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SUMMARY

In pluripotent cells, OCT4 associates with SOX2 to
maintain pluripotency or with SOX17 to induce prim-
itive endoderm commitment. The OCT4-SOX2 and
OCT4-SOX17 combinations bind mutually exclusive
to two distinct composite DNA elements, known as
the ‘‘canonical’’ and ‘‘compressed’’ motifs, respec-
tively. The structural basis for theOCT4-SOX17coop-
erativity is unknown. Whereas SOX17 has been engi-
neered to replace SOX2 in the pluripotency circuitry,
all generated SOX2 mutants have failed to act like
SOX17. From molecular simulations, we revealed
theOCT4-SOX17 interaction interface and elucidated
the SOX-dependent motif preference of OCT4. More-
over, we designed a SOX2 mutant that we predicted
and confirmed experimentally to bind cooperatively
with OCT4 to the compressed motif. Ultimately, we
found a strong correlation between the experimental
and calculated relative cooperative-binding free en-
ergies of 12 OCT4-SOX-DNA complexes. Therefore,
we validated the OCT4-SOX interfaces and demon-
strated that in silico design of DNA-binding coopera-
tivity is suitable for altering transcriptional circuitries.

INTRODUCTION

In eukaryotes, a limited number of transcription factors (Vaquer-

izas et al., 2009) achieve a fine spatio-temporal control of gene

expression through a combinatorial approach in which only

certain combinations will regulate specific sets of target genes

(Biggin, 2011; Reményi et al., 2004). The biophysical basis for

the recruitment of defined groups of transcription factors to spe-

cific locations in the genome is not completely understood.
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Several families of transcription factors are known to control

fundamental biological processes through direct interaction

between their members (Reményi et al., 2004; Sarkar and

Hochedlinger, 2013). For example, POU and SOX proteins

coregulate gene transcription at different stages of develop-

ment (Kondoh and Kamachi, 2010; Tantin, 2013). POU proteins

have a bipartite DNA-binding domain with two helix-turn-

helix subdomains, a POU-specific domain (POUS), and a home-

odomain (POUHD), connected by a variable linker region (Phillips

and Luisi, 2000). The globular regions of the POUS and POUHD

bind to the major groove of the DNA, while the N-terminal tail

of POUHD binds to the minor groove. The SOX proteins have a

‘‘high-mobility group’’ (HMG) domain, which strongly bends the

DNA by binding to the minor groove (Werner et al., 1995).

From these two families, OCT4 (POU5F1) (Jerabek et al.,

2014) and SOX2 lie in the core of the transcriptional network

that controls stem cell pluripotency (Boyer et al., 2005) and

are key to induce pluripotency in somatic cells (Takahashi

and Yamanaka, 2006). OCT4 binds to an octamer site with

the consensus sequence ATGC(A/T)AAT, whereas SOX2 rec-

ognizes a sequence related to C(T/A)TTGTT. Predominantly,

they bind cooperatively to a composite motif formed by the

juxtaposition of their individual binding sites (Chen et al.,

2008), known as the ‘‘canonical’’ motif. This motif is found in

the regulatory regions of key pluripotency genes, including

POU5F1, NANOG, UTF1, and others (Aksoy et al., 2013a;

Chen et al., 2008; Nishimoto et al., 1999; Rodda et al., 2005).

Although OCT4 and SOX2 are able to bind to these sites sepa-

rately, in many instances only their association activates tran-

scription efficiently (Ambrosetti et al., 2000; Nishimoto et al.,

1999). The direct interaction between OCT4 and SOX2 is

DNA dependent (Lam et al., 2012) and involves the POUS helix

a1 and the HMG helix a3.

In mouse embryos, OCT4 is required for the commitment of

the pluripotent cells from the inner cell mass to the primitive

endoderm lineage (Frum et al., 2013; Le Bin et al., 2014; Wu

and Scholer, 2014). Based on experiments in cultured embryonic
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stem cell (ESC) lines, it was proposed that this process involves a

genomic redistribution of OCT4 to bind cooperatively with

SOX17 to an alternative composite motif, known as the ‘‘com-

pressed’’ motif, in which one base pair is lacking between the in-

dividual binding sites compared to the canonical motif (Aksoy

et al., 2013a; Jauch et al., 2011). Importantly, OCT4 and SOX2

do not bind together to the compressed motif, whereas OCT4

and SOX17 bind only additively to the canonical motif (Ng

et al., 2012). This discriminatory recognition is likely due to differ-

ences in the POU-HMG interaction interfaces, which depend on

the motif configuration.

Whereas the POU-HMG interface was resolved for the com-

plex between the OCT4 homolog OCT1 and SOX2 on the

HOXB1 enhancer, which bears a canonical motif (Williams

et al., 2004), the structure of the OCT4-SOX17 complex on the

compressed motif is not known. Based on the alignment of

SOX sequences and the available structural data, the HMG

residue 57 was proposed to be responsible for the motif prefer-

ence of the OCT4-SOX2 and OCT4-SOX17 complexes. Indeed,

the SOX17E57K mutant is able to replace SOX2 in the pluripo-

tency circuitry and in somatic cell reprogramming (Aksoy

et al., 2013b; Jauch et al., 2011). However, although the overex-

pression of SOX2K57E led to the upregulation of some primitive

endoderm genes (Jauch et al., 2011), the genomic distribution

of SOX2K57E was different compared to SOX17 (Aksoy et al.,

2013a). Moreover, SOX2K57E does not cooperate with OCT4 to

bind the compressed motif (Ng et al., 2012). Therefore, to under-

stand the functions of OCT4-SOX complexes, it is necessary to

reveal the structural basis for their motif preference.

Here we modeled six wild-type and mutant OCT4-SOX2 and

OCT4-SOX17 complexes bound to the canonical and com-

pressed motifs and performed molecular simulations combined

with free energy calculations to explore the structural determi-

nants of the SOX-dependent OCT4-DNA recognition. More

generally, we aimed to probe for the suitability of this approach

to study cooperative DNA binding by transcription factors in

the delicate case in which this process involves small but biolog-

ically relevant free energy changes. To validate our predictions,

we used quantitative electrophoretic mobility shift assays.

From the simulations, we found that I21 from OCT4 forms a hy-

drophobic interaction either with the SOX residue 64 or 53 upon

binding to the canonical or compressed motifs, respectively. We

also found that E57 and R60 from SOX17 together with K17 from

OCT4 form a network of interactions that stabilizes the OCT4-

SOX17-compressed complex, which explains the crucial role

of residue 57. Interestingly, L46 from SOX17 docks in a hydro-

phobic pocket of OCT4 upon binding to the compressed motif.

In contrast, the acidic E46 in SOX2 is unable to support this inter-

action. Therefore, we designed the SOX2E46L/K57E mutant, which

we predicted and confirmed experimentally to bind coopera-

tively with OCT4 to the compressed motif. Furthermore, we

found a strong correlation between the calculated and experi-

mentally determined relative cooperative binding free energies.

Thus, we validated our proposed structural basis for the

OCT4-SOX cooperativities. These findings shed light on the

SOX-dependent genomic redistribution of OCT4 during primitive

endoderm commitment of pluripotent cells and demonstrate that

in silico design of cooperative DNA binding can be employed to

rationally alter transcriptional circuitries.
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RESULTS AND DISCUSSION

Cooperative DNA-Binding Properties AreMirrored in the
Genomic Distribution of SOX Proteins
To test whether the DNA-binding properties of the isolated

proteins reflect their genomic distribution, we reanalyzed the

previously determined genome-wide binding profiles of exoge-

neoulsy expressed SOX proteins in mouse ESC lines. To obtain

an unbiased view of how SOX proteins select their genomic tar-

gets, we now avoided the previously applied filter of mandatory

cobinding with OCT4. Rather, we probed for the DNA motif

preferences within the 500 most strongly bound sites by SOX

proteins independent of the presence of OCT4 (Figure 1).

Remarkably, the canonical motif was found in 47% and 81%

of the sites occupied by SOX2 and SOX17E57K, respectively (Fig-

ures 1A and 1B), suggesting cobinding with OCT4 on these sites.

The higher percentage in the case of SOX17E57K reflects its

ability to outperform SOX2 in maintaining and inducing pluripo-

tency and is in agreement with its higher binding cooperativity

with OCT4 measured with purified proteins (Ng et al., 2012).

Furthermore, while 75% of the SOX17-bound sites bear the

compressed motif, only 24.6% of the SOX2K57E -bound sites

bear at least one of the two composite motifs (Figures 1C and

1D). Hence, the ability of SOX2K57E to cobind with OCT4 to these

motifs is impaired. In agreement with previous findings, SOX17

and SOX2K57E bind to different genomic loci (Figure S1 available

online). This is consistent with the observation that purified

SOX2K57E is unable to cooperate with OCT4 on the compressed

motif. In conclusion, the genomic distributions of SOX proteins

reflect their in-vitro-measured DNA-binding cooperativities with

OCT4, and the identity of residue 57 is not sufficient to explain

the motif preference of OCT4-SOX complexes.

Amino Acid Identities across the SOX Family Suggest
Alternative Interfaces with OCT4
The transcriptional regulation involving the direct interaction of

POU and SOX factors is evolutionary conserved (Dailey and

Basilico, 2001; Leichsenring et al., 2013). To explore whether

amino acids important for the OCT4-SOX cooperativity can be

deduced from sequence information, we calculated the align-

ment covariance between the HMG residues of metazoan SOX

factors and analyzed those whose identities correlate with resi-

due 57. We consistently identified residues 39, 53, 64, and 66

within the top 100 scoring pairs (Figure 2; Table S1). Interestingly,

the hydrophobicity of residues 53 and 64, which do not interact

with DNA, is largely conserved. Notably, M64 is important for the

OCT4-SOX2 interaction on the canonical motif (Reményi et al.,

2003; Williams et al., 2004). Consistently, SOX8 and SOX9

have a lysine at position 64 and do not bind cooperatively with

OCT4 to this motif (Ng et al., 2012). On the other hand, residue

53 has not yet been associated with any particular function of

SOX proteins. Importantly, the properties of residues 53 and

64 vary significantly only when residue 57 is neither a lysine

nor a glutamate. This suggests that they are involved in the

OCT4-SOX interaction but not in the selectivity of OCT4-SOX

complexes for a certain composite motif. Residue 39 bears a

positive charge that interacts with the DNA backbone whenever

residue 57 is negatively charged. As K57 from SOX2 also inter-

acts with the DNA in the OCT1-SOX2-canonical complex
86, September 2, 2014 ª2014 Elsevier Ltd All rights reserved 1275
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Figure 1. Motifs Discovered within 100 bp Regions Centered on the Top 500 ChiP-Seq Peak Summits from the Genomic Binding Profiles of

SOX2, SOX17E57K, SOX17, and SOX2K57E

(A) Profile of SOX2.

(B) Profile of SOX17E57K.

(C) Profile of SOX17.

(D) Profile of SOX2K57E.

The pie charts illustrate the fraction of composite motifs within the top 500 SOX binding sites. ‘‘Both’’ refers to binding sites that contain canonical as well as

compressed motifs. See also Figure S1.
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(Williams et al., 2004), these residues may form a functional clus-

ter, similar to those identified in other protein families (Halabi

et al., 2009). The differences at position 66 are only related to

side chain length. As this residue is oriented away from both

the DNA and the POU-HMG interface, it is unlikely to contribute

to the OCT4-SOX cooperativity.

Mutually Exclusive Interfaces Determine the OCT4-SOX
Cooperative DNA Binding
To understand the structural basis for the OCT4-SOX coopera-

tivity, we modeled the OCT4-SOX2 and OCT4-SOX17 com-

plexes bound to the canonical and compressed motifs and

then performed 150-ns-long molecular dynamics simulations

(see representative structures in Figure 3 and the Supplemental

Information). For detailed characterization (Table 1), we moni-

tored the following: (1) the root-mean-square deviation (rmsd)

from the initial model, 2) the DNA bending angle per SOX binding

site (qHMG) and base pair (qbp), (3) the minor groove width per

base pair (wbp), (4) the angle between the POU helix a1 and the

HMG helix a3 (4a1-a3), (5) the orientation of the HMG helix a3 rela-

tive to the octamer site (4) (Figure S2A), and (6) the OCT4-SOX

interaction area (AOS). To characterize the most relevant, long-

lived interactions, we calculated contact maps including only

the interactions stable for at least 50%of the simulated time (Fig-

ures 4A and 4B).

The canonical-bound OCT4-SOX2 and OCT4-SOX17 com-

plexes (Figures 3B and 3C) remained stable during the

simulations with an average rmsd of 2.5 ± 0.3 Å and 2.8 ±

0.5 Å, respectively (Figure S2B). Also, the DNA configuration,

measured by qHMG, qbp, and wbp, was stable and independent
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of the SOX factor identity (Table 1; Figure S2B). The hydrogen

bonds between the POUS and DNA bases were less stable in

the OCT4-SOX17 complex, suggesting that the OCT4-SOX17

interaction has a slight detrimental effect on the OCT4-DNA in-

teractions. Interestingly, the hydrogen bonds between the

POUHD and DNA bases were unstable during the simulations

(Figure S3). This agrees with the known ability of the POUHD

from OCT4 to bind nonconsensus DNA sequences (Nishimoto

et al., 1999), which is key for the biological function of OCT4

(Nishimoto et al., 2005). Moreover, DNA-bound conformations

lacking the specific interactions with DNA bases have been

observed in the crystal structures (Aishima and Wolberger,

2003) and simulations (Babin et al., 2013) of other homeodo-

mains. The difference between the cooperative binding of

OCT4 with SOX2 or SOX17 to the canonical motif can be ex-

plained almost entirely based on the differences in the residue-

residue interactions. The orientation angle 4 of the HMG site

relative to the octamer site, the interaction areaAOS (Table 1; Fig-

ure S2B), and the number of stable contacts (Figures 4Aand S4)

are comparable between OCT4-SOX2 and OCT4-SOX17. How-

ever, in contrast to E57 from SOX17, K57 from SOX2 interacts

favorably with the dipole of the POUS helix a1 (Figures 3B, 3C,

and S5A). This partly explains why the mutant SOX17E57K gains

the ability to bind cooperatively with OCT4 to the canonical motif

(Ng et al., 2012). The POUS-HMGorientation angle 4a1-a3 is lower

in the OCT4-SOX2 complex (Table 1), suggesting that the dy-

namics of the two helices defining the POU-HMG interface

may correlate with the identity of residue 57. However, this small

difference can also be caused by the incomplete sampling of the

conformational space achieved during the simulations. The
d All rights reserved



Figure 2. Alignment Covariance Analysis of SOX Factors

(A) Alignment of the a3 helix sequences from M. musculus. The green circles

mark the amino acids correlated with position 57 (filled circle). The red circle

marks position 46.

(B) Structure of the canonical-bound OCT4 (red)-SOX2 (blue) complex. The

OCT4 linker is in green. I21 from OCT4 and the SOX residues with identities

correlated to that of residue 57 found by at least three algorithms are shown as

balls and sticks. Those found by all five algorithms are marked with a star.

See also Table S1 and Document S2.
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hydrophobic interactions of I21 from OCT4 with the SOX resi-

dues M64 (conserved between SOX2 and SOX17) and 61 (A in

SOX2, V in SOX17) (Figures 3B, 3C, and S5A) are stable (Figures

4A and S4), thus contributing to the cooperative binding of OCT4

with both SOX factors to the canonical motif.

In the compressed-bound OCT4-SOX17 and OCT4-SOX2

complexes (Figures 3E and 3F), the DNA conformation is similar

(Table 1; Figure S2B). As in the canonical-bound complexes, the

interactions between the POUHD and the DNA were not stable
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(Figure S3). However, the two complexes adopted substantially

different arrangements with rmsd to the initial model of 2.4 ± 0.3

and 3.1 ± 0.3 Å for OCT4-SOX17 and OCT4-SOX2, respectively

(Figure S2B). In the OCT4-SOX17 complex (Figure 3E), the inter-

action area AOS (Table 1) and the number of stable OCT4-SOX

contacts (Figures 4B and S4) are larger than in any other wild-

type complex. In the OCT4-SOX2 complex (Figure 3F), the

values for both measures were significantly reduced. Interest-

ingly, the change in 4 between the canonical- and com-

pressed-bound complexes differs from the expected value of

36� (Table 1; Figure S2B) corresponding to the helical twist per

one base pair of B-DNA. This suggests that the protein-protein

interfaces affect the protein-DNA interactions. The POUS-HMG

orientation angle 4a1-a3 is larger in the OCT4-SOX17 complex

(Table 1), reflecting a tighter interface between the N terminus

of the HMG helix a3 and the C terminus of the POU helix a1.

R50 from SOX17 caps the POUS helix a1, whereas E57 and

R60 form a network of salt bridges with K17 from OCT4

(Figure S5B), thus explaining the crucial role of E57 for the

OCT4-SOX17 cooperativity on the compressed motif (Jauch

et al., 2011). In contrast, K57 from SOX2 contributes to the

dismantling of this interface due to its positive charge (Figure 3F).

Furthermore, I21 fromOCT4 forms a stable hydrophobic interac-

tion with V53 from SOX17 (Figures 3E, 4B, and S5B), which is

mutually exclusive to the I21-M64 interaction observed in the

canonical-bound complexes (Figure 3B, 4A, and S5A). This

agrees with our findings from the amino acid correlation analysis

(Figure 2).

To validate our qualitative characterization of the OCT4-SOX

interaction interfaces, we estimated the contribution of each

SOX residue to the binding free energy of OCT4 (the ligand) to

the SOX-DNA complex (the receptor). We used only the simula-

tions of the complexes, thus assuming that the dynamics of the

free ligand and receptor are the same as in the complex.

Although not valid for estimating absolute binding free energies,

this approximation can be employed here as it does not affect

the relative per-residue contributions. Importantly, the desolva-

tion terms of the binding free energy (Supplemental Experi-

mental Procedures) are not strictly decomposable (Miller et al.,

2012). Thus, we only aim to semiquantitatively describe the dif-

ferences in the contributions of individual SOX residues. On

both motifs, the interaction between the HMG helix a3 and the

POUS contributes the most to the OCT4 binding affinity (Figures

4C and S5C). On the canonical motif, K57 from SOX2 has a sub-

stantially larger favorable contribution than E57 from SOX17.

Other residues from SOX2 and SOX17 have similar contributions

between both SOX proteins. Residues 61 and 64 contribute

favorably, whereas R60 unfavorably due to its proximity to R20

from OCT4. In addition, residues in the loop following the helix

a3 contribute favorably mainly due to transient interactions

involving the SOX residue K71, the OCT4 residue K17, and the

main chains. In contrast, there is a clear difference in the contri-

bution of SOX2 and SOX17 residues to the binding affinity of

OCT4 to the compressed motif. While the SOX2 residues do

not contribute significantly, L46, R50, V53, E54, R60, and E57

from SOX17 contribute favorably, whereas K57 from SOX2 con-

tributes unfavorably. These results validate the qualitative char-

acterization of the POU-HMG interfaces and are consistent with

experiments (Aksoy et al., 2013a; Jauch et al., 2011).
86, September 2, 2014 ª2014 Elsevier Ltd All rights reserved 1277



Figure 3. Representative Structures of OCT4-SOX-DNA Complexes

(A) Canonical motif sequence.

(B and C) Canonical-bound OCT4-SOX2 (B) and OCT4-SOX17 (C).

(D) Compressed motif sequence.

(E and F) Compressed-bound OCT4-SOX17 (E) and OCT4-SOX2 (F).

Overall topologies and zoomed-in illustrations of the POU-HMG interfaces are shown on the left and right sides of each panel, respectively. OCT4

and SOX2 are as in Figure 2, SOX17 is in ochre, and DNA is in gray. See also Figure S4 and 3D Molecular Models S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,

S11, and S12.
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An Additional Hydrophobic Interface Is Formed in the
OCT4-SOX17-Compressed Complex
The OCT4-SOX17-compressed complex is further stabilized by

the docking of L46 from SOX17 into a hydrophobic pocket of

OCT4 (Figure 3E), where it forms a stable interaction with Y25

from OCT4 (Figures 4B, S4, and S5B). L46 is part of the first

turn of helix a3, which docks almost perpendicular to the POUS

helix a1. The difference from the orientation of the rest of a3
(4a1-a3 of�45�; Table 1; Figure S2B) is due to a kink in a3 induced

by the highly conserved P51. Moreover, L46 contributes signifi-

cantly to the OCT4-SOX17 cooperativity on the compressed

motif (Figure 4C). In contrast, this interface is not supported by

E46 from SOX2 (Figure 3F) and SOX2K57E. Hence, we propose

that due to E46, SOX2K57E does not bind cooperatively with

OCT4 to the compressed motif. Interestingly, the SOX proteins

that cooperate with OCT4 on this motif (Ng et al., 2012) bear a

neutral residue at this position (Figure 2).
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Notably, L46 from SOX17 also increases the binding affinity of

OCT4 for the canonical motif (Figures 4C and S5C). In contrast,

E46 from SOX2 has only a marginal favorable effect mainly

because it electrostatically clashes with E78 and E82 from the

short helix of the OCT4 linker (Esch et al., 2013), which destabi-

lizes the interaction network in which K85 and E82 from the

OCT4 linker form salt bridges with D29 from the POUS and R50

from the HMG, respectively (Figures 3C and S5A). In the OCT4-

SOX17-canonical complex, this network is destabilized by the

presence of E57 in SOX17 (Figure 3D). Thus, we propose that

the OCT4-SOX interaction interface on the canonical motif can

be further optimized by the presence of a hydrophobic side chain

at position 46. This proposal is supported by the observation that

SOX17E57K,which bears a leucine at position 46, cooperateswith

OCT4 stronger than SOX2 to bind the canonical motif and is

capable of maintaining and inducing pluripotency more effi-

ciently than SOX2 (Aksoy et al., 2013b; Jauch et al., 2011).
d All rights reserved



Table 1. Summary for the Simulations of the Wild-Type OCT4-

SOX-DNA Complexes

Canonical Motifa Compressed Motifa

SOX factor SOX2 SOX17 SOX2 SOX17

Simulation

time (ns)

150 150 150 150

Residue 46 Glu Leu Glu Leu

Residue 57 Lys Glu Lys Glu

qHMG (�)b 41.8 ± 8.3 36.9 ± 5.2 35.7 ± 6.5 40.0 ± 4.9

4a1-a3 (
�)c 37.8 ± 4.3 46.0 ± 4.8 39.2 ± 4.9 43.9 ± 4.0

4 (�)d 133.9 ± 3.3 133.7 ± 3.6 92.3 ± 3.5 101.4 ± 2.2

AOS (Å2)e 369.9 ± 61.3 413.8 ± 61.2 164.0 ± 40.9 436.2 ± 62.1

See also Figures S2 and S3.
aStructural properties are shown as averages ± standard deviation.
bqHMG is the DNA bending per HMG binding site.
c4a1-a3 is the angle between helix a1 fromOCT4 and helix a3 from the SOX

factor.
d4 is the orientation of helix a3 of the HMG relative to the helical axis of the

POU binding site.
eAOS is the OCT4-SOX interaction area.

Structure
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The Double Mutant SOX2E46L/K57E and OCT4 Bind
Cooperatively to the Compressed Motif
The results from our simulations suggest that the combined

identities of residues 46 and 57 are sufficient to explain and

predict the SOX-dependent composite motif preference of

OCT4. Therefore, SOX2E46L and SOX2E46L/K57E should show

similar binding cooperativities with OCT4 as SOX17E57K and

SOX17, respectively. To test this hypothesis, we measured

the cooperativity factors using a quantitative electrophoretic

mobility shift assay (Figure 5). Briefly, we estimated the cooper-

ativity factor u= ðfD3fDOSÞ=ðfDO3fDSÞ from the fractional

amount of free DNA (fD), OCT4-bound DNA (fDO), SOX-bound

DNA (fDS), and OCT4-SOX-bound DNA (fDOS). Here u repre-

sents the ratio between the association constant of the

OCT4-DNA complex in the presence and absence of the SOX

protein (Ng et al., 2012). Then, u bigger, equal, or smaller

than one represent positive cooperative binding, additive bind-

ing, or negative cooperative binding, respectively. To avoid

errors due to the background noise, we only determined u if

each band contributed at least 1% of the total fluorescence

per lane. From these experiments, we could classify the SOX

factors in three categories according to their motif preference

(Figures 5 and S6): (1) SOX2, SOX2E46L, and SOX17E57K prefer

the canonical over the compressed motif, (2) SOX2K57E binds

additively with OCT4 to both motifs with a slight preference

for the canonical motif, and (3) SOX2E46L/K57E and SOX17 prefer

the compressed over the canonical motif. As we predicted,

SOX2E46L cooperates stronger than SOX2 with OCT4 on the

canonical motif. Moreover, SOX2E46L/K57E is the first SOX2

mutant that binds cooperatively with OCT4 to the compressed

motif. For further validation, we also designed the triple

mutant SOX2E46L/K57E/K65Q. From the simulations, we found

that Q65 does not contribute to the OCT4-SOX17 cooperativity

on the compressed motif (Figure 4C). Therefore, we predicted

and confirmed experimentally that this mutant acts like

SOX2E46L/K57E (Figure S6).
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Prediction and Design of the OCT4-SOX Cooperative
DNA Binding from Molecular Simulations
To investigate whether the OCT4-SOX cooperative DNA binding

can be predicted quantitatively, we simulated four mutant com-

plexes, OCT4-SOX17E57K, OCT4-SOX2K57E, OCT4-SOX2E46L,

and OCT4-SOX2E46L/K57E, bound to the canonical and com-

pressed motifs (Table 2) and estimated the cooperative binding

free energy relative to the wild-type SOX2 and SOX17, respec-

tively. A similar approach has been applied to zinc-finger-

containing transcription factors to estimate absolute binding

cooperativities (Lee et al., 2010). However, OCT4-SOX com-

plexes have significantly more degrees of freedom and pose a

particular challenge due to their small cooperative binding free

energies. The calculations are challenging as they depend on

numerous parameters, and results in good agreement with

experiments may be a consequence of fortuitous error cancella-

tion. Therefore, we investigated 12 wild-type and mutant com-

plexes not only for direct comparison with experiments but

also to minimize the risk of false positive results.

During the simulations, all mutant complexes adopted stable

conformations with similar DNA structure (Table 2; Figures S2

and S3). As in the simulations of the wild-type complexes, the

interactions of the POUHD with the DNA bases were not

stable (Figure S3). In few simulations these interactions

reformed, suggesting that this is a reversible process on longer

timescales.

On the canonical motif, the interactions between the POUS

and DNA bases are destabilized in the OCT4-SOX2E46L/K57E

complex as also observed in the OCT4-SOX17 complex (Fig-

ure S3). This further supports the hypothesis that the lower coop-

erativity of these proteins with OCT4 is partly due to a less

optimal arrangement of the POUS-HMG interface, which affects

the POUS-DNA interaction. The interaction area AOS is very

similar among all the canonical-bound complexes (Table 2)

and does not correlate with the experimental cooperativity fac-

tors. The larger AOS in the wild-type OCT4-SOX17 complex

(Table 1), despite the low cooperative factor, is likely due to

incomplete sampling of theOCT4 linker region in the simulations.

Configurations with larger 4a1-a3 similar to those observed in the

simulations of the OCT4-SOX17 complex are sampled by the

highly cooperative OCT4-SOX2E46L complex, whereas the lowly

cooperative OCT4-SOX2K57E also adopts configurations with

lower 4a1-a3. This suggests that the identity of residue 57 does

not define a certain configuration of the interface but may affect

the ratio between different configurations on longer timescales.

In the canonical-bound OCT4-SOX2E46L and OCT4-SOX17E57K

complexes, E82 and K85 from the OCT4 linker form a stable

network of salt bridges with R50 from the HMG and D29 from

the POUS (Figures 6A and 6B). This network is not present

in the OCT4-SOX2 complex (Figures 6C and 6D), thus explaining

the higher cooperativity with OCT4 of these two mutants.

Consistently, SOX17E57K outperforms SOX2 in inducing pluripo-

tency in somatic cells and driving transcription together with

OCT4 from a reporter gene bearing a canonical motif (Aksoy

et al., 2013a; Jauch et al., 2011). Although these observations

may be partly attributed to the transactivation potential of

different SOX factors (Aksoy et al., 2013b), they suggest a close

relationship between the OCT4-SOX cooperative binding and

the biological function of OCT4.
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Figure 4. Residues Defining the POU-HMG Interfaces

(A and B) Maps of stable protein-protein interactions from the simulations of the OCT4-SOX2 and OCT4-SOX17 complexes bound to the canonical (A) and

compressed (B) motifs.

(C) Per residue contribution to the binding free energy of OCT4 to the SOX-DNA complex obtained from the MMPBSA calculation with the dielectric boundary

modeled using the solvent excluded surface. The shaded regions highlight the position of the HMG helices.

See also Figure S5.

Structure

Dynamics of OCT4-SOX Cooperative DNA Recognition
On the compressed motif, the interaction area AOS varies be-

tween 164.0 ± 40.9 Å2 in the OCT4-SOX2 complex to 491.6 ±

90.5 Å2 in the OCT4-SOX2K57E complex (Table 2; Figure S2B).

This shows that some of the differences in the OCT4-SOX coop-

erativities on this motif are due to large conformational rear-

rangements of the protein-protein interface. Interestingly, in the

OCT4-SOX2E46L and OCT4-SOX17E57K complexes the OCT4-

SOX interface is similar to the OCT4-SOX17 complex, as judged

by 4, 4a1-a3, and AOS values (Table 2; Figure S3). This is due to

the availability of L46 for the hydrophobic interaction with Y25

from OCT4, which leads to an increase in 4a1-a3. In the OCT4-

SOX2K57E complex, 4a1-a3 has a similar value as in OCT4-

SOX2 reflecting a less optimal POU-HMG interface. As in the

case of the canonical-bound OCT4-SOX17 complex, the larger

AOS in OCT4-SOX2K57E is probably due to incomplete sampling

of the OCT4 linker region.
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Notably, it is possible to predict the motif preference of some

of the simulated SOX factors just by monitoring AOS. For

instance, AOS is significantly larger in the OCT4-SOX2-canonical

than in the OCT4-SOX2-compressed complex (Table 2; Fig-

ure S3). Likewise, AOS in the OCT4-SOX2E46L/K57E bound to the

compressedmotif is larger than in the corresponding complexes

bound to the canonical motif. SOX17 also shows this behavior,

although in this case the differences are considerably smaller.

This prediction may be optimized by improving the sampling of

the OCT4 linker region.

From the simulations, we estimated the relative cooperative

binding free energies DDDG
OCT4=SOXR

OCT4=SOXI
(SOXR, reference wild-

type SOX; SOXI, measured SOX factor) using two alternative

methods based on the Molecular Mechanics Poisson-Boltzman

Surface Area approach (MMPBSA) (Miller et al., 2012), omitting

the contribution of the conformational entropy (see the
d All rights reserved
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Figure 5. Measured OCT4-SOX Cooperativity Factors

(A) Gel from the electrophoretic mobility shift assay.

(B) Cooperativity factors. Binding to the canonical (A, left and B, red) and the

compressed (A, right and B, black) motifs was measured. A star marks the

systems in which one of the species is less than 1% of the total fluorescence;

therefore, u is estimated to be smaller than 0.01 or bigger than 100.

See also Figure S6.

Structure

Dynamics of OCT4-SOX Cooperative DNA Recognition
Supplemental Experimental Procedures). The measured coop-

erativity factor u can be related to the cooperative binding

free energy DDGOCT4
OCT4=SOXI

by DDGOCT4
OCT4=SOXI

= � RT lnðKOCT4
SOXI

=

KOCT4Þ= � RT lnðuIÞ, where R is the gas constant, T is the tem-
Table 2. Summary for the Simulations of the Mutant OCT4-SOX-DN

Canonical Motifa

SOX mutant SOX17E57K SOX2K57E SOX2E46L SOX2E

Simulation time (ns) 150 150 150 150

Residue 46 Leu* Glu* Leu Leu

Residue 57 Lys Glu Lys* Glu

qHMG (�)a 44.4 ± 5.7 39.3 ± 6.6 37.7 ± 5.6 38.1 ±

4a1-a3 (
�)a 37.8 ± 3.5 38.1 ± 4.3 47.1 ± 5.7 35.4 ±

4 (�)a 129.3 ± 3.6 132.8 ± 3.0 135.9 ± 3.4 130.1 ±

AOS (Å2) a 368.7 ± 50.9 389.6 ± 72.4 386.9 ± 71.6 292.2 ±

See also Figures S2 and S3.
aSee footnotes of Table 1 for explanations.

*Residue identical in the mutant and the corresponding wild-type factor.

Structure 22, 1274–12
perature, and KOCT4
SOXI

and KOCT4 are the association constant

for the binding of OCT4 to the DNA in the presence and absence

of the SOX factor, respectively. Therefore, the relative co-

operativities can be estimated from u as DDDG
OCT4=SOXR

OCT4=SOXI
=

DDGOCT4
OCT4=SOXI

� DDGOCT4
OCT4=SOXR

= � RT lnðuI=uRÞ.
We calculated only the binding affinities of OCT4 (ligand) for

the SOX-DNA complexes (receptor). The relative cooperativities

should be independent of whether OCT4 or the SOX factor is

considered as a ligand. However, in the latter case, the receptor

(OCT4-DNA) adopts significantly different conformations in the

presence and absence of the ligand due to the large DNA

bending by SOX factors. Therefore, the assumption that the

entropic contribution cancels out between different complexes

becomes invalid. This leads to a significant increase in the num-

ber and length of the simulations required for the same type of

calculation.

The calculated OCT4 affinities were highly dependent on the

molecular surface definition of the solute-solvent dielectric

boundary (Table 3). The values obtained with the smoothed

surface were more reasonable, in agreement with previous re-

ports (Harris et al., 2013). The calculations converged slowly

(Figures 7A, 7B, S7A, and S7B). For most systems 90–120 ns

of simulation were necessary, whereas for some systems,

even after 150 ns, convergence was not completely reached.

This suggests that longer or additional simulations are required

for a more thorough sampling of the conformational space.

However, the convergence achieved was sufficient to study

the relative cooperative binding free energies. Irrespective of

the method, we found a strong correlation between the esti-

mated and measured values ranging from 0.93 to 0.94 for the

canonical to 0.83 to 0.89 for the compressed motif (Figures

7C, 7D, S7C, and S7D). Interestingly, the correlation coeffi-

cients converged significantly faster than the binding affinities

(Figures 7E, 7F, S7E, and S7F), and the high correlation seen

was not due to any particular complex (Figures 7G, 7H, S7G,

and S7H).

In agreement with the qualitative results from the simulations

and the experiments, SOX17E57K and SOX2E46L cooperate

strongest with OCT4 to bind the canonical motif, while SOX17

cooperates the weakest (Figures 7A and 7C). On the other

hand, SOX17 and SOX2E46L/K57E have the strongest predicted

cooperativities on the compressed motif, while SOX2 has the

weakest (Figures 7B and 7D).
A Complexes

Compressed Motifa

46L/K57E SOX17E57K SOX2K57E SOX2E46L SOX2E46L/K5E

150 150 150 150

Leu* Glu* Leu Leu

Lys Glu Lys* Glu

9.1 36.0 ± 9.5 40.9 ± 5.4 44.2 ± 7.0 29.3 ± 8.9

5.0 45.5 ± 4.7 39.4 ± 5.0 47.4 ± 4.2 43.9 ± 3.8

3.6 101.6 ± 3.1 101.3 ± 2.7 103.6 ± 2.3 102.3 ± 2.2

63.5 404.8 ± 52.6 491.6 ± 90.5 433.6 ± 88.8 416.9 ± 92.0
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Figure 6. Representative Structures of the Mutant OCT4-SOX Complexes Bound with High Cooperativity to the Canonical Motif

(A and B) Mutant complexes OCT4-SOX2E46L (A) and OCT4-SOX17E57K (B). Illustrations are as in Figure 3.

(C and D) Histograms representing the stability of the E82OCT4-R50SOX (C) and D29OCT4-K85OCT4 (D) interactions during the simulations.

Structure

Dynamics of OCT4-SOX Cooperative DNA Recognition
Testing the reproducibility of the results, we found a slightly

out-of-trend trajectory of the OCT4-SOX2E46L/K57E-compressed

complex. This was due to the poor convergence of this simula-

tion mainly due to incomplete sampling of the POUHD dynamics

(Figure S7I). Therefore, the slow dynamics leading to slow

convergence of the estimated OCT4 affinities involve mostly

the POUHD. This is consistent with our observation of the unsta-

ble POUHD-DNA interactions (Figure S4). However, since the

POUHD does not contribute to the POU-HMG interface, our anal-

ysis was not affected.

Conclusions
In summary, we used molecular simulations and free energy

calculations to study the structural basis for the genomic redis-

tribution of OCT4 during primitive endoderm commitment of

pluripotent cells. An important role in this process was attributed

to the mutually exclusive cooperative binding of OCT4 with

SOX2 or SOX17 to the canonical and compressed composite

motifs, respectively (Aksoy et al., 2013a). We provided further

evidence that the interactions with OCT4 are reflected in the

genome-wide DNA binding by SOX factors. Also, we revealed

the OCT4-SOX17 interface on the compressed motif and found

that the identities of two amino acids are sufficient to explain the

motif preference of OCT4-SOX complexes. We further validated

our structural models by designing a SOX2 mutant that mimics

SOX17 properties. Ultimately, we found a strong correlation be-

tween the estimated relative cooperative binding free energies

and the measured cooperativity factors for 12 OCT4-SOX com-

plexes. Therefore, we demonstrated that molecular simulations

may be employed to design cooperative DNA recognition in a
1282 Structure 22, 1274–1286, September 2, 2014 ª2014 Elsevier Lt
rational manner. In addition, further research on cell fate

transitions may benefit from the details we provide about the

OCT4-SOX interaction interfaces. More generally, we further un-

derscored the versatility with which POU proteins such as OCT4

select their target genes. In addition to their SOX-dependent

binding to composite motifs, POU proteins were also found to

bind as homodimers to palindromic DNA sequences (Reményi

et al., 2001; Tantin et al., 2008). Whereas such motifs were not

enriched among the OCT4 binding sites during endodermal dif-

ferentiation (Aksoy et al., 2013a), theymay play important roles in

other processes. Therefore, we anticipate that the ability of tran-

scription factors such as OCT4 to induce different environment-

dependent biological outcomes depends on switches in their

preference for alternative DNA motifs controlled by the availabil-

ity of selective interaction partners.

EXPERIMENTAL PROCEDURES

Analysis of Genomic Distribution of SOX Factors

De novo motif analysis was performed with MEME (Bailey et al., 2009) for the

SOX2, SOX17E57K, SOX17, and SOX2K57E proteins (Supplemental Experi-

mental Procedures) based on the previously published data from chromatin

immunoprecipitation followed by high-throughput sequencing (Aksoy et al.,

2013a) (Gene Expression Omnibus GSE43275).

Alignment Covariance Analysis

The sequences for the HMG domains of eukaryotic SOX factors were

collected from UniProt (http://www.uniprot.org) and aligned with Clustal

(http://www.clustal.org) after removing identical HMGs (Document S2). The

amino acid substitution covariance was calculated with five algorithms using

Fodor’s java code (Fodor and Aldrich, 2004) (Supplemental Experimental

Procedures).
d All rights reserved
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Table 3. Calculated Affinities for the Binding of OCT4 to the SOX-DNA Complexes

Canonicala Compresseda

Solvent Excludedb Smoothb Solvent Excludedb Smoothb

SOX17 14.3 ± 0.69 �6.26 ± 0.83 �3.86 ± 0.74 �31.4 ± 0.84

SOX17E57K �1.44 ± 0.63 �26.3 ± 0.74 �2.23 ± 0.69 �28.6 ± 0.82

SOX2 8.09 ± 0.73 �15.0 ± 0.90 9.30 ± 0.64 �11.7 ± 0.77

SOX2K57E 10.7 ± 0.67 �13.0 ± 0.80 0.58 ± 0.60 �30.0 ± 0.78

SOX2E46L 3.30 ± 0.72 �22.0 ± 0.86 �0.35 ± 0.66 �27.8 ± 0.76

SOX2E46L/K57E 10.2 ± 0.67 �13.7 ± 0.84 �3.69 ± 0.62 �30.9 ± 0.77
aThe affinity values and standard errors are in kcal/mol.
bFor the MMPBSA calculation, the dielectric boundary was defined either as the solvent excluded or the smoothed van der Waals surface.

Structure

Dynamics of OCT4-SOX Cooperative DNA Recognition
Modeling the OCT4-SOX-DNA Complexes

Wemodeled thecanonical- andcompressed-boundcomplexes betweenOCT4

and SOX2, SOX17, SOX2K57E, SOX17E57K, SOX2E46L, and SOX2E46L/K57E using

MODELER (Sali andBlundell, 1993). To avoidnoise from randomsequence vari-

ability in natural enhancers, we used idealized canonical, 50-CGGCATTGT

CATGCAAATCGGCGGC-30 and compressed, 50-CGGCATTGTATGCAAAT

CGGCGGC-30 motif sequences (composite binding sites are in bold).

The structural templates for OCT4 were its crystal structure (Protein Data

Bank [PDB] ID 3L1P) and our previous models (Esch et al., 2013) built based

on the NMR structure of theOCT1-SOX2-HOXB1 complex (PDB ID 1O4X) (Wil-

liams et al., 2004). Themodels were further optimized with a simulated anneal-

ing procedure to improve side chain positions (Supplemental Experimental

Procedures). The templates for the SOX factors were the crystal structure of

SOX17 (PDB ID 3F27) (Palasingam et al., 2009) and the structure of SOX2

from our optimized models.

To model the murine OCT4-SOX-canonical complexes, we aligned the

OCT4 and SOX17 crystal structures with our optimized model of human

OCT4-SOX2-HOXB1 complex. We then mutated the DNA with SPDBV

(Guex and Peitsch, 1997) to match our chosen sequence, generated 15

models, and selected that with the lowest Discrete Optimized Protein Energy

(DOPE) score (Shen and Sali, 2006) for simulations.

Tomodel theOCT4-SOX-compressedcomplexesweemployed the following

stepwiseprocedure: (1) thestructureof theDNAwasgenerated from thecanon-

ical DNA bymutating the bases in order tomove the POU binding site one base

pair toward the HMGbinding site with SPDBV; given that the POU site adopts a

B-DNA like structure, the resulting composite site was not distorted and the

bending of the SOX site was conserved. (2) The OCT4-DNA and SOX-DNA

structures were aligned on the newly generated DNA by superimposing the

POU and HMG binding sites. (3) Fifteen models were generated, and the one

with the lowest DOPE score was selected for the simulations.

Molecular Dynamics Simulations

Ionizable residues were assigned their standard protonation state at neutral

pH. The 50 and 30 ends of the DNA and the N termini of the proteins were meth-

ylated, whereas the C termini of the proteins were acetylated to avoid potential

truncation artifacts. We optimized side chain rotamers, calculated structural

water positions, and determined the orientation of asparagines, glutamines,

and histidines with FoldX (Guerois et al., 2002; Schymkowitz et al., 2005).

We then curated the results manually. This optimization step is only suitable

formodels that do not depart significantly from local energyminima. Therefore,

we omitted it for the compressed-bound complexes because an experimen-

tally derived configuration corresponding to an energy minimum for the

POU-HMG interface on this motif was not available.

Then, the systems were (1) solvated in a truncated octahedral box of TIP3P

water extending at least 12 Å from any protein or DNA atom, (2) neutralized

with 100 mM KCl using the Smith-Dang ions (Dang, 1995) to mimic the exper-

imental ionic strength, and (3) equilibrated for 3.525 ns using a stepwise

protocol including restraints and accelerated molecular dynamics (Hamelberg

et al., 2004) to improve the poorly modeled regions (Supplemental Experi-

mental Procedures). Afterward, we used NAMD (Phillips et al., 2005) to

perform 150 ns of molecular dynamics simulations per system in the

isobaric-isothermic (NPT, p = 1 atm, T = 300 K) ensemble. We used a standard
Structure 22, 1274–12
protocol for explicit solvent under periodic boundary conditions (Supplemental

Experimental Procedures). Coordinates were saved every 3 ps.

We used the Amber-ff99SB force field (Hornak et al., 2006) including the

bsc0 (Pérez et al., 2007), the NMR-based (Li and Brüschweiler, 2010), and

the ILDN (Lindorff-Larsen et al., 2010) corrections for the DNA, protein back-

bone, and side chains, respectively.

Structural Analysis

The rmsd, distances, AOS, 4, and 4a1-a3 were calculated in VMD (Humphrey

et al., 1996). For rmsd, each trajectory frame was superimposed on the initial

model using all the protein Ca atoms and the P atoms of the composite motif.

For the orientation of the SOX factor relative to the octamer (POU) site (4), we

defined the following coordinate system: vx is the vector connecting the center

of mass of the first and the last base pairs of the POU site; vt is the vector con-

necting the backbone of the bases from the first base pair of the POU site; vz is

the cross product of vx and vt; and vy is the cross product of vx and vz. 4 is the

angle between the helical axis of helix a3 of the HMG projected on the vz/vy
plane and vy (Figure S2). In essence, it represents the orientation of the helix

around the helical axis of the octamer site, neglectingminor adjustmentswithin

the binding groove. The structural properties of the DNA were calculated with

Curves+ (Lavery et al., 2009). The contact maps were calculated with Wordom

(Seeber et al., 2007). For this, the number of atom-atom contacts (N) (contact

threshold is 4.5 Å) was calculated for every pair of protein residues. Then, a

relative strength of the interaction (I) was calculated as described in Brinda

and Vishveshwara (2005). Briefly, I=N=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðNi3NjÞ

p
, whereNi andNj are normal-

ization factors that relate to the maximum number of contacts that residues i

and j can make. The interactions with I R 2.5% present in more than 50% of

the simulations were considered.

Continuum Solvation Free Energy Calculations

We defined the relative cooperative binding free energy as DDDG
OCT4=SOXR

OCT4=SOXI
=

DDGOCT4
OCT4=SOXI

� DDGOCT4
OCT4=SOXR

, whereDDGOCT4
OCT4=SOXI

=DGOCT4
SOXI

� DGOCT4 rep-

resents the absolute cooperativity (change in OCT4 DNA-binding affinity in the

presence of the SOX factor). Therefore, DDDG
OCT4=SOXR

OCT4=SOXI
=DGOCT4

SOXI
� DGOCT4

SOXR
.

We used the MMPBSA.py program from AmberTools 13 (Miller et al., 2012)

to estimate the binding free energies of OCT4 for the SOX-DNA complex

ðDGOCT4
SOX Þ with MMPBSA. In principle the contribution of OCT4 (ligand),

SOX-DNA (receptor), and the complex to the binding free energy can be

approximated as G=EMM +GSolv � TS, where EMM is the gas phase energy

of the macromolecule estimated from the force field, S is the entropy, T is

the temperature, and GSolv is the solvation free energy. The latter is further

divided into polar solvation, calculated with the Poisson-Boltzmann equation

and an apolar solvation term. We omitted the conformational entropy calcula-

tion because we assumed that this term is similar among all complexes. More-

over, the quasi-harmonic analysis usually used to calculate it converges very

slowly (Furini et al., 2013). We calculated the polar solvation by solving the

nonlinear Poisson-Boltzmann equation at 100mM ionic strength. The ratio be-

tween the longest solute dimension and the grid was set to 4, and the grid

spacing was set to 0.5 Å. The solvent and solute dielectric constants were

set to 80 and 4, respectively, as appropriate for highly charged systems
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Figure 7. Correlation between the Esti-

mated and Measured Relative Cooperative

Binding Free Energies

(A and B) Convergence of the OCT4 binding affin-

ities for the SOX-DNA complexes.

(C and D) Correlation coefficients.

(E and F) Convergence of the correlation co-

efficients.

(G and H) Contribution of each SOX protein (Dr =

r � rno-SOX) to the correlation.

The canonical-bound and compressed-bound

complexes are shown in the panels on the left (A, C,

E, and G) and right (B, D, F, and H), respectively.

For the MMPBSA calculation, the dielectric

boundary wasmodeled using the solvent excluded

surface. The stars are as in Figure 5. See also

Figure S7.
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(Hou et al., 2011). We tested two definitions of the dielectric boundary: (1) the

solvent excluded surface and (2) the smoothed van der Waals surface (Ye

et al., 2010).

The apolar solvation energy was modeled as the sum of a repulsive term

related to the formation of a cavity in the solvent and an attractive term

related to the solute-solvent interaction approximated by the van der Waals

attraction energy. The repulsive term was DGrep = g(SASA) + b, where g =

0.0378 kcal/mol$A2, and b =�0.5692 kcal/mol (Tan et al., 2007). For the calcu-

lation, we used 200 frames spaced by 0.75 ns per simulation.

Quantitative Cooperativity Measurements with Electrophoretic

Mobility Shift Assay

The procedure was described in Ng et al. (2012) and summarized in the Sup-

plemental Experimental Procedures. Briefly, pure, recombinant OCT4 and

SOX DNA-binding domains and DNA probes labeled with Cy5 at the 50 were

prepared. The 100 nM dsDNA probe mixed with 100–500 nM OCT4 and 20–

100 nM SOX protein was incubated for 1 hr and loaded on a native polyacryl-

amide gel for separation. The bands corresponding to free DNA, OCT4-DNA,

SOX-DNA, andOCT4-SOX-DNAwere quantified, and the cooperativity factors

u were determined (Figure S6). At least three replicates were performed to

obtain the average u and standard deviations.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, one table, and Supplemental Alignment, and can be found

with this article online at http://dx.doi.org/10.1016/j.str.2014.06.014.
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