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In a recent study of Robin capacity [5], a Schwarz--Christoffel mapping
was constructed from the exterior of the unit disk onto the exterior of a
rectangle, preserving infinity. The mapping was indexed by a parameter k
(0 <k <1), and the side-lengths of the rectangle were found to be

1 1 , ,
2J=E[E—(1—k)K], L=i(E —kK'),
where
k =
(k)= f /l—kzsm
and

=E(k)_f J1—k*sin? t dr

are the complete elliptic integrals of first and second kinds, respectively
(see [4]). In standard notation, K'=K'(k)=K(k') and E'=E'(k)= E(k'),
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where k’=\/ —k? is the complementary modulus. It is easily shown
(details below) that 2kJ increases from 0 to 1 and 2kL decreases from 1 to
0 as k increases from 0 to 1. Thus the ratio m=2J/L, called the exterior
modulus of the rectangle, increases from 0 to co. The exterior modulus is
a conformal invariant of a quadrilateral with respect to mappings of the
exterior that preserve infinity.

The Robin modulus p of the rectangle was defined in [5] as the Robin
capacity of the two sides of length 2J divided by the Robin capacity of the
two sides of length L. Again it is a conformal invariant of a quadrilateral.
For the given rectangle it was found to be u=2 \/1;/(1 — k). It was shown
in [5] that

c;m(Q) < u(Q)* < c;m(Q) (1)

for arbitrary quadrilaterals Q, where ¢, and ¢, are some positive absolute
constants. In the present note the best values of the constants are found.
The differentiation formulas are

dK dE
2 —=F—k"’K; —=F—K
kk A E ; kdk E—K
Easy calculations give
(1+5)-L k)= E>0
) 2k B

and

d
1+k)—(2kL)=E' —K'
(1+ )dk( ) <0,

showing that the exterior modulus m =2J/L increases with k. However,
the Robin modulus u=2 \/E/(l — k) also increases, so the behavior of the
ratio

w2k E'—kK'
m (1—kPE—(1—-k)K

is unclear.

THEOREM. The ratio R(k) decreases from 4/n to n/4 as k increases from
0 to 1. Hence the best constants in (1) are ¢, =n/4 and c,=4/7.

For the proof it is advantageous to make the change of parameter
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k- (1 —k)/(1+ k). Known transformation formulas (see [2, p. 319] or [3,
pp. 12, 16]) lead to the elegant expression

1—k\ k? E-KkK

*h)=R{— =g —

r)=R ()= F o

The relation R*(k')=1/R*(k) reflects the geometrically obvious sym-
metries of the moduli m and u under interchange of the sides of the
rectangle. In particular, R*( 1/\/2_)=1 or R(3—2\/§)= 1, a consequence
of the fact that the rectangle is a square when the original parameter & is
3~2\/§. In order to show that R*(k) increases from n/4 to 4/x, it will
suffice to prove the following lemma.

LEMMA. The quantity G(k) =k 2(E—k'*K) increases from n/4 to 1 as k
increases from 0 to 1.

This result appears in [1], but we include the simple proof here. It
follows directly from the definitions of K and E that

/2 cos? ¢
G(k)=f0 NI

which is clearly increasing from G(0)==n/4 to G(1)=1.
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