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 Regular Two-graphs from the Even Unimodular Lattice  E 8  % % %  E 8

 V IATCHESLAV  G RISHUKHIN

 Starting from the even unimodular lattice  E 8  %  E 8  ,  one constructs odd systems (i . e .  sets of
 vectors with odd inner products) of 546 vectors using results of Deza and Grishukhin .  One
 studies the subsystems consisting of 36 pairs of opposite vectors spanning equiangular lines .
 These subsystems represent regular two-graphs .  This gives 100 such two-graphs and they
 coincide with the first 100 in a list of 227 two-graphs generated by E .  Spence .  Using the root
 systems of the sublattices generated by the 100 odd systems ,  the set of the 100 two-graphs is
 divided into seven classes .  The first four classes correspond to the 23 Steiner triple system on 15
 points containing a head ,  i . e .  a Fano plane .
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 1 .  I NTRODUCTION

 A two-graph  7   is a pair ( V ,  E ) ,  where  V  is a set and  E  is a set of three-subsets of the
 ground set  V  with the property that every four-subset of  V  contains an even number of
 elements of  E .  The three-subsets of  E  are called  coherent  triples .  A detailed
 consideration of two-graphs can be found in [10] and [12] .

 Let  V  be a set of vectors of norm ( 5  squared length)  m  with inner products  Ú 1 .  We
 say that  V represents  a two-graph  7   if the ground set of  7   is  V  and three vectors  y  1  ,  y  2
 and  y  3  compose a coherent triple of  7   if f ( y  1 y  2 )( y  2 y  3 )( y  3 y  1 )  5  2 1 ,  where  y  i y  j   is the
 inner product of vectors  y  i   and  y  j .  Obviously ,  vectors of  V  span a set of equiangular
 lines such that the acute angle between lines is equal to arccos(1 / m ) .  We say also that
 this set of equiangular lines  represents  the two-graph  7  .

 Sets of equiangular lines of a suf ficiently large size in a space of fixed dimension exist
 only if  m  is an odd integer .  There is a special bound on the maximal number  n ( m ,  d ) of
 equangular lies at the angle arccos(1 / m ) , m  is an odd integer ,  in a space of dimension
 d :

 n ( m ,  d )  <
 d ( m  2  2  1)

 m 2  2  d
 .

 This bound is achieved if f the corresponding two-graph is  regular .  A two-graph is
 regular if every pair of points belongs to the same number of coherent triples .

 It is a considerable problem to classify all regular two-graphs  7  ( m ,  d ) with
 parameters  m  and  d ;  and in particular ,  to find a number  N m ( d ) of all non-isomorphic
 two-graphs with the same parameters .

 For  m  5  3 ,  a regular two-graph  7 (3 ,  d ) exists only for  d  5  5 ,  6 and 7 ,  and  7 (3 ,  d ) is
 unique in each dimension ;  i . e .   N 3 ( d )  5  1 for  d  5  5 ,  6 ,  7 .

 We are interested here in regular two-graphs  7  (5 ,  15) with  m  5  5 and  d  5  15 ,  when
 n (5 ,  15)  5  36 .  A set of equiangular lines at angle arccos  1 – 5  representing a regular
 two-graph  7  (5 ,  d ) may exist only in dimensions  d  5  5 ,  10 ,  13 ,  15 ,  19 ,  20 ,  21 ,  22 and 23 .
 Regular two-graphs  7  (5 ,  d ) are known for all of these  d  ?  19 ,  20 .  The number  N 5 ( d ) of
 all non-isomorphic two-graphs  7  (5 ,  d ) for  d  5  5 ,  10 ,  13 ,  23—namely ,   N 5 (5)  5  N 5 (10)  5
 N 5 (23)  5  1 , N 5 (13)  5  4—is also known .

 Seidel mentions in [10] for the first time results of E .  Spence on computing non-
 isomorphic two-graphs on 36 points .  Spence found that  N 5 (15)  >  227 .  The number 227
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 is composed of 11 two-graphs from Latin squares of order 6 ,  of 80 two-graphs from
 Steiner triple systems of order 15 ,  and 136 new ones discovered by use of a computer
 [11] .  In [10] Seidel describes a large subclass of Spence’s family .  Every two-graph of
 this subclass is related to a 2-(10 ,  4 ,  2) design ,  and it is shown in [8] that it is a special
 gluing of the unique two-graphs  7  (5 ,  10) and  7  (3 ,  5) .

 We show in this paper that every two-graph  7  (5 ,  15) from  E 8  %  E 8  is a similar gluing
 of the unique two-graphs  7  (3 ,  7) and  7  (7 ,  7) .  More precisely ,  a projection of the set of
 equiangular lines representing a two-graph from  E 8  %  E 8  onto a 7-dimensional space  X
 is a set of equiangular lines representing  7  (3 ,  7) .  A restriction of the set of equiangular
 lines onto another 7-dimensional space orthogonal to  X  is a set of equiangular lines
 represenging  7  (7 ,  7) .

 An inspection of the list of two-graphs computed by Spence [11] shows that the new
 two-graphs discovered by Spence which are not related to 2-(10 ,  4 ,  2) designs are
 two-graphs from  E 8  %  E 8  .

 Denote by a class D and a class E the classes of two-graphs which are gluing  7  (5 ,  10)
 with  7  (3 ,  5) ,  and  7  (3 ,  7) with  7  (7 ,  7) ,  and can be obtained from the lattices  D  1

 1 6  and
 E 8  %  E 8  ,  respectively .

 All in all ,  we have the following 4 main classes of two-graphs on 36 points :
 (1)  80 two-graphs from Steiner triple systems on 15 points ,  the class STS ;
 (2)  11 two-graphs from Latin squares of order 6 ,  the class LSQ ;
 (3)  100 two-graphs of the class D from  D 1

 16 ;
 (4)  100 two-graphs of the class E from  E 8  %  E 8  .

 The numbers of two-graphs in each class are obtained from the list of 227 two-graphs
 in [11] .  The Latin square class is disjoint with all other classes .  The 3 classes D ,  E and
 STS are not disjoint .  Classes D and E have 41 two-graphs in common .  Class E contains
 23 two-graphs from STS with a head .  Class D contains 7 two-graphs from STS with a
 head .

 A more detailed description of two-graphs of class E can be found in [9] .

 2 .  O DD  S YSTEMS   AND  L ATTICES

 A set of vectors of an odd norm  m  with  Ú 1-inner products spanning equiangular
 lines is a special case of an odd system .  An  odd system  9   is a set of vectors  y    such that
 the inner product  y y  9  of any (possibly equal) two vectors of  9   is an odd integer .  (We
 denote the inner product of two vectors  y    and  y  9  by its juxtaposition  y y  9 . ) The inner
 product  y  2  5  y y    of a vector  y    with itself is called the  norm  of  y  .  Hence norms of all
 vectors of an odd system are odd .  An odd system is called  uniform  (of norm  m ) if the
 norms of all of its vectors are equal (to  m ) .  As we use only uniform odd systems here ,
 in what follows ,  we sometimes omit the word ‘uniform’ .

 We call an odd system  regular  if it represents a regular two-graph .  We also consider
 reduced  odd systems such that from two opposite vectors only one belongs to the odd
 system .  We call an interchanging of a subset of vectors of a reduced odd system by its
 opposite ,   switching  of the odd system .  Similarly ,  we call the operation of changing the
 sign of a vector  y    switching  y  .

 We call odd systems  9   and  9  9  isomorphic if there is a bijection  f  :  9  5  9 9  such that
 f  ( y  1 y  2 )  5  f  ( y  1 ) f  ( y  2 ) .

 Let  8   be an odd system related to a two-graph (i . e .  spanning equiangular lines) .
 Since  y y  9  5  Ú 1 for  y  ,  y  9  P  8 ,  y  ?  Ú y  9 ,  we can introduce a graph  G ( 8 ) with  8   as the
 set of its vertices .  Two vertices  y  ,  y  9  of  G ( 8 ) are adjacent if f  y y  9  5  2 1 .  If  8   represents
 a regular two-graph and it is reduced ,  the graph thus obtained is a  strong  graph .  One
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 obtains a Taylor (distance-regular) graph of diameter 3 (see [1]) if with every vector
 the opposite vectors also occurs .

 Let  8   be a reduced odd system .  A switching of  8   corresponds to a switching of
 G ( 8 ) .  Fix  y  0  P  8 .  By a switching ,  we can isolate  y  0  ,  i . e .   G ( 8 s w )  5  h y  0 j  <  H 0  ,  where
 H 0  5  G ( 8 0 )   and  8 0  5  8 s w  2  h y  0 j .  If  8   relates to a regular two-graph ,  then  H 0  is a
 strongly regular graph .  The ( Ú 1)-adjacency matrix  A  of  H 0  has minimal eigenvalue
 2 m .  Hence the matrix  mI  1  A  is positive semidefinite ,  and it is the Gram matrix of the
 set of vectors of  8 0 .  For example ,   H 0  has parameters (35 ,  16 ,  6 ,  8) for a regular
 two-graph  7  (5 ,  15) on 36 points .

 A lattice  L  of dimension  n  is a free Abelian group of rank  n  of vectors .  A lattice is
 called  integral  if the inner products of all of its vectors are integral .  An integral lattice is
 called  e y  en  if the norms of all of its vectors are even .  An even lattice  L  is called  doubly
 e y  en  if (1 / 4 2) L  is even .  Norms of all vectors of a doubly even lattice are multiples of 4 ,
 and all inner products are even .  Hence the minimal norm of a non-zero vector of a
 doubly even lattice  L  is not less than 4 .  The set  L 4  of all vectors of norm 4 of  L  is ,  up
 to the multiple  4 2 ,  a  root system .  Hence ,  below ,  we call a vector of norm 4 a  root .

 Each root system is a direct sum of irreducible root systems ,  called its  components .  A
 root system is called  irreducible  if it cannot be partitioned into two subsystems such
 that roots of one of these systems are orthogonal to all roots of other .  All irreducible
 root systems are known .  These are  A n  , D n   and  E m  ,  where  n  and  m  are the dimensions
 of the corresponding root systems ,  and  m  5  6 ,  7 ,  8 .  Following [4] ,  we denote the direct
 sum of components  R 1  , R 2  ,  .  .  .  ,  R k   by the product  R 1 R 2  ?  ?  ?  R k .  In particular ,  the
 direct sum of  k  equal components  R  is denoted by  R k .  A lattice generated by a root
 system is called a  root lattice ,  but it is denoted by the direct sum of the corresponding
 components .  For example ,  the root lattice  E 8  %  E 8  is generated by the root system  E 2

 8 .
 In [5] and [6] ,  a construction of uniform odd systems from a doubly even lattice is

 indroduced .  Here we describe this construction for uniform odd systems of norm 5 .
 Let  L  be a doubly even lattice ,  and let  L 8  be the set of all  a  P  L  of norm 8 .  Let  c  P  L

 have norm 12 .  We set

 !  ( c )  5  h a  P  L 8 :  ac  5  6 j .

 It is easy to see that  a  P  ! ( c ) implies  a *  5  c  2  a  P  ! ( c ) ,  and  aa *  5  2 2 .  Conversely ,
 any two vectors  a ,  a 9  P  L 8  with  aa 9  5  2 2 provide a vector  c  5  a  1  a 9  of norm 12 .

 For  a  P  ! ( c ) ,  define

 y  ( a )  5  a  2  1 – 2 c .

 Then we have  y  ( a ) y  ( a 9 )  5  aa 9  2  3 .  Since the inner products of all  a  P  L  are even ,  the
 inner product  y  ( a ) y  ( a 9 ) is odd .  In particular ,   y  2 ( a )  5  5 .  In other words ,  the set

 9 ( c )  5  h y  ( a ) :  a  P  ! ( c ) j

 is a uniform odd system of norm 5 .
 The construction can be reversed .  Let  c  be a vector of norm 12 ,  which is orthogonal

 to the space spanned by an odd system  9   of norm 5 .  Then the vector  a ( y  )  5  y  1  1 – 2 c  has
 norm 8 ,  and  a ( y  )  1  a ( 2 y  )  5  c .  Let  L  be the lattice linearly generated by  a ( y  ) for all
 y  P  9 .  Then  a ( y  )  P  L 8  .  Hence the odd system  9  ( c ) from this lattice contains the
 original odd system  9   as a subsystem .

 Now we define the closure of an odd system .  This notion is very useful for
 distinguishing non-isomorphic odd systems (and two-graphs) .  Consider the following
 lattices generated by an odd system  9  :

 L q ( 9 )  5 H u :  u  5  O
 y  P 9

 z y  y  ,  O
 y  P 9

 z y  ;  q (mod  2) ,  z y  P  Z J ,  q  5  0 ,  1 .



 V . Grishukhin 394

 Let  9   be uniform and of norm 5 .  It is proved in [5] that  L 0 ( 9 ) is a doubly even lattice ,
 and the af fine lattice  L 1 ( 9  )  5  y  1  L 0 ( 9  ) is a translation of  L 0 ( 9  ) . L 1 ( 9 ) is an odd
 system and  u 2  ;  1(mod  4) for all  u  P  L 1 ( 9  ) .  Let  L 1

 k ( 9  ) be the set of all vectors of
 L 1 ( 9  )   of norm  k .  Obviously ,   9  ‘  L 1

 5 ( 9 ) .

 D EFINITION .  The uniform odd system  L 1
 5 ( 9  ) is called the  closure  of the odd system

 9 .  The odd system  9   is called  closed  if  9  5  L 1
 5 ( 9  ) .  Sometimes we denote the closure

 of  9   by cl  9  .

 Note that if  9   has the form  9  ( c ) for some  c ,  then  9   is closed .
 Let  8   be a uniform odd system of norm  m  spanning equiangular lines ,  i . e .   uu 9  5  Ú 1

 for distinct  u ,  u 9  P  8 .  8   is called  maximal  if there is no  y  P  span  8   of norm  m  such that
 y  u  5  Ú 1 for all  u  P  8 .  If  8   is maximal but not closed ,  then ,  for each  y  P  cl  8  2  8 ,
 there is  u  P  8   such that  y  u  5  3 .  Then the vector  y  2  u  has norm 4 ,  i . e .  it is a root .  Let
 R ( 8 )   be the set of all roots obtained in such a way ,  i . e .   R ( 8 )  5  h y  2  u :  y  u  5  3 , u  P  8 ,
 y  P  cl  8 j .

 L EMMA  1 .  The set R ( 8 )  is the root system of all roots of the lattice L 0 ( 8 ) , i .e .
 R ( 8 )  5  L 0

 4 ( 8 ) .

 P ROOF .  Obviously ,   R ( 8 ) is contained in the root system of  L 0 ( 8 ) .  Let  r  be a root of
 L 0 ( 8 ) .  Then  ru  5  0 ,  Ú 2 for all  u  P  8 ,  and if  ru  5  2 then  y  5  u  2  r  P  cl  8 ,  i . e .
 r  5  y  2  u  P  R ( 8 ) .  Since all roots of  L 0 ( 8 ) lie in the space spanned by  8 ,  for every root
 r ,  there is  u  P  8   such that  ru  5  2 .  h

 If  8   and  8 9  represent isomorphic two-graphs and are not reduced (reduced) ,  then
 they are isomorphic (switching equivalent to isomorphic odd systems ,  respectively) .

 The following obvious proposition helps to distinguish non-isomorphic odd systems
 spanning equiangular lines ,  and therefore non-isomorphic two-graphs .

 P ROPOSITION  1 .  Let  8   and  8 9   be d - dimensional odd systems representing two - graphs
 7  and  7 9   with the same parameters  (5 ,  d ) . Then  7   and  7 9   are not isomorphic if
 R ( 8 )  ?  R ( 8 9 ) .

 3 .  T WO -G RAPHS   FROM   THE  L ATTICE   E 8  %  E 8

 Recall that there are exactly two non-isomorphic even unimodular lattices in
 dimension 16 ,  namely  D 1

 16  and  E 8  %  E 8  ,  where  E 8  is an 8-dimensional root lattice .  The
 root lattice  E 8  is genrated by its minimal vectors of norm 2 forming the root system  E 8  .
 We use the description of the root system  E 8  given in [3] .  In fact ,  the description is
 given in terms of vectors of norm 4 ,  i . e .  it gives  4 2  E 8  .  We continue to denote the
 minimal vectors of norm 4 of the doubly even lattice  4 2  E 8  by roots .

 Let  V 8  5  h 0 j  <  V 7 ,  and  V 7  5  h 1 ,  .  .  .  ,  7 j .  Let  h i  ,  i  P  V 8  ,  be 8 mutually orthogonal vectors
 of norm 1 .  Then roots of  4 2  E 8  are as follows :
 (1)  Ú 2 h i  ,  i  P  V 8 ;
 (2)  o i P Q  » i h i  ,  » i  P  h Ú 1 j ,  u Q u  5  4 , Q  P  S (3 ,  4 ,  8) .

 Here  S (3 ,  4 ,  8) is the Steiner system ,  i . e .  it is a design 3-(8 ,  4 ,  1) .  Each  t  2  ( y  ,  k l )
 design with  l  5  1 is called a  Steiner system .  We use the shorter notation  S ( t ,  k ,  y  ) of a
 Steiner system ,  from [3] and [4] .  The Steiner system  S (3 ,  4 ,  8) has the following form .
 Let  F 7  be 7 triples of the unique Steiner triple system  S (2 ,  3 ,  7) on 7 points .  Its triples
 are lines of the projective Fano plane  PG (2 ,  2) .  Each quadruple  Q  P  S (3 ,  4 ,  8) has
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 the form  Q  5  t  <  h 0 j   or  Q 9  5  V 7  2  t  5  Q #  : 5  V 8  2  Q ,  where  t  P  F 7  .  If  Q  ?  Q #  9 ,  then
 u Q  >  Q 9 u  5  2 .  In this case ,   Q  D  Q 9  P  S (3 ,  4 ,  8) .

 Let  f i  ,  i  P  V 8  ,  be the other 8 mutually orthogonal vectors of norm 1 .  All  f i   are
 orthogonal to all  h j  .  Then the roots of the second copy of  4 2  E 8  are given by the above
 expressions (1) and (2) ,  with  h i   changed to  f i .  The 16 vectors  h i  ,  f i  ,  1  <  i  <  8 ,  form an
 orthonormal basis of the space spanned by the lattice  4 2  ( E 8  %  E 8 ) .

 The vectors of norms 8 and 12 in the lattice  4 2  ( E 8  %  E 8 ) are sums of 2 and 3 ,
 respectively ,  orthogonal roots of the lattice .  Since the automorphism group of the root
 system  E 8  is transitive on pairs of orthogonal roots ,  there are ,  up to symmetry ,  2 types
 of vectors of norm 12 :  a sum of 3 orthogonal roots of the same copy of  4 2  E 8 ,  and a
 sum of 2 roots of one copy and of 1 root of the other copy of  4 2  E 8  .

 A vector  c  of the first type gives a pillar odd system  9  ( c ) .  This means that vectors of
 9  ( c ) have the form  Ú ( e  1  r ) ,  where  e  is a vector of norm 1 ,  and  r  is a root (of norm 4)
 which belongs to  E 8  %  E 8  and is orthogonal to  e  and  c  (for details ,  see [5]) .  A maximal
 reduced pillar odd system  8  ‘  9  ( c ) spanning equiangular lines (i . e .  representing a
 two-graph) contains less than 36 vectors ,  the number of points of a regular two-graph
 7  (5 ,  15) .

 Hence we consider only the vectors  c  of the second type .  Recall that all vectors  c  of
 the same type belong to the same orbit of the automorphism group of the lattice
 4 2  ( E 8  %  E 8 ) .

 We take  c  equal to

 c 0  5  h ( Q )  1  h ( Q #  )  1  2 f 0  5  h ( V 8 )  1  2 f 0  .

 Here and below we use the following notation :  for any set  V ,  any  X  ‘  V ,  and  g k  ,
 k  P  V ,  we set

 g ( X  )  : 5  O
 i P X

 g i  .  (1)

 The set  !  ( c 0 ) contsins the following vectors :
 (1)  784 vectors  h ( Q )  1  o i P P  » i  f i  ,  Q ,  P  P  S (3 ,  4 ,  8) ,  0  P  P ,  »  0  5  1 ;
 (2)  56 vectors  a  5  h ( Q )  2  2 h i  1  2 f 0  ,  i  P  Q ,  and 56 vectors  c 0  2  a  5  h ( Q )  1  2 h i  ,  i  ̧  Q ,
 Q  P  S (3 ,  4 ,  8) ;
 (3)  8 vectors 2 h i  1  2 f 0  ,  and 8 vectors  h ( V 8 )  2  2 h i  , i  P  V 8 .

 Recall that  9  ( c 0 ) is the set of vectors  y  ( a )  5  a  2  1 – 2 c 0  for  a  P  ! ( c 0 ) .  Hence

 9 ( c 0 )  5  9 1  <  9 2  ,

 where

 9 1  5 H h ( Q )  2  1 – 2 h ( V 8 )  1  O
 i P P 2 h 0 j

 » i  f i  ,  Q ,  P  P  S (3 ,  4 ,  8) ,  0  P  P J ,

 9 2  5  Ú h h ( Q )  2  1 – 2 h ( V 8 )  2  2 h i  1  f 0  ,  i  P  Q ,  and  2 h i  2  1 – 2 h ( V 8 )  1  f 0  ,  i  P  V 8 j .

 Recall that if  Q  {  0 ,  then  Q  5  h 0 j  <  s  with  s  P  F 7 .  For  s  P  F 7  , s  ’  Q ,  we define 7
 vectors of norm 2 as follows :

 w s  5  h ( Q )  2  1 – 2 h ( V 8 )  5  h 0  1  h ( s )  2  1 – 2 h ( V 8 ) .

 Note that if  Q  does not contain 0 ,  then 0  P  Q #  5  V 8  2  Q .  Hence

 h ( Q )  2  1 – 2 h ( V 8 )  5  2 ( h ( Q #  )  2  1 – 2 h ( V 8 ))  5  2 w s  for  s  5  Q #  2  h 0 j .



 V . Grishukhin 396

 Similarly ,  for  P  {  0 ,  we hve  P  5  h 0 j  <  t ,  t  P  F 7  .  We set

 y  s ( t ,  »  )  5  w s  1 O
 i P t

 » i  f i  ,  s ,  t  P  F 7  .

 In this notation ,  the odd system  9 1  takes the form

 9 1  5  Ú h y  s ( t ,  »  ) :  »  P  h Ú 1 j t ,  s ,  t  P  F 7 j .

 Using this explicit expression ,  it is not dif ficult to find that

 R ( 9 1 )  5  D 7 E 7  .

 The roots of  D 7  are  w s  Ú  w s 9  ,  s ,  s 9  P  F 7 .  The roots of  E 7  are  Ú 2 f i  ,  o i P Q  » i  f i  ,
 Q  P  S (3 ,  4 ,  8) ,  0  ̧  Q .  Note that the roots of  E 7  are orthogonal to  f 0 .

 Let  W  5  1 – 2  o s P F 7  w s .  Then  W  2  5  7 – 2  ,  and  Ww s  5  1 for all  s  P  F 7 .  It is easy to verify that
 w s w t  5  0   for  s  ?  t ,  since  u s  >  t u  5  1 for distinct  s ,  t  P  F 7 .  In addition ,   w s h ( V 8 )  5  0 .  Hence
 the 8 vectors  h ( V 8 ) and  w s  , s  P  F 7  ,  form an orthogonal basis of the space spanned by
 h i  ,  i  P  V 8  .  The vectors  h i   can be expressed through  h ( V 8 ) and  w s :

 2 h 0  5  W  1  1 – 4 h ( V 8 ) ,  2 h i  5  2 W  1 O
 s { i

 w s  1  1 – 4 h ( V 8 ) .

 Then the 128 vectors of  9 2  take the form  Ú ( g  1  1 – 2  o s P F 7
 » s w s ) ,  where  » s  P  h Ú 1 j ,  and

 there is an even number of minus signs .  Hence we can re-denote these vectors as
 Ú u ( S ) ,  where

 u ( S )  5  g  1  w ( S ) ,

 g  5  f 0  2  1 – 4 h ( V 8 ) is the vector of norm  3 – 2  orthogonal to all  w s ,  and  w ( S )  5  o s P S  w s  2  W .
 We call a subset  S  ‘  F 7   odd  ( e y  en ) if it has an odd (even) cardinality ,  respectively .

 Now the odd system  9 2  takes the form

 9 2  5  Ú h u ( S ) :  S  ‘  F 7  ,  S  is  odd j .

 The root system of  9 2  is  R ( 9 2 )  5  D 7 .  Since  R ( 9 2 )  ‘  R ( 9 1 ) ,  we have

 R ( 9 ( c 0 ))  5  R ( 9 1 )  5  D 7 E 7  .

 These are roots of  E 8  %  E 8  that are orthogonal to  c 0  .
 We have  1 – 2  u 9 1 u  5  392 and  1 – 2  u 9 2 u  5  64 .  Hence  1 – 2  u 9 ( c 0 ) u  5  456 .
 It is easy to verify that  y  s ( t ,  »  ) u ( S )  5  Ú 1 ,  i . e .   y y  9  5  Ú 1 for  y  P  9 1  and  y  9  P  9 w .  We

 seek a maximal odd subsystem  8  ‘  9 ( c 0 ) of vectors with all mutual inner products
 equal to  Ú 1 .  Of course ,  we have to find separately maximal subsets  8 1  ‘  9 1  and
 8 2  ‘  9 2   such that  8 1  <  8 2  5  8 .  Recall that ,  for  m  5  5 and  d  5  15 ,  the special bound
 gives  1 – 2  u 8 u  5  36 .

 We call a reduced odd subsystem of  9 1  (or of  9 2 )  canonical  if the vectors  w s   in the
 vectors  u s ( t ,  »  ) (and  g  in  u ( S ) ,  respectively) have positive signs .  For canonical systems ,
 we preserve the same notations  9 1  and  9 2  .  In what follows in this section ,  we consider
 only reduced odd systems  9 1  and  9 2  in the canonical form .  Obviously ,  every reduced
 subsystem of  9  ( c 0 ) can be made canonical by a switching .

 3 . 1 .  Odd systems  8 1  .  First ,  consider  9 1 .  Recall that  w 2
 s  5  2 and  w s w s 9  5  0 for  s  ?  s 9 .  We

 set  d  ( s ,  s 9 )  5  1 if  s  5  s 9 ,  and  d  ( s ,  s 9 )  5  0 if  s  ?  s 9 .  We have

 y  s ( t ,  »  ) y  s 9 ( t 9 ,  »  9 )  5  2 d  ( s ,  s 9 )  1  O
 i P t > t 9

 » i » i 9 .

 Therefore ,   y  s ( t ,  »  ) y  s 9 ( t ,  »  )  5  2 d  ( s ,  s 9 )  1  3 .  Since  y y  9  5  Ú 1 for distinct  y  ,  y  9  P  8 1  ,  this
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 implies that ,  for each pair ( t ,  »  ) ,  there is at most one  s  such that  y  s ( t ,  »  )  P  8 1 .  We
 denote this  s  by  s ( t ,  »  ) .

 We obtain that a map  s :  ( t ,  »  )  5  s ( t ,  »  )  P  F 7  corresponds to a set  8 1  ‘  9 1  spanning
 equiangular lines .  Let

 T s ( 8 1 )  5  h ( t ,  »  ) :  s ( t ,  »  )  5  s j .

 According to what was said above ,  the sets  T s   are disjoint for distinct  s .

 L EMMA  2 .  For any  8 1  ‘  9 1   spanning equiangular lines ,  u T s ( 8 1 ) u  <  4  for all s  P  F 7 .

 P ROOF .  Let  T s  5  T s ( 8 1 ) .  For ( t ,  »  ) ,  ( t 9 ,  »  9 )  P  T s  ,  we have  y  s ( t ,  »  ) y  s ( t 9 ,  »  9 )  5  2  1  À ,
 where

 À  5  O
 i P t > t 9

 » i » i 9 .

 Note that  À   takes odd values .  This implies that  À   should be equal either to  2 1 or  2 3 .
 The case  À  5  2 3 is possible only if  t  5  t 9  and  »  5  2 »  9 .  Then  T s  5  h ( t ,  »  ) ,  ( t ,  2 »  ) j .  In
 fact ,  if there is another ( t 0 ,  »  0 )  P  T s  ,  then  y  s ( t ,  Ú »  ) y  s ( t 0 ,  »  0 )  5  2  Ú  o i P t > t 0  » i » i 0   is equal to
 3 for one of the signs  Ú .  So ,   u T s u  5  2 in this case .

 Now ,  let  À  5  2 1 .  Then projections of vectors  y  s ( t ,  »  ) for ( t ,  »  )  P  T s   on the space
 spanned by  f i  ,  1  <  i  <  7 ,  form an odd system of vectors of norm 3 with mutual inner
 products  2 1 .  But such a system contains at most 4 vectors .  In fact ,  let  y  2

 i  5  3 ,
 y  i y  j  5  2 1 ,  1  <  i  ,  j  <  k .  Then 0  <  ( o k

 i  y  i )
 2  5  3 k  2  k ( k  2  1) ,  i . e .   k  <  4 .  Hence  u T s u  <  4 in

 this case .  h

 Since  u F 7 u  5  7 and the sets  T s   are disjoint for distinct  s ,  Lemma 2 implies that  8 1

 contains at most 4  3  7  5  28 pairs of opposite vectors .
 By Lemma 2 ,  if  T s   contains more than two pairs ( t ,  »  ) ,  then all vectors  o i P t  » i  f i  ,

 corresponding to pairs ( t ,  »  )  P  T s  ,  have mutual inner products  2 1 .
 Let  8 1  contain the maximal number 28 of vectors .  Then the projection of  8 1  on the

 7-dimensional space spanned by  f i  ,  i  P  V 7  ,  is an odd system consisting of 28 vectors

 u ( t ,  »  )  5 O
 i P t

 » i  f i

 of norm 3 with mutual inner products  Ú 1 .  The vectors  u ( t ,  »  ) represent a two-graph
 7  (3 ,  7) .  The special bound gives  n (3 ,  7)  5  28 ,  i . e .  the two graph is the unique regular
 two-graph with parameters ( m ,  d )  5  (3 ,  7) .

 The 28 vectors  u ( t ,  »  ) form a reduced odd system representing the two-graph
 7  (3 ,  7) .  Since ,  for a fixed  t  P  F 7 ,  there are 8 vectors  u ( t ,  »  ) ,  the set of all 7  3  8  5  56
 vectors  u ( t ,  »  ) , t  P  F 7  ,  »  P  h Ú 1 j t   forms an odd system  0 (3 ,  7) representing the
 two-graph  7 (3 ,  7) .

 So we obtain that the odd system  8 1  is uniquely determined by the following
 operations :
 (i)  choose a reduced odd system  8  ‘  0  (3 ,  7) ;
 (ii)  partition the 28 vectors of  8   into 7 groups ,  each containing 4 vectors ,  with mutual
 inner products  2 1 ;
 (iii)  relate each group to a vector  w s  ,  s  P  F 7 .

 We denote the result of these 3 operations by the map  f   from  0  (3 ,  7) to  8 1 ,  and
 denote the obtained odd system  8 1  by  8 1 ( f  ) .

 We can apply the map  f   to an arbitrary odd system  0   representing  7 (3 ,  7) .  Of
 course ,   0   is isomorphic to  0  (3 ,  7) .
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 Let  A  be the adjacency matrix of the graph  G ( 8 1 ( f  )) .  According to what was said
 above ,  the matrix  A  has order 28 and can be partitioned into 7  3  7 submatrices of order
 4 .  The 7 diagonal submatrices are all 0 matrices .  Any other submatrix has exactly two
 once in each row and each column .

 3 . 2 .  Odd systems  8 2  .  Let  6   be a family of odd subsets of  F 7 .  We set

 8 2 ( 6  )  5  h u ( S ) :  S  P  6 j .

 We want to find a family  6   such that  8 2 ( 6  ) is a maximal odd subsystem of  9 2  spanning
 equiangular lines .

 Let  S 0  have an even cardinality .  Then the symmetric dif ference  S  D  S 0  is odd for any
 odd  S .  Hence the vector  u 9 ( S )  : 5  u ( S  D  S 0 ) belongs to  9 2 .  In addition ,   u 9 ( S 1 ) u 9 ( S 2 )  5
 u ( S 1 ) u ( S 2 ) .  Hence the odd systems  8 ( 6  ) and  8 ( 6  D  S 0 )  : 5  h u 9 :  u  P  8 ( S ) j   are
 isomorphic .

 According to this ,  we can consider at first the case in which  6   contains the odd
 set  F 7  .

 Consider inner products of vectors  u ( S ) :

 u ( S ) u ( T  )  5  5  2  u S u  2  u T  u  1  2  u S  >  T  u .  (2)

 For  S ,  T  P  6 ,  we have to have  u ( S ) u ( T  )  5  Ú 1 .  For  S  5  F 7  ,  this condition implies
 u T  u  5  1   or 3 .

 Recall that maximal odd systems  8 1  and  8   contain 28 and 36 vectors ,  respectively .
 Hence a maximal odd system  8 2 ( 6  ) contains 8 vectors .  In other words ,  a maximal
 family  6   contains 8 odd sets .

 L EMMA  3 .  A maximal family  6   with F 7  P  6   does not contain sets of cardinality  1 .

 P ROOF .  Let  S ,  T  be distinct subsets of  F 7  of cardinality 1 .  Then  u S  >  T  u  5  0 .  Hence ,
 for  u S u  5  u T  u  5  1 ,  (2) takes the form  u ( S ) u ( T  )  5  3 .  This implies that  6   contains at most
 one 1-set .

 Suppose that  6   contains a 1-set  S 0  5  h s j .  For  u S u  5  1 and  u T  u  5  3 ,  (2) gives
 u ( S ) u ( T  )  5  2  u S  >  T  u  1  1 .  Hence  u S  >  T  u  5  0 and  s  ̧  T .  So  6   consists of  F 7  , S 0  and some
 3-sets  T  such that  s  ̧  T .  For 3-subsets  T  and  T  9 ,  (2) implies  u T  >  T  9 u  <  1 .  If
 u T  >  T  9 u  5  0 ,  then  6   contains only four sets :   F 7  , S 0  , T  and  T  9 ,  because any other 3-set
 T  0   has an intersection of cardinality 2 with  T  or  T  9 .  Hence  u T  >  T  9 u  5  1 .  But a 6-set
 contains at most four 3-subsets with mutual intersections of cardinality 1 .  Hence if  6
 contains a 1-set ,  then it contains at most 6 sets .  This implies that a maximal family  6
 does not contain a set of cardinality 1 .  h

 So ,  a maximal family  6   contains ,  besides  F 7  ,  only 3-sets .  For 3-sets  S ,  T ,  the equality
 (2) takes the form

 u ( S ) u ( T  )  5  2  u S  >  T  u  2  1 .  (3)

 A maximal set of triples of a 7-set satisfying (3) contains 7 triples and forms a Steiner
 triple system on 7 points .  All Steiner triple systems on 7 points are isomorphic .  Their
 triples are lines of the Fano plane  F 7  .  Therefore ,  any two families  6   containing  F 7  can
 be transformed each to the other by a permutations of elements of  F 7  .  As a basic family
 we take the family  6 0  containing  F 7  and 3-sets :

 S i  : 5  h s  P  F 7 :  s  {  i j ,  i  P  V 7  .  (4)
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 So
 6 0  5  h F 7 j  <  ̂  7  ,  with  ̂  7  5  h S i :  i  P  V 7 j .

 Let  b  :  V 7  5  F 7  be the bijection  i  5  t i   given as

 t 1  5  123 ,  t 2  5  145 ,  t 3  5  167 ,  t 4  5  246 ,  t 5  5  257 ,  t 6  5  347 ,  t 7  5  356 .  (5)

 Then the bijection  b   transforms  t k  ‘  V 7  into  b  ( t k )  5  S k  ‘  F 7  ,  i . e .   F 7  into  ̂  7 .  In other
 words ,   ̂  7  5  h ( t i ) :  i  P  V 7 j .

 We denote  8 2 ( 6 0 ) by  8  0
 2 .

 L EMMA  4 .  The odd system  8 1 ( f  )  <  8 2 ( 6 )  is isomorphic to a switching of an odd
 system  8 1 ( f 9 )  <  8  0

 2   for some  f 9 .

 P ROOF .  If the family  6   does not contain the set  F 7  ,  then we take an even set  S 0  such
 that the family  6  D  S 0  does contain  F 7 .

 Note that if we change  w s   into  2 w s   for  s  P  S 0  in all vectors of an odd system
 8  ‘  9  ( c 0 ) ,  we obtain an odd system isomorphic to  8 .  We show that this change of
 signs of  w s  ,  s  P  S 0  ,  transforms  8 1 ( f  )  <  8 2 ( 6  ) into a switching of  8 1 ( f 9 )  <  8 2 ( 6  D  S 0 ) .
 The transformation  w s  5  2 w s  ,  s  P  S 0  ,  generates the following transformation of vectors
 u ( S ) :  u ( S )  5  u ( S  D  S 0 ) .  Hence the odd system  8 2 ( 6  D  S 0 ) can be obtained from  8 2 ( 6  )
 by this map .  Obviously ,   8 2 ( 6  ) and  8 2 ( 6  D  S 0 ) are isomorphic .

 Now recall the definition of vectors  y  s ( t ,  »  )  5  w s  1  o i P t  » i  f i  P  8 1 ( f  ) .  The change of
 the signs of  w s   transforms  y  s ( t ,  »  ) into  2 y  s ( t ,  2 »  ) .  Now we switch  2 y  s ( t ,  2 »  ) and
 transform  T s  5  h ( t ,  »  ) j   into  T s 9  5  h ( t ,  2 »  ) j   for  s  P  S 0 .  Obviously ,  after this transforma-
 tion ,  we obtain ,  up to a switching ,  a canonical odd system  8 1 ( f 9 ) with another map  f 9 .

 Now we take a family  6   containing  F 7  and make a permutation  π   of  F 7  that
 transforms  6   into  6 0 ,  and simultaneously change correspondence of groups to  w π s   in
 (iii) of definition of  f .  The assertion of the lemma follows .  h

 3 . 3 .  There are precisely  100  non - isomorphic two - graphs from E 8  %  E 8  .  According to
 Lemma 4 ,  to find all non-isomorphic two-graphs given by  E 8  %  E 8  ,  it is suf ficient to
 consider the odd systems  8  5  8 1 ( f  )  <  8  0

 2 .  We denote the 8 vectors of  8  0
 2  as follows

 u 0  5  u ( F 7 )  5  g  1  W ,  u i  5  u ( S i )  5  g  2  W  1 O
 s { i

 w s  ,  i  P  V 7 .

 The vector  u 0  has the inner product  u 0 y  5  1 with all other  y  P  8 .  In this case ,  the
 vertex  u 0  is isolated in the graph  G ( 8 ) ,  and the graph  G 0 ( 8 )  ;  G ( 8  2  h u 0 j ) is a
 strongly regular graph with parameters (35 ,  16 ,  6 ,  8) .

 The adjacency matrix of  G 0 ( 8 ) has the form

 A  5 S  0
 N T

 N

 C
 D ,  (6)

 where  C  is the adjacency matrix of  8 1 ( f  ) of order 28 ,  and  N  is a matrix of order
 7  3  28 ,  which is obtained from the incidence 7  3  7 matrix of the Fano plane by
 complementing and by changing each 0 and 1 by a row of four 0’s and four 1’s ,
 respectively .

 We use the list of two-graphs computed by Spence [11] to prove that there are
 exactly 100 non-isomorphic two-graphs from the lattice  E 8  %  E 8  ,  i . e .  two-graphs of
 class E .

 Spence’s list contains standard forms of the adjacency matrices  A  of graphs
 complementary to  G 0 ( 8 ) in decreasing lexicographical order .  For the sake of brevity ,
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 we shall say that Spence’s list enumerates two-graphs in decreasing lexicographical
 order ,  and denote the adjacency matrix  A  by the adjacency matrix of the corresponding
 two-graph .

 Spence’s list has the following properties :
 (i)  the adjacencies matrices of the first 100 two-graphs have equal the first 11 rows ,  and
 their complements are of the form (6) ;
 (ii)  the adjacency matrix of the two-graph number 101 has the seventh row distinct
 from the seventh rows of the adjacencies matrices of the first 100 two-graphs ;
 (iii)  if there is a non-enumerated two-graph ,  then it is less than the two-graph number
 225 .

 Note that (using the matrix  A ) it is not dif ficult to construct vectors of the odd system
 8   representing any two-graph from the first 100 ones .

 P ROPOSITION  2 .  There are exactly  100  non - isomorphic regular two - graphs on  36
 points from the lattice E 8  %  E 8  , i .e . the class  E  contains exactly  100  two - graphs .

 P ROOF .  Recall that each two-graph of the class E has a canonical representation by
 the odd system  8  5  8 1 ( f  )  <  8  0

 2 .  This representation provides the strongly regular
 graph  G 0 ( 8 ) with the adjacency matrix of the form (6) .  The first 7 rows of the matrix
 correspond to the vectors of the odd system  8  0

 2  2  h u 0 j .
 We use Spence’s list [11] .  It is not dif ficult to construct an odd system of the type

 8 1 ( f  )  <  8  0
 2   using the adjacency matrix of any of the first 100 two-graphs of Spence’s

 list .  Hence ,  the first 100 two-graphs of Spence’s list belong to class E .
 Now we show that there is no other two-graph in class E .  Suppose ,  to the contrary ,

 that there is a two-graph of class E which is not in Spence’s list .  The corresponding
 strongly regular graph has an adjacency matrix  A 0  of the form (6) .  By the property (i)
 of Spence’s list ,  the first 7 rows of the matrices of the first 100 two-graphs of Spence’s
 list coincide with the first 7 rows of the complement of  A 0 .  The property (ii) of
 Spence’s list implies that the adjacency matrix of the 101st is lexicographically less than
 the complement of the matrix  A 0  .  However ,  this contradicts to the property (iii) of
 Spence’s list .  h

 3 . 4 .  Odd systems representing the two - graph  7 (3 ,  7) .  The projection of the vector  u ( S )
 on the space spanned by  w s  ,  s  P  F 7  ,  is the vector  w ( S )  : 5  o s P S  w s  2  W  5  1 – 2  o s P S  w s  2
 1 – 2  o s  ̧  S  w s .  The norm of the vector  4 2  w ( S ) equals 7 .  Moreover ,  for  u ( S )  P  8 2  ,  all of
 the corresponding 8 vectors  4 2  w ( S ) have mutual inner products  2 1 and span the
 7-dimensional space with the basis ( w s  ,  s  P  F 7 ) .  Hence these vectors represent a
 two-graph  7  (7 ,  7) .  Since ,  for ( m ,  d )  5  (7 ,  7) ,  the special bound gives  n (7 ,  7)  5  8 ,  the
 two-graph  7  (7 ,  7) is the unique regular two-graph with these parameters .

 Recall that the projection of  8 1 ( f  ) on the 7-dimensional space with the basis
 (  f i  ,  i  P  V 7 )   represents the unique two-graph  7  (3 ,  7) .  Hence one can say that every
 two-graph  7  (5 ,  15) obtained from the lattice  E 8  %  E 8  is a special gluing by the map  f
 of the unique two-graphs  7  (3 ,  7) and  7  (7 ,  7) .

 Let  »  ,  »  9  and  »  0   take values of  Ú 1 .  We call the triple ( »  ,  »  9 ,  »  0 )  e y  en  if the product
 » »  9 »  0  5  1 .  Otherwise ,  the triple is called  odd .  There are 4 even triples and 4 odd triples .
 We set  »  0  5  (1 ,  1 ,  1) ,  »  1  5  (1 ,  2 1 ,  2 1) ,  »  2  5  ( 2 1 ,  1 ,  2 1) and  »  3  5  ( 2 1 ,  2 1 ,  1) .  Let
 0  <  k  <  3 .  Then  »  k   is an even  »  -triple ,  and  2 »  k   is an odd  »  -triple .  Additionally ,  if we
 change the sign of one of the units in  »  k ,  we obtain an odd  »  -triple  2 »  l   for some  l .  For
 two  »  -triples  »   and  »  9  with the same support  t ,  let  » »  9  5  o i P t  » i » i 9 .  Hence  »   and  »  9  are of
 the same parity if f  » »  9  5  2 1 .

 Below ,  we use sums of the type  u ( t ,  »  k )  5  o i P t  »  k
 i  f i  .  In such a sum ,  we consider  t  P  F 7  
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 as an ordered triple  ijl  such that 1  <  i  ,  j  ,  l  <  7 ,  and the orders of  »  k   and  t  agree .  For
 example ,   »  2  5  ( 2 1 ,  1 ,  2 1) in  o i P 237  »  2

 i  f i   means that  »  2
 2  5  2 1 ,  »  2

 3  5  1 and  »  2
 7  5  2 1 .

 Consider the odd subsystem  0 1  ‘  0 (3 ,  7) consisting of 28 vectors  u ( t ,  »  ) ,  t  P  F 7  ,
 with all even  » .  Recall that there are 4 vectors  u ( t ,  »  k ) ,  0  <  k  <  3 ,  with even  »  k   for each
 t  P  F 7  .

 Consider the graph  G ( 0  1 ) with 28 vertices  u ( t ,  »  ) .  Recall that vertices  u ,  u 9  P  0  1

 are adjacent in  G ( 0  1 ) if f  uu 9  5  2 1 .  The 4 vertices  u ( t ,  »  k ) ,  0  <  k  <  3 ,  for a fixed  t  form
 a clique of the graph  G ( 0  1 ) .  Recall that the triangular graph  T  (8) is a graph with  P 8  as
 the set of vertices .  Here and below ,   P 8  is the set of all pairs of points of a 8-set .  Two
 vertices of  T  (8) are adjacent if f the corresponding pairs intersect .

 P ROPOSITION  3 .  The graph G ( 0 1 )  is the complement of the triangular graph T  (8) .

 P ROOF .  It is easy to verify that  G ( 0  1 ) is a strongly regular graph with the
 parameters (28 ,  15 ,  6 ,  10) .  These parameters have only 4 strongly regular graphs ;
 namely ,  the complements of the triangular graph  T  (8) and the 3 Chang graphs .

 We show that  G ( 0  1 )  5  T  (8) .  Note that if we change the signs of some  f i   in all
 vectors  u ( t ,  »  k ) ,  the adjacencies of  G ( 0  1 ) do not change .  We can transform any vertex
 u ( t ,  »  k ) into  u ( t ,  »  0 ) by changing the signs of some  f i ’s .  Hence ,  w . l . o . g .,  we can consider
 the vertex  u ( t ,  »  0 )  5  o i P t  f i   as a general point .  This vertex is adjacent in  G ( 0  1 ) to the
 6-clique composed by the vertices  u ( s ,  »  0 ) , s  P  F 7  2  h t j .  However ,  every vertex is
 adjacent to a 6-clique only in  T  (8) ,  but not in Chang graphs (see [1]) .  h

 Recall that the vertices of  T  (8) are naturally labeled by pairs  ij  P  P 8  .  Using
 Proposition 3 we can label vectors of the odd system  0 1  by pairs  ij  P  P 8 .  Hence we
 denote these vectors of norm 3 by  u i j .  Since  G ( 0 1 )  5  T  (8) ,  we have

 u i j u k l  5 H 2 1
 1

 if  h ij j  >  h kl j  5  [ ,
 if  u h ij j  >  h kl j u  5  1 .

 3 . 5 .  Root systems of two - graphs from E 8  %  E 8  .  Recall that we denote the class of all
 two-graphs from  E 8  %  E 8  as class E .  Among the 100 two-graphs of class E there is a
 unique two-graph  7 0 (5 ,  15) with the empty root system .  This is the two-graph number
 1 in Spence’s list .

 Denote by  0 0  the odd system representing  7 0 (5 ,  15) .  Each odd system representing
 a two-graph of the class E is a perturbation of the odd system  0 0  .  Moreover ,  an
 inspection of Spence’s list shows that the closure cl  8   of every odd system  8
 representing a two-graph of class E contains  0 0  as a subsystem .  This fact allows us to
 characterize the root systems which occur as root systems  R ( 8 ) of odd systems  8
 representing two-graphs of the class E .

 It is shown in [7] that  0 0  is closed ,  since it can be obtained by our construction from
 the Barnes – Wall lattice  L 1 6 .  Namely ,   0 0  5  9  ( c ) for every vector  c  P  4 2  L 1 6  of norm
 12 .  Since the odd system  0 0  has no pair of vectors with the inner product  Ú 3 ,  the root
 system of  0 0  is empty ,  i . e .   R ( 0 0 )  5  [ .

 The odd system  0 0  5  8 1 ( f  0 )  <  8  0
 2 ,  where  8 1 ( f  0 ) ,  consists of vectors  y  t ( t ,  »  k ) , t  P  F 7  ,

 0  <  k  <  3 .  For these vectors ,  we introduce the special notation  u t ( »  k ) .  Therefore

 u t ( »  k )  5  w t  1 O
 i P t

 »  k
 i  f i  ,  t  P  F 7  ,  0  <  k  <  3 .  (7)

 We denote minimal by inclusion dependencies of  0 0  as  circuits .  A circuit of  0 0

 consists of 6 vectors such that a sum of these vectors or its opposites is equal to 0 .  In
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 the graph  G ( 0 0 ) ,  a circuit generates a switching of a maximal clique (of size 6) .  In [8] ,
 the graph  G ( 0 0 ) is considered in detail .

 Any 5 vectors of a circuit compose a  broken circuit .  Obviously ,  the sum of 5 vectors
 of a broken circuit is the sixth vector with an opposite sign .  In other words ,  a broken
 circuit generates a vector of the lattice  L 1 ( 0 0 ) .

 An odd system  8   representing  7  (5 ,  15) is obtained from  0 0  by a substitution of
 some vectors .  In this case ,  if a vector  y    of a circuit is substituted by  y  9 ,  then this circuit
 ceases to be a dependency ,  and it becomes a broken circuit .  However ,  this broken
 circuit generates  y  ,  i . e .   y    belongs to cl  8 .  Additionally  y y  9  5  Ú 3 ,  i . e .  if  y y  9  5  3 ,  the
 vector  y  2  y  9  is a root of  R ( 8 ) .

 We use circuits of  0 0  of the following form :

 h u a  ,  u b  ,  u s ( »  ( s )) :  s  P  C i j ,

 where  C i  5  S #  i   is the 4-set of triples  s  P  F 7  not containing  i  P  V 7  ,  and the pair  a ,  b  P  V 8  is
 such that either  a  5  0 , b  5  i  or the triple  abi  belongs to  F 7  ,  i . e .  it is one of the triples of
 F 7   containing  i .  Each point  j  P  V 7  2  h i j   belongs to exactly two  s ,  s 9  P  C i .  Hence the
 »  -triples  »  ( s ) and  »  ( s 9 ) are such that  » j ( s )  5  Ú » j ( s 9 ) ,  where the minus sign corresponds
 to all  j  in the case ( a ,  b )  5  (0 ,  i ) ,  and to  j  5  a ,  b  in the cases ( a ,  b )  ?  (0 ,  i ) ,  and the plus
 sign corresponds to the other cases .  The corresponding dependencies are

 u i  2  u 0  1  O
 s P C i

 u s ( »  ( s ))  5  0  and  u a  1  O
 s { a ,  s  / {  b

 u s ( »  ( s ))  5  u b  1  O
 s { b ,  s  / {  a

 u s ( »  ( s )) .  (8)

 Broken circuits generate roots of  R ( 8 ) of the following types :

 w s  Ú  w s 9  ,  s ,  s 9  P  F 7  ,  2 f i  ,  i  P  V 7  ,  O
 i P s #

 s i  f i  ,  s  P  h Ú j s #  ,  s  P  F 7  ,

 where  s #  5  V 7  2  s .  These roots are just the roots of the odd system  9  ( c 0 ) .
 For  t  P  F 7  we consider the 4-set  V 4  5  V 7  2  t  in detail .  Since  F 7  is a Steiner triple

 system ,  each pair  i ,  k  of points of  V 7  belongs to exactly one triple of  F 7 .  In other words ,
 the unordered pair  ik  determines uniquely a triple of  F 7  .  Since there are 6 distinct pairs
 of points in  V 4  ,  we obtain all other 6 triples of  F 7  distinct from  t .  These 6 triples are
 partitioned into 3 pairs of triples having the same intersection point with  t .  For  m  P  t ,
 let  p ( m ) and  q ( m ) be the pair of triples with  p ( m )  >  t  5  q ( m )  >  t  5  h m j .  Since
 p ( m )  >  q ( m )  5  h m j ,  the triples  p ( m ) and  q ( m ) are determined by complementary pairs
 of points of the 4-set  V 4  .  In other words ,  each point  m  P  t  uniquely determines both a
 partition of  V 4  into complementary pairs  ij  and  kl  and the corresponding triples  p ( m )
 and  q ( m ) .

 We call a quadruple  s  P  h Ú 1 j V 4   e y  en  if  p j P V 4  s j  5  1 .  There are 4 pairs of opposite
 even quadruples .  We set  t #  5  V 4  5  V 7  2  t ,  and define the following root systems :

 R ( t )  5 H O
 i P t #

 s i  f i :  s  P  h Ú 1 j t #  is  even J  <  h Ú ( w p ( m )  2  w q ( m ) ) :  m  P  t j ,  (9)

 R D ( t )  5 H O
 i P t #

 s i  f i :  s  P  h Ú 1 j t # J  <  h Ú ( w p ( m )  Ú  w q ( m ) ) :  m  P  t j ,  (10)

 R 0  5  h Ú 2 f i :  i  P  V 7 j .  (11)

 Recall that  S a  5  h s  P  F 7 :  s  {  a j   and  C a  5  F 7  2  S a .

 L EMMA  5 .  Let  8   be an odd system representing a two - graph of class  E .   Let
 cl  8  “  0 0 . Then :
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 (i)  if one of the roots of R ( t )  belongs to R ( 8 ) , then R ( t )  ‘  R ( 8 ) ;
 (ii)  if at least one of the roots from each R ( t )  and R ( t 9 )  belongs to R ( 8 ) , then
 ! s P S a

 R ( s )  ‘  R ( 8 ) , where  h a j  5  t  >  t 9 ;
 (iii)  if at least one of the roots from each R ( t ) , R ( t 9 )  and R ( t 0 )  with t  >  t 9  >  t 0  5  [
 belongs to R ( 8 ) , then  ! s P F 7

 R ( s )  ‘  R ( 8 ) .

 P ROOF .  (i)  For  m  P  t ,  let  »  k   and  »  l   with the supports  p ( m ) and  q ( m ) ,  respectively ,
 be such that  »  k

 m  5  »  l
 m .  Then we have the following identity :

 u p ( m ) ( »  k )  2  u q ( m ) ( »  l )  5  w p ( m )  2  w q ( m )  1 O
 i P t #

 s i  f i  ,

 where  s i  5  »  k
 i    for  i  P  p ( m )  2  h m j   and  s i  5  2 »  l

 i   for  i  P  q ( m )  2  h m j .  Since  »  k   and  »  l   are
 even ,  we obtain that  s   is even too .

 By the definition of the lattice  L 0 ( 8 ) ,  the sum of any two vectors of  8   belongs to
 L 0 ( 8 ) .  Since any root of  R ( 8 ) is a vector of  L 0 ( 8 ) of norm 4 ,  the assertion (i) is
 implied by the above identity .

 (ii) By (i) ,   R ( t )  <  R ( t 9 )  ‘  R ( 8 ) .  Let  t 0   be the third triple of  S a .  Note that  t #  D  t #  9  5  t #  0 ,
 where  D   is the symmetric dif ference .  For any  s 0   with the support  t #  0 ,  there are even  s
 and  s 9  with the supports  t #   and  t #  9 ,  respectively ,  such that

 O
 i P t #  0

 s i 0 f i  5  O
 i P t #

 s i  f i  1  O
 i P t #  9

 s i 9 f i .

 Hence the root  o i P t #  0  s i 0 f i   of  R ( t 0 ) belongs to  R ( 8 ) .  Now (i) implies (ii) .
 Similarly ,  (iii) is implied by (i) and (ii) .  h

 Note that ,  for  k  ?  0 , u s ( »  0 )  2  u s ( »  k )  5  2 f i  1  2 f j  P  L 0 ( 8 ) for some  i ,  j  P  s .  Hence one
 can prove the following lemma in a similar manner to the proof of Lemma 5 .

 L EMMA  6 .  Let  8   be an odd system representing a two - graph of the class  E .   Let
 cl  8  “  0 0 . Then  :
 (i)  if one of the roots of R 0   belongs to R ( 8 ) , then R 0  ‘  R ( 8 ) ;
 (ii)  if at least one of the roots from each R 0   and R ( t )  belongs to R ( 8 ) , then
 R 0  <  R D ( t )  ‘  R ( 8 ) ;
 (iii)  if at least one of the roots from each R 0  ,  R ( t )  and R ( t 9 )  with t  >  t 9  5  h a j   belongs to
 R ( 8 ) , then R 0  ! s P S a

 R D ( s )  ‘  R ( 8 ) ;
 (iv)  if at least one of the roots from each R 0  ,  R ( t ) ,  R ( t 9 )  and R ( t 0 )  with t  >  t 9  >  t 0  5  [
 belong to R ( 8 ) , then R 0  ! s P F 7

 R D ( s )  ‘  R ( 8 ) .

 We have the following congruences :

 R ( t )  .  A 7
 1  !

 t P S a

 R ( t )  .  A 2 A 3
 3 ,  !

 t P F 7

 R ( t )  .  A 6 A 7  ,

 R 0  .  A 7
 1 , R 0  <  R D ( t )  .  A 9

 1 D 4  , R 0  !

 t P S a

 R D ( t )  .  A 1 A 3 D 4 D 6  , R 0  !

 t P F 7

 R D ( t )  .  D 7 E 7  .

 Lemmas 5 and 6 imply the following assertion (cf .  Proposition 10 of [8]) .

 P ROPOSITION  4 .  Any two - graph of class  E  has one of the following root systems :
 (1)  [ ;
 (2)  A 7

 1 ;
 (3)  A 2 A 3

 3 ;
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 (4)  A 6 A 7 ;
 (5)  A 9

 1 D 4 ;
 (6)  A 1 A 3 D 4 D 6 ;
 (7)  D 7 E 7  .

 Note that cl  8   is uniquely determined by  0 0  and  R ( 8 ) .  Hence ,  if  R ( 8 )  5  R ( 8 9 ) ,
 then cl  8  5  cl  8 9 ,  and if  R ( 8 )  .  R ( 8 9 ) ,  then cl  8   and cl  8 9  are isomorphic .

 4 .  T WO-GRAPHS FROM   E 8  %  E 8  R ELATED TO  S TEINER  T RIPLE  S YSTEMS

 We call an odd system  8 1 ( f  )  positi y  e  if all  »   in  y  s ( t ,  »  ) are even .  In other words ,  we
 choose the reduced odd system  0  1  from  0  (3 ,  7) on the step (i) of the map  f .

 Recall that ,  by Proposition 3 ,  there is a bijection between vectors  u ( t ,  »  )  P  0  1  and
 pairs  ij  P  P 8  .  The vector  u ( t ,  »  ) related to the pair  ij  is denoted by  u i j  .

 Therefore we obtain that a positive odd system  8 1 ( f  ) contains the vectors of the
 form  y  s ( ij )  5  w s  1  u i j  , s  P  F 7  , ij  P  P 8  .  Let  b s  5  h ij :  y  s ( ij )  P  8 1 ( f  ) j .  Since  y  s ( ij ) y  s ( kl )  5
 w 2

 s  1  u i j u k l  5  2  1  u i j u k l   should be equal to 1 or  2 1 ,  we have to have  h ij j  >  h kl j  5  [ .
 Hence every set  b s   contains 4 disjoint pairs .  Therefore ,  we obtain that every positive
 odd system  8 1 ( f  ) is determined by a partition  B  of  P 8  into 7 blocks of disjoint pairs
 and by a bijection  π   between the 7-set  F 7  and blocks of the partition  B .  We denote it by
 8 1

 1  ( π  ,  B ) .
 We call the odd system  8 1 ( π  ,  B )  5  8 1

 1  ( π  ,  B )  <  8 0
 2   positi y  e  too .  An odd system

 having  y  s ( t ,  »  ) with odd  »   is called  non - positi y  e .
 Recall that a Steiner triple system (STS for brevity) on a set  V  is a family  T  of triples

 of points of  V  such that any pair of points of  V  is contained exactly in one triple of  T ,
 i . e .  STS  5  S (2 ,  3 ,  y  )  5  2-( y  ,  3 ,  1) for some  y  .  Of course ,  any two triples of  T  have at
 most one common point .

 There is a unique STS  F 7  on 7 points .  There are 23 non-isomorphic STS on 15 points
 that have  F 7  as a subsystem .  The subsystem  F 7  is called a  head  of an STS containing it .
 We show that a positive odd system represents a two-graph related to an STS with a
 head .

 We relate to each vector of a positive odd system  8 1 ( π  ,  B ) a triple  t  of an STS ,  and
 denote this vector by  y  ( t ) .  We show that the obtained vectors satisfy

 y  ( t ) y  ( t 9 )  5  2  u t  >  t 9 u  2  1 .  (12)

 We set  y  0  5  u 0  5  g  1  W .  As a ground set of this STS ,  we take the union  F 7  <  V 8  .  Here
 V 8  is a 8-set the pairs of which comprise  P 8  .  We set

 y  ( S )  5  u ( S )  for  a  triple  S  ‘  F 7  ,  S  P  ̂  7  ,

 y  ( sij )  5  y  s ( ij )  5  w s  1  u i j  ,  s  P  F 7  ,  ij  P  P 8 .

 By the construction ,  the set of 35 triples  S  P  ̂  7  ,  and  sij , s  P  F 7  ,  ij  P  P 8  ,  forms an STS
 with the head  ̂  7 .  It is easy to verify ,  in particular using (3) ,  that  y  ( S ) and  y  ( sij ) satisfy
 (12) .  Conversely ,  using the list of STS’s of [2] ,  we see that above formulas for  y  ( S ) and
 y  ( sij ) ,  where  S  and  sij  are triples of an STS with a head ,  provide an odd system
 8 1 ( π  ,  B ) .  Thus we obtain the following :

 P ROPOSITION  5 .  E y  ery positi y  e odd system  8 1 ( π  ,  B )  from E 8  %  E 8   represents a
 two - graph related to an STS on  15  points with a head , and e y  ery STS with a head is
 represented by a positi y  e odd system  8 1 ( π  ,  B ) .
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 However ,  STS’s are represented not only by positive odd systems .  Consider a
 reduced non-positive odd system  8 1 ( f  ) of the following type .  Let  S  ‘  F 7  .  We choose ,
 in step (i) of map  f  ,  vectors  u ( t ,  »  )  P  0 (3 ,  7) with odd  »   if  t  P  S  and even  »   if  t  ̧  S .

 We denote the odd system  8 1 ( f  ) for this map  f   by  8 1 ( S ) .  The odd system  8 1 ( S )
 consists of vectors  y  s ( t ,  »  )  5  w s  1  o i P t  » i  f i  ,  where  »   is either odd or even according to
 whether  t  belongs or does not belong to  S .  We denote by  8 ( S ) the union of  8 1 ( S ) with
 8  0

 2 .
 We define a transformation of  S .  Recall that there are 3 triples  s  P  F 7  containing a

 given point  i .  For each  i ,  1  <  i  <  7 ,  consider triples  s  P  S  containing  i .  If there are 3 such
 triples ,  then delete them from  S .  If there are two such triples ,  then change them by the
 third triple containing  i .  If there is one or no triple containing  i ,  then  S  is not
 transformed .  Obviously ,  after such transformations for all  i ,  we obtain  S  with either
 one or none of the triples .  We call  S positi y  e  if it is transformed into an empty set ,  and
 negati y  e  otherwise .

 P ROPOSITION  6 .  Let S  ‘  F 7   be a set of triples s  P  F 7 . Then  8 ( S )  is isomorphic to  8 ( [ )
 or  8 ( h s j )  according to within S is positi y  e or negati y  e , respecti y  ely .

 P ROOF .  Note that if we replace in  8 1 ( S ) vectors  f i   for some  i  by  2 f i  ,  we obtain an
 isomorphic odd system .  This change of the sign of  f i   is equivalent to the change of the
 sign before  »  k

 i    for all  k ,  0  <  k  <  3 .  In other words ,  the change from  f i   to  2 f i   is equivalent
 to replacing the even  »  -triple in  u s ( »  k ) with  s  {  i  by an odd  »  -triple (and conversely) .

 Therefore ,  if the set  S  ‘  F 7  contains 3 triples containing the point  i ,  we can eliminate
 these triples from  S ,  simultaneously transforming  f i   into  2 f i .  If the set  S  contains two
 triples with  i ,  we can change the two triples by the third triple containing  i  and
 transforming the  f i   by  2 f i  .  Since we do not change the vectors  w s  ,  the assertion of the
 proposition follows .  h

 Now we consider odd systems of the following form .  In step (ii) ,  we set 4 vectors
 u ( t ,  »  k ) ,  0  <  k  <  3 ,  with the same  t  in the same group .  Hence each group is naturally
 labeled by an element  t  P  F 7  .  In step (iii) ,  we relate the group with the label  t  to the
 vector  w t .  We denote the obtained odd system by  8  0

 1 ( S ) .  The odd system  8  0
 1 ( S )

 consists of the vectors  u s ( »  ) of (7) .  We denote by  8 0 ( S ) the union of  8 0
 1 ( S ) with  8 0

 2 .
 We have

 8 0 ( S )  5  h u i  :  0  <  i  <  7 ;  u t ( 2 »  k ) ,  0  <  k  <  3 ,  t  P  S ;  u t ( »  k ) ,  0  <  k  <  3 ,  t  ̧  S ; j .

 8 0 ( S ) represents a regular two-graph  7  (5 ,  15) .  Denote this two-graph by  7  ( S ) .
 According to Proposition 6 ,  two-graphs  7  ( S ) are only of the following two types :

 7  ( [ ) and  7 ( h s j ) ,  s  P  F 7 .
 Clearly ,   8 0 ( [ )  5  0 0  is positive ,  and  7  ( [ )  5  7 0 (5 ,  15) relates to the STS no .  1 .
 Obviously ,  there is a permutation of the set  V 7  that transforms any triple  s  P  F 7  into

 any other  s 9  P  F 7  .  This permutation generates an isomorphism of odd systems  8  0 ( h s j )
 and  8 0 ( h s 9 j ) and two-graphs  7  ( h s j ) and  7  ( h s 9 j ) .  Denote by  7 1 (5 ,  15) the two-graph
 represented by any of these isomorphic odd systems .  It is shown in [7] that  7 1 (5 ,  15)
 relates to the Steiner triple system having number 2 in the extended version of [2] .

 It is shown in [7] that 23  STS’s with a head are partitioned into 4 families having the
 first four root systems of Proposition 4 .

 The family with  R ( T  )  5  [   contains only one STS having the number 1 in the
 extended version of [2] .  Taylor [12] proves that there is a unique two-graph  7 0 (5 ,  15)
 with a doubly transitive automorphism group .  The full automorphism group of
 7 0 (5 ,  15) is  Sp (6 ,  2) .  It is shown in [2] that the two-graph  7 0 (5 ,  15) relates to the
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 unique Steiner triple system number 1 ,  triples of which are lines of a 3-dimensional
 projective space  PG (3 ,  2) over the field  GF 2 .

 The family with  R ( T  )  5  A 7
 1  also contains one STS ,  the STS no .  2 .  The corresponding

 two-graph is  7 1 (5 ,  15) .
 The family with  R ( T  )  5  A 2 A 3

 3  contains 5  STS’s with numbers 3 – 7 .
 The family with  R ( T  )  5  A 6 A 7  contains 16  STS’s with numbers 8 – 22 and 61 .
 I must take the opportunity to correct a misprint in Table 1 of [7] ,  where ,  in row 4 ,

 number 61 should be given instead of number 67 .  Row 5 of Table 1 in [7] should be
 corrected accordingly .

 5 .  R OOT  S YSTEMS   OF  T WO -G RAPHS   ON  36 P OINTS

 Recall that the second even unimodular lattice  D 1
 16  provides two families of

 two-graphs ;  namely ,  the class STS consisting of two-graphs related to Steiner triple
 systems ,  and the class D of 100 two-graphs related to 2-(10 ,  4 ,  2) designs (see [8]) .  The
 two-graphs of the class STS have the following root systems :   [ ,   A 7

 1 ,  A 2 A 3
 3 , A 6 A 7  and

 A 1 4  .  The two-graphs related to 2-(10 ,  4 ,  2) designs have the following root systems :   [ ,
 A 7

 1 , A 2 A 3
 3 , A 9

 1 D 4  , A 1 A 3 D 4 D 6  and  A 5 D 1 0 .
 An inspection of Spence’s list of 227 two-graphs shows that two-graphs from

 E 8  %  E 8  ,  i . e .  the two-graphs of class E ,  having root systems distinct from  A 6 A 7  and
 D 7 E 7  ,  coincide with two-graphs of class D .

 Recall that we denote the class of two-graphs from Latin squares by LSQ ,  and that
 the two-graphs of the class LSQ have root systems  A 9

 1  and  A 3
 5  (see [8]) .

 The partitions of all known regular two-graphs on 36 points into classes with the
 same root system is shown in Table 1 .  The column ‘cardinality’ in Table 1 shows the
 number of two-graphs having the corresponding root system .

 The 100 two-graphs of class D are marked in Spence’s list by letters  a ,   b  and  c .
 The 80 two-graphs of class STS are marked in Spence’s list by numbers in

 parentheses .
 The 100 two-graphs of class E have numbers from 1 to 100 in Spence’s list .
 The two-graphs with the root systems  [   and  A 7

 1  have the numbers 1 and 2 in
 Spence’s list .  The next 4 two-graphs with the numbers 3 – 6 in Spence’s list have the root
 system  A 9

 1 D 4 .  The unique two-graph with the root system  A 9
 1  (of class LSQ) has the

 number 184 (89) .  (The number 89 in parentheses is the number of the two-graph in the
 list of two-graphs from Steiner triple systems and Latin squares in the extended version
 of [2]) .

 T ABLE  1

 Case
 Root

 system  Cardinality
 Belong(s) to

 the class

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 [

 A 7
 1

 A 2 A 3
 3

 A 6 A 7
 A 1 4

 A 9
 1 D 4

 A 1 A 3 D 4 D 6
 D 7 E 7
 A 5 D 1 0

 A 9
 1

 A 3
 5

 1
 1
 5

 16
 57
 4

 30
 43
 59
 1

 10

 STS ,  E ,  D
 STS ,  E ,  D
 STS ,  E ,  D

 STS ,  E
 STS
 E ,  D
 E ,  D

 E
 D

 LSQ
 LSQ



 Regular two - graphs from E 8  %  E 8  407

 It seems to me that all regular two-graphs on 36 points are known .  The
 lexicographical order of two-graphs in Spence’s list shows that all two-graphs of classes
 E and D are known .  The list contains all two-graphs related to Steiner triple systems
 and Latin squares .  It is very unlikely that there is a new class of regular two-graphs on
 36 points distinct from the classes STS ,  LSQ ,  E and D .
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