distinguishing non-isomorphic odd systems (and two-graphs). Consider the following
lattices generated by an odd system 7"

L"(°V)={u:u = >z, 2, z,=q(mod2),z, eZ}, g=0,1

veV? ve?
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Let ¥ be uniform and of norm 5. It is proved in [5] that L°(%") is a doubly even lattice,
and the affine lattice L'(%)=v + L%(¥') is a translation of L°(¥"). L'(¥) is an odd
system and u®=1(mod 4) for all u € L'(¥"). Let Li(¥") be the set of all vectors of
LY (") of norm k. Obviously, ¥ < Li(7).

DeriNiTION. The uniform odd system Li(7") is called the closure of the odd system
V. The odd system ¥ is called closed if V"= Li(7"). Sometimes we denote the closure
of V'bycl?.

Note that if 7" has the form 7°(c) for some ¢, then 7" is closed.

Let % be a uniform odd system of norm m spanning equiangular lines, i.e. uu' = +1
for distinct u, u' € U. U is called maximal if there is no v € span U of norm m such that
vu = +1 for all u € U. If U is maximal but not closed, then, for each v e cl U — AU,
there is u € U such that vu = 3. Then the vector v — u has norm 4, i.e. it is a root. Let
R(%U) be the set of all roots obtained in such a way, i.e. R(U)={v —u:vu =3, u € U,
vec U}

LemMMA 1. The set R(A) is the root system of all roots of the lattice L°(U), i.e.
R(U) = L),

Proor. Obviously, R(%) is contained in the root system of L°(%). Let r be a root of
L°(U). Then ru=0,+2 for all ue U and if ru=2 then v=u—recli, ie.
r=v —u e R(U). Since all roots of L°(%) lie in the space spanned by %, for every root
r, there is u € U such that ru = 2. O

If % and AU’ represent isomorphic two-graphs and are not reduced (reduced), then
they are isomorphic (switching equivalent to isomorphic odd systems, respectively).

The following obvious proposition helps to distinguish non-isomorphic odd systems
spanning equiangular lines, and therefore non-isomorphic two-graphs.

ProrosiTioN 1. Let U and U' be d-dimensional odd systems representing two-graphs
T and I’ with the same parameters (5,d). Then I and J' are not isomorphic if
R(U)# R(U).

3. Two-GRrAPHS FROM THE LATTICE Eg® Eg

Recall that there are exactly two non-isomorphic even unimodular lattices in
dimension 16, namely D, and Eg® Eg, where Eg is an 8-dimensional root lattice. The
root lattice Ejy is genrated by its minimal vectors of norm 2 forming the root system E.
We use the description of the root system Ej given in [3]. In fact, the description is
given in terms of vectors of norm 4, i.e. it gives V2 Eg. We continue to denote the
minimal vectors of norm 4 of the doubly even lattice V2 Eg by roots.

Let Vo={0tUV,,and V;={1,...,7}. Let h;, i € Vi, be 8 mutually orthogonal vectors
of norm 1. Then roots of V2 Eg are as follows:

(1) £2h;,i e Vg;
(2) Zico &hi, & {1}, |Q|=4, Q € 5(3,4,8).

Here S(3, 4, 8) is the Steiner system, i.e. it is a design 3-(8,4,1). Each 1 — (v, k))
design with A =1 is called a Steiner system. We use the shorter notation S(¢, k, v) of a
Steiner system, from [3] and [4]. The Steiner system S(3, 4, 8) has the following form.
Let F, be 7 triples of the unique Steiner triple system S(2, 3, 7) on 7 points. Its triples
are lines of the projective Fano plane PG(2,2). Each quadruple Q € S(3, 4, 8) has
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the form Q=tU{0} or Q'=V,—t=Q:=Vy—Q, where teF. If Q#Q’, then
|O N Q'|=2. In this case, QA Q' € §(3, 4, 8).

Let f,i e Vg, be the other 8 mutually orthogonal vectors of norm 1. All f; are
orthogonal to all 4;. Then the roots of the second copy of V2 Eg are given by the above
expressions (1) and (2), with A; changed to f.. The 16 vectors Ak, f;, 1 <i <8, form an
orthonormal basis of the space spanned by the lattice V2 (Es@® Ej).

The vectors of norms 8 and 12 in the lattice \/E(Eg@Eg) are sums of 2 and 3,
respectively, orthogonal roots of the lattice. Since the automorphism group of the root
system Ejg is transitive on pairs of orthogonal roots, there are, up to symmetry, 2 types
of vectors of norm 12: a sum of 3 orthogonal roots of the same copy of V2 Eg, and a
sum of 2 roots of one copy and of 1 root of the other copy of V2 Eq.

A vector c of the first type gives a pillar odd system %'(¢). This means that vectors of
¥'(c) have the form (e + r), where e is a vector of norm 1, and r is a root (of norm 4)
which belongs to Ex® Ej and is orthogonal to e and ¢ (for details, see [5]). A maximal
reduced pillar odd system % < 7'(c) spanning equiangular lines (i.e. representing a
two-graph) contains less than 36 vectors, the number of points of a regular two-graph
T (5,15).

Hence we consider only the vectors ¢ of the second type. Recall that all vectors ¢ of
the same type belong to the same orbit of the automorphism group of the lattice
V2 (Es® Ey).

We take c equal to

co=h(Q) +h(Q) +2f, = h(Ve) + 2.

Here and below we use the following notation: for any set V, any X =V, and g,
k eV, we set

gX):= 2 g (1)

ieX

The set #(c,) contsins the following vectors:
(1) 784 vectors h(Q) +>,cp&if, O, P S5S(3,4,8),0e P, g,=1;
(2) 56 vectors a =h(Q) —2h; +2fy,i € Q, and 56 vectors ¢, —a=h(Q)+2h;,i ¢ Q,
0eS53,4738);
(3) 8 vectors 2h; + 2fy, and 8 vectors h(Vg) —2h;, i € V.
Recall that ¥(c,) is the set of vectors v(a) =a — 3¢, for a € &(c,). Hence
V(co) =NV Vs,

where

N={h@ -3+ 3 ef,0,P5G,49,0eP)

ieP—{0}
V5= x{h(Q) — 5h(Vs) = 2h; + fo, i € O, and 2h; — 5h(Vy) + fi, i € V).

Recall that if Q 50, then Q ={0}Us with s € F,. For s e F;, s = Q, we define 7
vectors of norm 2 as follows:

w, =h(Q) — 3h(Vs) = ho + h(s) — 5h(Vy).
Note that if QO does not contain 0, then 0 € O = V; — Q. Hence

h(Q) = 3h(Ve) = —(h(Q) — 3h(Ve)) = —w,  fors =0 — {0}
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Similarly, for P = 0, we hve P={0}U¢, t € F,. We set

Us(t,g):WS"_zg,‘ i S,l‘EF7.

iet
In this notation, the odd system 7 takes the form

Vi = t{u,(t, €): e e {£1}, 5, t € F}.

Using this explicit expression, it is not difficult to find that
R(7) = D,E;.

The roots of D, are w,+w,,s,s' eF;. The roots of E, are =*2f, X, o &f,
0 e€8S5(3,4,8), 0 ¢ Q. Note that the roots of E, are orthogonal to f;.

Let W =33,_p w,. Then W? =13, and Ww, =1 for all s € F,. It is easy to verify that
wew, =0 for s #¢, since |s N¢| =1 for distinct s, t € F5. In addition, wh (V) = 0. Hence
the 8 vectors h(V;) and w, s € F;, form an orthogonal basis of the space spanned by
h;, i € Vg. The vectors h; can be expressed through A(V;) and w;:

2ho=W +Yh(Vy),  2h;=—-W + > w, + Ih(Vy).
Then the 128 vectors of 75 take the form £(g + 5 X, ., £w,), where g, e {£1}, and
there is an even number of minus signs. Hence we can re-denote these vectors as
+u(S), where

u(8) =g +w(S),

g =fo— $h(Vy) is the vector of norm 3 orthogonal to all w,, and w(S) =3, s w, — W.
We call a subset S = F; odd (even) if it has an odd (even) cardinality, respectively.
Now the odd system %, takes the form

Y, = +{u(S): S F, Sis odd}.
The root system of ¥, is R(¥5;) = D,. Since R(75) = R(7,), we have
R(V(co)) = R(11) = D7 E;.

These are roots of Eg Eg that are orthogonal to c,.

We have 3 |¥;] =392 and 3 | % = 64. Hence 5 |¥(c,)| = 456.

It is easy to verify that v,(z, &)u(S) = =1, i.e. vv' = =x1 for v e ¥; and v' € ¥,,. We
seek a maximal odd subsystem U< ¥(cy) of vectors with all mutual inner products
equal to +1. Of course, we have to find separately maximal subsets 4, = 7] and
U, = V, such that AU U AU, = U. Recall that, for m =5 and d =15, the special bound
gives 3 |U| = 36.

We call a reduced odd subsystem of ¥; (or of %;) canonical if the vectors w; in the
vectors u,(t, €) (and g in u(S), respectively) have positive signs. For canonical systems,
we preserve the same notations 7; and 7. In what follows in this section, we consider
only reduced odd systems 7; and ¥, in the canonical form. Obviously, every reduced
subsystem of 7’(cy) can be made canonical by a switching.

3.1. Odd systems 9U,. First, consider ;. Recall that w? =2 and w,w, =0 for s #s'. We
set 8(s,s')=11if s =s', and 8(s,s") =0 if s #s’. We have

vs(t’ E)US’(t,’ 8’) = ZS(S) S,) + E 81‘81’"

ietNt’

Therefore, v,(t, €)v,(t, €) =25(s,s") +3. Since vv' = =1 for distinct v, v’ € U, this
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implies that, for each pair (z, €), there is at most one s such that v,(¢, €) € U;. We
denote this s by s(z, €).

We obtain that a maps: (¢, €) —s(t, €) € F; corresponds to a set U = ¥, spanning
equiangular lines. Let

7;(%1) = {(t: 8): S([, 8) = S}'

According to what was said above, the sets T; are disjoint for distinct s.
LEmMA 2. For any U, = 7, spanning equiangular lines, |T,(U,)| <4 for all s € E,.
Proor. Let T,=T,(U). For (t,¢), (t',€") e T,, we have v,(t, e)v,(t', ') =2+ %,

where
2: E 81‘8,".

ietNt’

Note that X takes odd values. This implies that X should be equal either to —1 or —3.
The case X = —3 is possible only if t=¢" and € = —¢’. Then T, ={(t, ¢), (¢, —¢)}. In
fact, if there is another (¢, €”) e T, then v,(t, e)v,(t", €") =2+ X, ,~r €€/ is equal to
3 for one of the signs +. So, |7;| =2 in this case.

Now, let ¥ = —1. Then projections of vectors v,(t, €) for (¢, €) e T, on the space
spanned by f;, 1<i=<7, form an odd system of vectors of norm 3 with mutual inner
products —1. But such a system contains at most 4 vectors. In fact, let v =3,
vv;=—1, 1si<js<k. Then 0= (Zfv,)> =3k —k(k — 1), i.e. k<4. Hence |T;|<4 in
this case. O

Since || =7 and the sets 7, are disjoint for distinct s, Lemma 2 implies that U,
contains at most 4 X 7 =28 pairs of opposite vectors.

By Lemma 2, if 7, contains more than two pairs (¢, €), then all vectors X, &,
corresponding to pairs (z, €) € T;, have mutual inner products —1.

Let U, contain the maximal number 28 of vectors. Then the projection of %, on the
7-dimensional space spanned by f, i € V5, is an odd system consisting of 28 vectors

M(I, 8) = 2 eiﬁ
iet
of norm 3 with mutual inner products +1. The vectors u(t, €) represent a two-graph
J(3,7). The special bound gives n(3, 7) =28, i.e. the two graph is the unique regular
two-graph with parameters (m, d) = (3, 7).

The 28 vectors u(z, €) form a reduced odd system representing the two-graph
J(3,7). Since, for a fixed t € F;, there are 8 vectors u(t, €), the set of all 7X 8 =56
vectors u(t, €), tekF, e e{£l} forms an odd system %3,7) representing the
two-graph (3, 7).

So we obtain that the odd system %, is uniquely determined by the following
operations:

(i) choose a reduced odd system U = W'(3,7);

(ii) partition the 28 vectors of U into 7 groups, each containing 4 vectors, with mutual
inner products —1;

(iii) relate each group to a vector w,, s € F,.

We denote the result of these 3 operations by the map ¢ from %'(3,7) to U, and
denote the obtained odd system %U; by U ().

We can apply the map ¢ to an arbitrary odd system % representing J(3, 7). Of
course, W is isomorphic to W'(3, 7).
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Let A be the adjacency matrix of the graph G(%;(¢)). According to what was said
above, the matrix A has order 28 and can be partitioned into 7 X 7 submatrices of order
4. The 7 diagonal submatrices are all 0 matrices. Any other submatrix has exactly two
once in each row and each column.

3.2. Odd systems U,. Let & be a family of odd subsets of F;,. We set

U(F) ={u(S): S € &}.

We want to find a family & such that 9,(¥) is a maximal odd subsystem of %, spanning
equiangular lines.

Let S, have an even cardinality. Then the symmetric difference S A S, is odd for any
odd S. Hence the vector u'(S):=u(SAS,) belongs to ¥,. In addition, u'(S;)u’(S,) =
u(S)u(S,). Hence the odd systems U(¥) and U(LASy):={u':u e US)} are
isomorphic.

According to this, we can consider at first the case in which & contains the odd
set F.

Consider inner products of vectors u(S):

u(Su(T)=5—S|—|T|+2|1SN T 2)

For S, T € & we have to have u(S)u(T)=+1. For §=F, this condition implies
|T|=1 or 3.

Recall that maximal odd systems %; and % contain 28 and 36 vectors, respectively.
Hence a maximal odd system ,(¥) contains 8 vectors. In other words, a maximal
family & contains 8 odd sets.

Lemma 3. A maximal family & with E, € & does not contain sets of cardinality 1.

Proor. Let S, T be distinct subsets of F; of cardinality 1. Then |S N 7| =0. Hence,
for |S|=|T| =1, (2) takes the form u(S)u(7T) = 3. This implies that & contains at most
one 1-set.

Suppose that & contains a 1-set Sy={s}. For |S|=1 and |T|=3, (2) gives
u(Su(T)=2|SNT|+1. Hence |SNT|=0and s ¢ T. So & consists of F5, S, and some
3-sets T such that s ¢ 7. For 3-subsets 7 and 7', (2) implies |TNT'|<1. If
|T NT'| =0, then & contains only four sets: 4, Sy, 7 and 7', because any other 3-set
T" has an intersection of cardinality 2 with 7 or 7'. Hence [T N T’'|=1. But a 6-set
contains at most four 3-subsets with mutual intersections of cardinality 1. Hence if &
contains a 1-set, then it contains at most 6 sets. This implies that a maximal family &
does not contain a set of cardinality 1. O

So, a maximal family & contains, besides F;, only 3-sets. For 3-sets S, 7, the equality
(2) takes the form

u(Su(T)y=21SNT| - 1. 3)

A maximal set of triples of a 7-set satisfying (3) contains 7 triples and forms a Steiner
triple system on 7 points. All Steiner triple systems on 7 points are isomorphic. Their
triples are lines of the Fano plane F;. Therefore, any two families & containing F can
be transformed each to the other by a permutations of elements of F;. As a basic family
we take the family %, containing F; and 3-sets:

S;:={s e F:s i}, ieV,. 4)



Regular two-graphs from Eq©® Ey 399

So
Fo={F}U %,  with  FH={S:ieV;}.

Let B: V;— F, be the bijection i — ¢; given as
t,=123, t,=145, t;=167, t,=246, t5=257, t,=2347, t,=2356. 5)

Then the bijection B transforms #, = V; into B(f,) =S € F, i.e. F; into %. In other
words, % ={(t;):i € V,}.
We denote (%) by U5.

LeEmMmA 4. The odd system U () U U(F) is isomorphic to a switching of an odd
system U (¢p') U US for some ¢’

Proor. If the family & does not contain the set F, then we take an even set S, such
that the family ¥A S, does contain F.

Note that if we change w;, into —w, for s € §, in all vectors of an odd system
U <= V(cy), we obtain an odd system isomorphic to 4. We show that this change of
signs of w,, s € Sy, transforms U;(¢) U 9(F) into a switching of U (') U A(FAS,).
The transformation w; — —w,, s € S,, generates the following transformation of vectors
u(S): u(S)— u(SAS,). Hence the odd system 9(SAS,) can be obtained from 4%(¥)
by this map. Obviously, %(¥) and A%(FAS,) are isomorphic.

Now recall the definition of vectors v,(t, €) =w, + X, , & f € U (¢). The change of
the signs of w, transforms v,(t, €) into —v,(f, —€). Now we switch —v,(¢, —€) and
transform T, ={(¢t, €)} into T, ={(t, —¢)} for s € §,. Obviously, after this transforma-
tion, we obtain, up to a switching, a canonical odd system 9, (¢') with another map ¢'.

Now we take a family & containing F; and make a permutation 7T of F, that
transforms & into %,, and simultaneously change correspondence of groups to wy in
(iii) of definition of ¢. The assertion of the lemma follows. O

3.3. There are precisely 100 non-isomorphic two-graphs from Eg@® Eg. According to
Lemma 4, to find all non-isomorphic two-graphs given by E3® Eg, it is sufficient to
consider the odd systems U = U (¢) U US. We denote the 8 vectors of UY as follows

uy=u(E)=g+Ww, w=u(S)=g—-W+>w, ieV.
The vector u, has the inner product uyv =1 with all other v € 4. In this case, the
vertex u, is isolated in the graph G (%), and the graph Go(U)= G(U—{uy}) is a
strongly regular graph with parameters (35, 16, 6, 8).
The adjacency matrix of Gy(%) has the form

A= ¢ ®

where C is the adjacency matrix of 4 (¢) of order 28, and N is a matrix of order
7 X 28, which is obtained from the incidence 7 X7 matrix of the Fano plane by
complementing and by changing each 0 and 1 by a row of four 0’s and four 1’s,
respectively.

We use the list of two-graphs computed by Spence [11] to prove that there are
exactly 100 non-isomorphic two-graphs from the lattice E3@® Ejg, i.e. two-graphs of
class E.

Spence’s list contains standard forms of the adjacency matrices A of graphs
complementary to Go(%) in decreasing lexicographical order. For the sake of brevity,
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we shall say that Spence’s list enumerates two-graphs in decreasing lexicographical
order, and denote the adjacency matrix A by the adjacency matrix of the corresponding
two-graph.

Spence’s list has the following properties:
(i) the adjacencies matrices of the first 100 two-graphs have equal the first 11 rows, and
their complements are of the form (6);
(ii) the adjacency matrix of the two-graph number 101 has the seventh row distinct
from the seventh rows of the adjacencies matrices of the first 100 two-graphs;
(iii) if there is a non-enumerated two-graph, then it is less than the two-graph number
225.

Note that (using the matrix A) it is not difficult to construct vectors of the odd system
U representing any two-graph from the first 100 ones.

ProrosiTiON 2. There are exactly 100 non-isomorphic regular two-graphs on 36
points from the lattice Es® Ej, i.e. the class E contains exactly 100 two-graphs.

Proor. Recall that each two-graph of the class E has a canonical representation by
the odd system U= (¢)U UY. This representation provides the strongly regular
graph Gy(%) with the adjacency matrix of the form (6). The first 7 rows of the matrix
correspond to the vectors of the odd system U3 — {u}.

We use Spence’s list [11]. It is not difficult to construct an odd system of the type
U () U US using the adjacency matrix of any of the first 100 two-graphs of Spence’s
list. Hence, the first 100 two-graphs of Spence’s list belong to class E.

Now we show that there is no other two-graph in class E. Suppose, to the contrary,
that there is a two-graph of class E which is not in Spence’s list. The corresponding
strongly regular graph has an adjacency matrix A, of the form (6). By the property (i)
of Spence’s list, the first 7 rows of the matrices of the first 100 two-graphs of Spence’s
list coincide with the first 7 rows of the complement of A, The property (ii) of
Spence’s list implies that the adjacency matrix of the 101st is lexicographically less than
the complement of the matrix A,. However, this contradicts to the property (iii) of
Spence’s list. O

3.4. Odd systems representing the two-graph J(3, 7). The projection of the vector u(S)
on the space spanned by w,, s € F;, is the vector w(S): =3, sw,— W =33 _gw, —
3 XsesWs. The norm of the vector \/EW(S) equals 7. Moreover, for u(S) € 9, all of
the corresponding 8 vectors \6W(S) have mutual inner products —1 and span the
7-dimensional space with the basis (w,, s € F5). Hence these vectors represent a
two-graph J(7,7). Since, for (m, d)=(7,7), the special bound gives n(7,7) =8, the
two-graph (7, 7) is the unique regular two-graph with these parameters.

Recall that the projection of 4 (¢) on the 7-dimensional space with the basis
(fi, i € V;) represents the unique two-graph J(3, 7). Hence one can say that every
two-graph J(5,15) obtained from the lattice Ex Ey is a special gluing by the map ¢
of the unique two-graphs J(3,7) and J(7,7).

Let g ¢’ and ¢” take values of 1. We call the triple (g, €', €”) even if the product
ee'e” = 1. Otherwise, the triple is called odd. There are 4 even triples and 4 odd triples.
We set ¢'=(1,1,1), ¢'=(,—-1,-1), ¢€=(-1,1,—1) and & =(—1,—-1,1). Let
0<k <3. Then £* is an even e-triple, and —&* is an odd e-triple. Additionally, if we
change the sign of one of the units in €, we obtain an odd e-triple —&’ for some . For
two e-triples € and &’ with the same support ¢, let e’ = 2, _, €;¢/. Hence ¢ and ¢’ are of
the same parity iff ee’ = —1.

Below, we use sums of the type u(t, £¥) =, _, £5f. In such a sum, we consider ¢ € F,
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as an ordered triple ijl such that 1 <i<j</<7, and the orders of &* and ¢ agree. For
example, e =(—1, 1, —1) in X;_»3; £;f, means that e&5=—1, e3=1 and &5 = —1.

Consider the odd subsystem %W < %(3,7) consisting of 28 vectors u(s, €),t € F,
with all even &. Recall that there are 4 vectors u(t, €*), 0< k <3, with even &* for each
te E.

Consider the graph G(W™) with 28 vertices u(z, €). Recall that vertices u, u’ € W™
are adjacent in G(W™") iff uu’ = —1. The 4 vertices u(t, €“), 0 <k <3, for a fixed ¢ form
a clique of the graph G(%™). Recall that the triangular graph T'(8) is a graph with Py as
the set of vertices. Here and below, F; is the set of all pairs of points of a 8-set. Two
vertices of T'(8) are adjacent iff the corresponding pairs intersect.

ProrosITION 3. The graph G(W™) is the complement of the triangular graph T ().

Proor. It is easy to verify that G(%™") is a strongly regular graph with the
parameters (28, 15,6,10). These parameters have only 4 strongly regular graphs;
namely, the complements of the triangular graph 7'(8) and the 3 Chang graphs.

We show that G(%'") = T(8). Note that if we change the signs of some f; in all
vectors u(t, €°), the adjacencies of G(%*) do not change. We can transform any vertex
u(t, €°) into u(t, £°) by changing the signs of some f;’s. Hence, w.l.0.g., we can consider
the vertex u(t, €”) =3, ., f; as a general point. This vertex is adjacent in G(%'") to the
6-clique composed by the vertices u(s, €°), s € F, —{r}. However, every vertex is
adjacent to a 6-clique only in 7'(8), but not in Chang graphs (see [1]). d

Recall that the vertices of T(8) are naturally labeled by pairs ij € P;. Using
Proposition 3 we can label vectors of the odd system % by pairs ij € P;. Hence we
denote these vectors of norm 3 by w,;. Since G(%™") = T(8), we have

_{_1 if {ij} N {kl} = 2,
MU i i 0 K = 1.

3.5. Root systems of two-graphs from Eg@® Eg. Recall that we denote the class of all
two-graphs from Eg® Ey as class E. Among the 100 two-graphs of class E there is a
unique two-graph J,(5, 15) with the empty root system. This is the two-graph number
1 in Spence’s list.

Denote by %, the odd system representing J,(5, 15). Each odd system representing
a two-graph of the class E is a perturbation of the odd system ;. Moreover, an
inspection of Spence’s list shows that the closure cl % of every odd system %
representing a two-graph of class E contains %, as a subsystem. This fact allows us to
characterize the root systems which occur as root systems R(%) of odd systems %
representing two-graphs of the class E.

It is shown in [7] that %} is closed, since it can be obtained by our construction from
the Barnes—Wall lattice A. Namely, W, = 7'(c) for every vector ¢ e V2 A, of norm
12. Since the odd system %}, has no pair of vectors with the inner product +3, the root
system of W is empty, i.e. R(W) = &.

The odd system Wy = U, (o) U U3, where U (), consists of vectors v,(t, £¥), t € F,
0=k <3. For these vectors, we introduce the special notation u,(&*). Therefore

u(e=w,+> e, teF, 0<k<3. (7)
iet

We denote minimal by inclusion dependencies of W, as circuits. A circuit of W,
consists of 6 vectors such that a sum of these vectors or its opposites is equal to 0. In
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the graph G(;), a circuit generates a switching of a maximal clique (of size 6). In [8§],
the graph G(%;) is considered in detail.

Any 5 vectors of a circuit compose a broken circuit. Obviously, the sum of 5 vectors
of a broken circuit is the sixth vector with an opposite sign. In other words, a broken
circuit generates a vector of the lattice L ().

An odd system U representing J(5,15) is obtained from %; by a substitution of
some vectors. In this case, if a vector v of a circuit is substituted by v’, then this circuit
ceases to be a dependency, and it becomes a broken circuit. However, this broken
circuit generates v, i.e. v belongs to cl %. Additionally vv’ = 3, i.e. if vv’' =3, the
vector v — v’ is a root of R(U).

We use circuits of % of the following form:

{ug, up, u,(e(s)):s € C},

where C, = S, is the 4-set of triples s € F; not containing i € V5, and the pair a, b € Vg is
such that either a =0, b =i or the triple abi belongs to F;, i.e. it is one of the triples of
FE containing i. Each point j € V5 —{i} belongs to exactly two s, s’ € C;. Hence the
e-triples £(s) and £(s’) are such that g;(s) = +¢;(s’), where the minus sign corresponds
to all j in the case (a, b) = (0, i), and to j =a, b in the cases (a, b) # (0, i), and the plus
sign corresponds to the other cases. The corresponding dependencies are

w—ugt X u(e(s) =0 and  u,+ X wu(e@)=u,+ X ul(els). (8)

seC; saa,sp b sab,spa

Broken circuits generate roots of R(%U) of the following types:

wytwy, 5,5 ek, 2f,, ieV, >of, oceltf, sek,
where 5§ =V, —s. These roots are just the roots of the odd system ¥'(c).

For t € F; we consider the 4-set V,=V;—t in detail. Since F; is a Steiner triple
system, each pair i, k of points of V; belongs to exactly one triple of . In other words,
the unordered pair ik determines uniquely a triple of F. Since there are 6 distinct pairs
of points in V,, we obtain all other 6 triples of F; distinct from ¢. These 6 triples are
partitioned into 3 pairs of triples having the same intersection point with . For m e ¢,
let p(m) and g(m) be the pair of triples with p(m)Nt=gq(m)Nt={m}. Since
p(m) N q(m) ={m}, the triples p(m) and g(m) are determined by complementary pairs
of points of the 4-set V. In other words, each point m e t uniquely determines both a
partition of V, into complementary pairs ij and k/ and the corresponding triples p(m)
and g(m).

We call a quadruple o e {+£1}"+ even if II;_y, 0; = 1. There are 4 pairs of opposite
even quadruples. We set 7 =V, =V, — ¢, and define the following root systems:

R@t) = {20,]‘,»: oe{xl})is even} U{EWpim) = Wyom)): M € 1}, 9)
RP(t) = {Z oifioe {:I:l}T} U{EWpmy £ Wyom)): m € t}, (10)
Ro={£2f:i e V;}. (11)

Recall that S, ={s e F:ssa}and C,=F,— S,.

LEmMmAa 5. Let U be an odd system representing a two-graph of class E. Let
cl U= W, Then:
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(i) if one of the roots of R(t) belongs to R(U), then R(t) = R(U);

(ii) if at least one of the roots from each R(t) and R(t') belongs to R(A), then
Uses, R(s) € R(U), where {a}=tNt';

(iii) if at least one of the roots from each R(t), R(t') and R(t") with tNt' Nt"=T
belongs to R(U), then \ sk, R(s) = R(U).

Proor. (i) For m et, let £* and &' with the supports p(m) and q(m), respectively,
be such that &, = £/,. Then we have the following identity:

i (E°) = g (E') = Wpiom) = Waim) + 2 0,
et
where o, = &f for i € p(m) —{m} and o; = —¢! for i € q(m) — {m}. Since £* and &' are
even, we obtain that o is even too.

By the definition of the lattice L°(2), the sum of any two vectors of 9 belongs to
L°(%). Since any root of R(%) is a vector of L°(%) of norm 4, the assertion (i) is
implied by the above identity.

(ii)) By (i), R(t) UR(t') = R(%). Let t" be the third triple of S,. Note that fA7 =7",
where A is the symmetric difference. For any ¢” with the support ", there are even o
and o' with the supports 7 and 7', respectively, such that

> olfi= 2 of+ > olf.

ier” iet iet
Hence the root X, . o7f; of R(¢") belongs to R(%). Now (i) implies (ii).
Similarly, (iii) is implied by (i) and (ii). O

Note that, for k #0, u,(¢°) —u,(e*) =2f, + 2f; € L°(U) for some i, j € s. Hence one
can prove the following lemma in a similar manner to the proof of Lemma 5.

LeEmMMA 6. Let AU be an odd system representing a two-graph of the class E. Let
clU=2 W, Then:
(1) if one of the roots of R, belongs to R(U), then Ry = R(U);
(ii) if at least one of the roots from each R, and R(t) belongs to R(%U), then
RoUR"(t) = R(U);
(iii) if at least one of the roots from each Ry, R(t) and R(t") with t Nt' = {a} belongs to
R(Q), then RyU;cs, R”(s) € R(U);
(iv) if at least one of the roots from each R, R(t), R(t') and R(t") with t Nt' Nt" =T
belong to R(U), then Ry, R”(s) S R(U).

We have the following congruences:

RO=A]  URO=44% U R@O)=AA,

teS, teFy

R, :AZ; RoyU RD(t) 2A?Dm RyU RD([) = A1 A3D4Ds, RyU RD([) =D, E;.

tesS, telF;

Lemmas 5 and 6 imply the following assertion (cf. Proposition 10 of [8]).

ProrosiTION 4. Any two-graph of class E has one of the following root systems:
1) <
(2) A%
(3) A A3
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(4) AAz;
(5) A1Dy;
(6) A1A3D,Dg;
(7) D;E;.

Note that cl % is uniquely determined by % and R(%). Hence, if R(U)= R(U'),
then cl U =cl U’', and if R(U) = R(U"), then cl U and cl U’ are isomorphic.

4. Two-GRAPHS FROM E¢® Eg RELATED TO STEINER TRIPLE SYSTEMS

We call an odd system %;(¢) positive if all € in v,(¢, €) are even. In other words, we
choose the reduced odd system %" from %'(3,7) on the step (i) of the map ¢.

Recall that, by Proposition 3, there is a bijection between vectors u(t, €) € W and
pairs ij € Ps. The vector u(t, €) related to the pair ij is denoted by u;;.

Therefore we obtain that a positive odd system 9,(¢) contains the vectors of the
form v (ij) =w, tu;, s € F, ij € Ps. Let by ={ij: v,(ij) € U ()} Since v,(ij)v,(kl) =
w3 + ity = 2 + wuy, should be equal to 1 or —1, we have to have {ij} N{kl} = .
Hence every set b, contains 4 disjoint pairs. Therefore, we obtain that every positive
odd system %, (¢) is determined by a partition B of Ps into 7 blocks of disjoint pairs
and by a bijection mbetween the 7-set F; and blocks of the partition B. We denote it by
Ui (15 B).

We call the odd system U™ (7, B)= A (1, B)U A5 positive too. An odd system
having v,(¢, &) with odd ¢ is called non-positive.

Recall that a Steiner triple system (STS for brevity) on a set V is a family T of triples
of points of V such that any pair of points of V is contained exactly in one triple of 7,
i,e. STS=S(2,3,v)=2-(v, 3, 1) for some v. Of course, any two triples of 7 have at
most one common point.

There is a unique STS F; on 7 points. There are 23 non-isomorphic STS on 15 points
that have F; as a subsystem. The subsystem F is called a head of an STS containing it.
We show that a positive odd system represents a two-graph related to an STS with a
head.

We relate to each vector of a positive odd system " (1, B) a triple ¢ of an STS, and
denote this vector by v(¢). We show that the obtained vectors satisfy

v((')=2)tNt'| - 1. (12)

We set vg=u,=g + W. As a ground set of this STS, we take the union F; U V. Here
Vg is a 8-set the pairs of which comprise F;. We set

v(S) = u(S) foratriple ScF, Se%,
v(sif) = vs(if) = wy + uy, seklF, ijebfs.

By the construction, the set of 35 triples S € %, and sij, s € I, ij € P, forms an STS
with the head %,. It is easy to verify, in particular using (3), that v(S) and v(sij) satisfy
(12). Conversely, using the list of STS’s of [2], we see that above formulas for v(S) and
v(sij), where S and sij are triples of an STS with a head, provide an odd system
U*(m, B). Thus we obtain the following:

PROPOSITION 5.  Every positive odd system U (1, B) from Es@® Eg represents a
two-graph related to an STS on 15 points with a head, and every STS with a head is
represented by a positive odd system U (1T, B).
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However, STS’s are represented not only by positive odd systems. Consider a
reduced non-positive odd system ;(¢) of the following type. Let S = F;. We choose,
in step (i) of map ¢, vectors u(z, €) € W(3,7) with odd €if t € S and even ¢ if r ¢ S.

We denote the odd system U;(¢) for this map ¢ by 4 (S). The odd system 4 (S)
consists of vectors v,(t, €) = w, + 2, &f;, where ¢ is either odd or even according to
whether ¢ belongs or does not belong to S. We denote by %(S) the union of 4 (S) with
.

We define a transformation of S. Recall that there are 3 triples s € F; containing a
given point i. For each i, 1 <i <7, consider triples s € S containing i. If there are 3 such
triples, then delete them from S. If there are two such triples, then change them by the
third triple containing i. If there is one or no triple containing i, then S is not
transformed. Obviously, after such transformations for all {, we obtain S with either
one or none of the triples. We call S positive if it is transformed into an empty set, and
negative otherwise.

ProrosITION 6. Let S € F, be a set of triples s € F;. Then U(S) is isomorphic to U(D)
or U({s}) according to within S is positive or negative, respectively.

Proor. Note that if we replace in %;(S) vectors f; for some i by —f;, we obtain an
isomorphic odd system. This change of the sign of f; is equivalent to the change of the
sign before &f for all k, 0 < k <3. In other words, the change from f; to —f; is equivalent
to replacing the even e-triple in u,() with s 5 i by an odd &-triple (and conversely).

Therefore, if the set § < F; contains 3 triples containing the point i, we can eliminate
these triples from S, simultaneously transforming f; into —f;. If the set S contains two
triples with i, we can change the two triples by the third triple containing i and
transforming the f; by —f. Since we do not change the vectors w;, the assertion of the
proposition follows. O

Now we consider odd systems of the following form. In step (ii), we set 4 vectors
u(t, €), 0<k <3, with the same ¢ in the same group. Hence each group is naturally
labeled by an element ¢ € F;. In step (iii), we relate the group with the label ¢ to the
vector w,. We denote the obtained odd system by U9(S). The odd system UJ(S)
consists of the vectors u,(¢) of (7). We denote by °(S) the union of UJ(S) with U5.
We have

US)={u:0<i<7,u(—¢"), 0<k<3,teS;u(e), 0<sk<3,te¢S;

AU°(S) represents a regular two-graph (5, 15). Denote this two-graph by J(S).

According to Proposition 6, two-graphs J(S) are only of the following two types:
J(D) and T({s}), s € F.

Clearly, U°(D) = W, is positive, and T () = (5, 15) relates to the STS no. 1.

Obviously, there is a permutation of the set V; that transforms any triple s € F; into
any other s’ € F,. This permutation generates an isomorphism of odd systems °({s})
and U°({s'}) and two-graphs J({s}) and J({s'}). Denote by 7,(5,15) the two-graph
represented by any of these isomorphic odd systems. It is shown in [7] that J(5, 15)
relates to the Steiner triple system having number 2 in the extended version of [2].

It is shown in [7] that 23 STS’s with a head are partitioned into 4 families having the
first four root systems of Proposition 4.

The family with R(T)= contains only one STS having the number 1 in the
extended version of [2]. Taylor [12] proves that there is a unique two-graph (5, 15)
with a doubly transitive automorphism group. The full automorphism group of
To(5,15) is Sp(6, 2). It is shown in [2] that the two-graph (5, 15) relates to the
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unique Steiner triple system number 1, triples of which are lines of a 3-dimensional
projective space PG (3, 2) over the field GF.

The family with R(T) = A] also contains one STS, the STS no. 2. The corresponding
two-graph is J,(5, 15).

The family with R(T) = A, A3 contains 5 STS’s with numbers 3-7.

The family with R(T) = A¢A- contains 16 STS’s with numbers 8-22 and 61.

I must take the opportunity to correct a misprint in Table 1 of [7], where, in row 4,
number 61 should be given instead of number 67. Row 5 of Table 1 in [7] should be
corrected accordingly.

5. Root SysTEMS OF Two-GRAPHS ON 36 POINTS

Recall that the second even unimodular lattice Dj, provides two families of
two-graphs; namely, the class STS consisting of two-graphs related to Steiner triple
systems, and the class D of 100 two-graphs related to 2-(10, 4, 2) designs (see [8]). The
two-graphs of the class STS have the following root systems: &, A7, A,A3, AgA; and
Ay4. The two-graphs related to 2-(10,4,2) designs have the following root systems: J,
Al, A,A3, AID,, A;A3D,Dg and AsD,,.

An inspection of Spence’s list of 227 two-graphs shows that two-graphs from
Es®D Eg, i.e. the two-graphs of class E, having root systems distinct from AgA, and
D, E,, coincide with two-graphs of class D.

Recall that we denote the class of two-graphs from Latin squares by LSQ, and that
the two-graphs of the class LSQ have root systems A7 and A2 (see [8]).

The partitions of all known regular two-graphs on 36 points into classes with the
same root system is shown in Table 1. The column ‘cardinality’ in Table 1 shows the
number of two-graphs having the corresponding root system.

The 100 two-graphs of class D are marked in Spence’s list by letters a, b and c.

The 80 two-graphs of class STS are marked in Spence’s list by numbers in
parentheses.

The 100 two-graphs of class E have numbers from 1 to 100 in Spence’s list.

The two-graphs with the root systems ¢ and A] have the numbers 1 and 2 in
Spence’s list. The next 4 two-graphs with the numbers 3—-6 in Spence’s list have the root
system A]D,. The unique two-graph with the root system A7 (of class LSQ) has the
number 184 (89). (The number 89 in parentheses is the number of the two-graph in the
list of two-graphs from Steiner triple systems and Latin squares in the extended version
of [2]).

TABLE 1
Root Belong(s) to
Case system Cardinality the class
1 16} 1 STS,E,D
2 Al 1 STS,E,D
3 A,A3 5 STS,E,D
4 AgA, 16 STS,E
5 Ay 57 STS
6 AD, 4 E,D
7 AA3D,Dyg 30 E,D
8 D, E, 43 E
9 AsDy 59 D
10 Al 1 LSQ
11 Al 10 LSQ
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It seems to me that all regular two-graphs on 36 points are known. The

lexicographical order of two-graphs in Spence’s list shows that all two-graphs of classes

E

and D are known. The list contains all two-graphs related to Steiner triple systems

and Latin squares. It is very unlikely that there is a new class of regular two-graphs on
36 points distinct from the classes STS, LSQ, E and D.
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