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1. INTRODUCTORY REMARKS

Let G be a group and denote by PAut�G� the group of power automor-
phisms of G (see [4]). An automorphism of G is called an I-automorphism
of G if it maps every infinite subgroup of G onto itself. The set IAut�G�
of all I-automorphisms of G is a normal subgroup of Aut�G� containing
PAut�G�. IAut�G� has been investigated by Curzio et al. [5], where they
often consider the case when IAut�G� = PAut�G� or at least IAut�G� is
abelian.

Here we consider the structural restriction on G when IAut�G� �=
PAut�G�. One of the major outcomes of this work is that for many
groups H in fact IAut�H� = PAut�H� holds. We also characterize infinite
Chernikov groups G for which IAut�G� �= PAut�G�.

1 This work was executed partly while the second author enjoyed the hospitality of the
University of Kentucky in April, 2000. It was supported in part by NATO grant CRG 970091.
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For completeness and convenience we begin with two statements
connected mainly with the corresponding inner automorphisms: We
characterize those groups all of whose infinite subgroups are normal and
the intersection of all normalizers of infinite subgroups of a group. In anal-
ogy to the intersection of all normalizers being called the norm of a group
and denoted by N�G�, we use for the intersection of the normalizers of
infinite subgroups the notation IN�G�.

2. INFINITE NORM

Chernikov [3] has characterized the class of groups H satisfying the fol-
lowing two conditions: (a) H possesses an infinite abelian subgroup, (b) all
infinite subgroups of H are normal. The characterization of our class of
groups in Theorem 1 may be known, however, we provide a proof for sake
of completeness. We make use of the notion of a minimal infinite group to
mean a group of infinite order with only finite proper subgroups.

Theorem 1. Let G be a group of infinite order with the property that all
subgroups of infinite order of G are normal subgroups of G. Then one of the
following three statements is true:

(1) G is a Dedekind group.
(2) G is an extension of a Prüfer p-group by a finite Dedekind group.
(3) G is an extension of a non-abelian minimal infinite group M by a

Dedekind group and all subgroups of infinite order of G contain M .

Proof. If U is any subgroup of infinite order of G, all subgroups V
satisfying U ⊆ V ⊆ G are normal in G, so G/U is a Dedekind group and
is either abelian or nilpotent of class 2, periodic, with commutator subgroup
of order 2 and 2-subgroup a direct product of an elementary abelian and
possibly one quaternion group (see[7, 5.3.1]). If G is not periodic, there
is an infinite cyclic group �x� ⊆ G, and, for every natural number k, the
quotient group G/�x8k� is a Dedekind group possessing elements of order
8 and therefore is abelian. We deduce for this case that G is abelian. In the
arguments now following we restrict ourselves to periodic groups.

We consider the intersection M of all subgroups of infinite order of G.
As a first step we assume that M is finite; we will show that G satisfies
statement (1) in this case. If again U is a subgroup of infinite order, the
same is true for U ∩ C�M�, and we deduce that M is abelian. Since G/U
is nilpotent of class 2 for every infinite subgroup U of G, G/M is nilpotent
and U ∩ C�M� is a nilpotent subgroup of infinite order. Hence it contains
an abelian normal subgroup L of infinite order. If M �= 1, we have that
L is periodic, there are only finitely many primes p such that L possesses
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elements of order p, and L is of finite rank; furthermore, the divisible part
of L is a locally cyclic p-group P containing M . It is now easy to see that P
must be of finite index in G and M = P , contradicting the finiteness of M .
We have deduced M = 1, and so G3 = �G2�2 = 1. It remains to show
that G is either abelian or the Sylow 2-subgroup T of G is a direct product
of a quaternion group of order 8 and an elementary abelian group. Choose
an element y ∈ G2 different from the identity. Since M = 1, there is a
subgroup U of infinite order such that y �∈ U . The quotient group G/U is
a nonabelian Dedekind group; it possesses a (normal) subgroup K/U such
that G/K is isomorphic to the quaternion group of order 8. If T 2 ∩K �= 1
there is an element z ∈ T such that z2 �= 1 and z2 ∈ K. On the other
hand, there is a subgroup V of infinite order such that z2 �∈ V , so G/V
possesses elements of order 4. Again G/V is a Dedekind group, and there
is a subgroup J/V such that G/V is either finite and cyclic of order 2n > 2
or isomorphic to the quaternion group of order 8. Now K and J are of
finite index, so K ∩ J is a subgroup of infinite order, but G/�K ∩ J� is not a
Dedekind group, a contradiction. So for finite M we obtain M = 1 and G
satisfies statement (1).

The intersection M of all subgroups of infinite order surely has only
proper subgroups of finite order. If M is abelian, we obtain statement (2),
since C�M� is of finite index in the periodic group G and a nilpotent quo-
tient group C�M�/M would have an abelian normal subgroup of infinite
order, leading to an abelian subgroup S ⊆ C�M� of infinite order with
S ∩M = 1, a contradiction. If M is nonabelian, it is perfect and is an
extension of a finite center by a simple minimal infinite group.

Examples I. (A) Choose a Prüfer p-group Q with element x of order p
and a finite p-group P such that P ′ = Z�P� is cyclic of order p, generated
by y. If R is any finite Dedekind group, Q × P × R/�xy� is a group men-
tioned in statement (2) of Theorem 1. (B) For p = 2, Q may be substituted
by the infinite generalized quaternion group in (A). (C) For statement (3)
in Theorem 1, choose a minimal infinite group M with Z�M� of order p
and substitute M for Q in (A). The work of Adjan [1] hints at the existence
of such groups M .

We turn our attention now to the “infinite norm” IN�G�. The following
statement is well known and gives a reason for our interest.

Lemma 1. Let � be a characteristic class of subgroups of a group G and
assume that α ∈ Aut�G� fixes all subgroups belonging to �. If x ∈ G, then
x−1xα ∈ ⋂

U∈� N�U�.
Proof. Let U ∈ �, then also xUx−1 ∈ � and �xUx−1�α−1 = xUx−1.

Furthermore, �x−1�xUx−1�α−1
x�α = U . But also �x−1�xUx−1�α−1

x�α =
�x−1�α�xUx−1�xα = �x−1xα�−1U�x−1xα�.
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Corollary 1. Let x be an element of an infinite group G and let α ∈
Aut�G�.

(a) If α ∈ PAut�G�, then x−1xα ∈ N�G�.
(b) If N�G� = 1, then PAut�G� = 1.
(c) If α ∈ IAut�G�, then x−1xα ∈ IN�G�.
(d) If IN�G� = 1, then IAut�G� = 1.

Remark. Cooper [4] has shown x−1xα ∈ Z�G� in case (a).

Theorem 2. Let G be a group of infinite order. Then one of the following
statements is true:

(1) IN�G� is finite and nilpotent of class 2.
(2) IN�G� is an infinite Dedekind group.
(3) IN�G� is an extension of a Prüfer p-group by a finite Dedekind

group.
(4) IN�G� is an extension of a nonabelian minimal infinite group M by

a Dedekind group, and every infinite subgroup of G contains M .

Proof. Again we consider the intersection M of all subgroups of infi-
nite order of G. If M has infinite order, statement (3) or (4) is true by
statements (2) and (3) of Theorem 1. If M has finite order and IN�G� has
infinite order, we obtain as in Theorem 1 that M is abelian and that C�M� ∩
IN�G� is nilpotent and of infinite order. Again M = 1, and statement (2) is
true by statement (1) of Theorem 1. The case that IN�G� is finite remains
to be considered.

In this case, consider any subgroup U of infinite order in G. Since
IN�G� is a finite group, V = U ∩ C�IN�G�� is also of infinite order. Now
IN�G�V/V ∼= IN�G�/�IN�G� ∩ V � is a Dedekind group and

IN�G� ∩ V = IN�G� ∩ C�IN�G�� ∩U = Z�IN�G�� ∩U�
So IN�G�/Z�IN�G�� is a Dedekind group. Assume that this quotient group
is nonabelian. Let Z = Z�IN�G�� and let �aiZ�ai ∈ IN�G�� be a set of
generators for this quotient group. Furthermore, choose an element bZ of
order 4. Then �ciZ�ci ∈ IN�G�� generates the quotient group if ciZ = aiZ
for all aiZ of order divisible by 4 and ciZ = aibZ otherwise. Let wZ be
the nontrivial commutator. Now wZ is a power of every generator ciZ so
that �w! ci� = 1 and w ∈ Z. This is in contradiction to the construction, the
central quotient group is abelian, and statement (1) is true.

Examples II. For statements (2), (3), and (4), examples can be taken
that are the same as for Theorem 1. Examples for IN�G� to be finite non-
Dedekind are now established.
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(A) Choose two nonabelian minimal infinite groups M!N such that
�Z�M�� = �Z�N�� is an odd prime p and M/Z�M� �∼= N/Z�N�. Also choose
a finite p-group R such that R′ = Z�R� and �Z�R�� = p. Let the three
centers be generated by elements a! b, and c, respectively. Put K = �M ×
N × R�/�ab! ac�. Then IN�K� ∼= R.

(B) For p = 2, choose M and N as before and let R ∼= S ∼= Q8, with
generators of the centers a! b! c, and d. Put K = �M × R/�ac�� × �N ×
S/�bd��. Then IN�G� ∼= Q8 ×Q8.

(C) The direct product of two quaternion groups also appears for
IN�L� if L = Q×N × S/�bd�, where Q is the infinite generalized quater-
nion group and N!S! b! d are as in (B).

Examples with commutator subgroups of higher order depend on the
possibilities of Z�M� for the nonabelian minimal infinite groups M . In (A),
the nonisomorphy condition on M/Z�M� and N/Z�N� can be replaced by
the following condition: if M ∼= N , Out�G� does not operate transitively
on Z�M�.
Proposition 1. (a) If G is a nonperiodic group, then IN�G� is abelian.

(b) If IN�G� is nonperiodic, then IN�G� = Z�G�.
(c) In both cases IAut�G� is abelian.

Proof. If IN�G� is nonperiodic, it satisfies the conditions of Theorem 1,
so IN�G� is abelian. If G is nonperiodic and IN�G� is periodic, we take
an element x ∈ G of infinite order and an element a ∈ IN�G�. Now also
xa is of infinite order modulo the normal subgroup IN�G�, and IN�G�
normalizes �x� and �xa�, also IN�G� ∩ �x� = IN�G� ∩ �xa� = 1. So x and
xa centralize IN�G�, and so does a; IN�G� is abelian. This shows (a).

For (b), choose an element y ∈ IN�G� of infinite order and another ele-
ment z ∈ G. The subgroup �y! z� is infinite and, being finitely generated
metabelian, residually finite. So by Lemma 2.1 of [5], the I-automorphism
induced in this subgroup by the conjugation with y is a power automor-
phism, that is, y−1zy ∈ �z�. But then there is a natural number t such that
�z! yt� is abelian and nonperiodic. Again the I-automorphism induced by
conjugation with y is a power automorphism, it fixes the element yt of infi-
nite order, and it is the identity. So y−1zy = z and all elements y of infinite
order of IN�G� are in Z�G�. Now IN�G� = Z�G� since IN�G� is generated
by its elements of infinite order.

For the commutativity of IAut�G�, assume first the existence of an ele-
ment x of infinite order such that �x� ∩ IN�G� = 1. Arguing as in (a) we
obtain commutativity for �x! IN�G�� = B. Every α ∈ IAut�G� induces an
I-automorphism in B which then is a power automorphism in B. Since
x−1xα = 1, we have that α fixes every element of IN�G� and stabilizes the
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series 1 ⊆ IN�G� ⊆ G. So IAut�G� is abelian in this case. If, on the other
hand, IN�G� is nonperiodic, we have that �u! IN�G�� is abelian and non-
periodic for every u ∈ G, and I-automorphisms of G induce here power
automorphisms. So uα ∈ �u� and IAut�G� = PAut�G�, which is abelian.
We have also shown (c).

Note that Theorem B of [5] is a consequence of Proposition 1.

3. IN�G� AND IAut�G�

We consider the structure of IN�G� more closely for the case where
IAut�G� �= PAut�G�.
Theorem 3. Let G be an infinite group and assume IAut�G� �= PAut�G�.

Then every infinite abelian normal subgroup A of G has the following struc-
ture: A is periodic, the finite residual R of A is a p-group of finite rank, and
A is Chernikov.

Proof. Let h ∈ G and α ∈ IAut�G� such that hα �∈ �h�. We may assume
that h is of p-power order for some prime p. If t is an element of infinite
order in A, then �t��h� is a finitely generated h-invariant abelian group, and
so �t! h� is a residually finite group. By Lemma 2.1 of [5], IAut��h! t�� =
PAut��h! t��, so that hα ∈ �h�, contrary to construction. So A is periodic.

Let A�p� = �a ∈ A�ap = 1� for p ∈ (, where ( is the set of primes q
such that A has an element of order q, and let C be the product of all
A�p� with p ∈ (. If C is infinite, then �C!h� = C�h� is a residually finite
group and, again, hα ∈ �h�, contrary to construction. So C is finite and A
is the direct product of its finite residual R and a finite group. If R is not a
p-group, let E and F be maximal p-, q-subgroups of R. Then

�h� = �h!E� ∩ �h! F� = �h!E�α ∩ �h! F�α = �h�α!

contrary to the definition of h. So R is a p-group of finite rank.

Examples III. (A) Let P be a Prüfer p-group, let C be a group of
order p, and let G ∼= P × C. Then PAut�G� ∼= Aut�P�, an uncountable
abelian group, while IAut�G� ∼= Aut�P� × Hol�C�, where Hol�C� is the
holomorph of C.

(B) LetG = �a! bi�a2 = �abi�2 = b
p
1 = b

p
i+1b

−1
i = 1� with �bi� = P . If

p �= 2!PAut�G� = N�G� = 1 and IAut�G� ∼= Hol�P�. If p = 2, PAut�G� =
1!N�G� = Z�G�, and IAut�G� ∼= Hol�P�. Also note that in both cases
Inn�G� ⊆ IAut�G�.
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(C) Begin with an elementary abelian noncyclic p-group A and with
an automorphism σ of order a prime q �= p of A such that A does not pos-
sess proper σ-invariant subgroups. The automorphism σ can be extended
to a divisible p-group P where σ operates as in A on the socle of P . Let
G = �x! P�xq = 1, x−1ux = uσ , ∀u ∈ P�. Then PAut�G� = N�G� = 1,
while IAut�G� is the split extension of P by PAut�P�.

(D) If, instead, p = q in (C) and A is of rank p − 1, and if, fur-
thermore, σ fixes only p elements of A, the same construction as in (C)
can be done. In this case PAut�G� = 1, N�G� = Z�G� is of order p,
and IAut�G� is isomorphic to the split extension of P by PAut�P� since
Inn�G� ∼= G/Z�G� ∼= G.

Corollary 2. Let G be a group such that IAut�G� �= PAut�G� and let
A be an infinite abelian normal subgroup of G. Let h be an element of G
and let h ∈ IAut�G� such that hα �∈ �h�. If �h� is subnormal in A�h�, then
�h!A� is the direct product of a Prüfer p-group and a finite group.

Proof. By Theorem 3, A is a product of a divisible group D and a
finite group, and D is a p-group for some prime p. We may assume that
�h� is a q-group for some prime q. Since �h� is subnormal in D�h�, we
have that D�h� is abelian and p = q. Assume now that D is not locally
cyclic; then D ∩ �h� is contained in some locally cyclic subgroup E of D.
If the intersection is trivial, take any locally cyclic subgroup E of D. Then
D = E × F for some divisible subgroup F ⊆ D, and

�h� = �h!E� ∩ �h! F� = �h!E�α ∩ �h! F�α = �h�α!
a contradiction. Hence D is locally cyclic.

From Corollary 2 we obtain

Corollary 3. Let G be an infinite group such that IAut�G� �= PAut�G�.
Then the following are true:

(1) If G is nilpotent, then it is an extension of a Prüfer p-group by a
finite group.

(2) The center of G is finite or an extension of a Prüfer p-group by a
finite group.

Corollary 4. Let G be a group which contains an infinite abelian sub-
group A. Then IAut�G� is metabelian. In particular, if G is a locally finite
infinite group then IAut�G� is metabelian.

Proof. By Proposition 1 we can assume that A is a torsion group. We
can also assume IAut�G� �= PAut�G�. Now A contains an infinite subgroup
B which is either Prüfer or non-Chernikov. By Theorem 3, I = IAut�G�
operates as group of power automorphisms on B. Therefore, I ′ stabilizes
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the series 1 ⊆ BG ⊆ G, and I is metabelian. If G is infinite and locally
finite, then G contains an infinite abelian subgroup.

Another consequence of Theorem 3 is the following:

Remark. Let G be a locally finite infinite group with the property that
IAut�N�A�� �= PAut�N�A�� for all infinite abelian subgroups A of G. Then
G is a Chernikov group whose divisible part has one primary component.

Proof. Let A be an infinite abelian subgroup of G. By Theorem 3, A is
Chernikov, and hence G is Chernikov by Theorem 5.8 of [6].

Corollary 5. Let G be an infinite group and let IN�G� be soluble. Then
IAut�G� is metabelian.

Proof. Again we may assume that IAut�G� �= PAut�G�. First, suppose
that IN�G� is infinite. Since IN�G� is soluble, it follows by parts (2), (3),
and (4) of Theorem 2 that IN�G� contains a nontrivial divisible normal
subgroup. Hence IAut�G� is metabelian by Corollary 4.

Next assume that IN�G� is finite and let α ∈ IAut�G�. Consider the sub-
group Fα of all elements of G that are fixed by α. We obtain x−1xα = y−1yα

if and only if Fαx = Fαy. Since x−1xα ∈ IN�G� we have that Fα is of finite
index in G. Similarly, the intersection Tα of all of the conjugates of Fα is a
normal subgroup of finite index in G. We form L = ⋂

α∈IAut�G� Tα. Either L
is infinite and α ∈ IAut�G� induces a power automorphism on G/L or G/L
is infinite and residually finite, and again α induces a power automorphism.
It follows that �IAut�G��′ stabilizes the series 1 ⊆ L ⊆ G, so that IAut�G�
is metabelian.

Lemma 2. Let G be an infinite group and assume that IAut�G� �=
PAut�G�. If G has more than one nontrivial divisible abelian normal sub-
group, then the following statements are true:

(1) The product D of all divisible abelian normal subgroups of G is an
abelian p-group.

(2) No two divisible abelian normal subgroups are operator-isomorphic.
In particular, the divisible part of D ∩ Z�G� is a Prüfer group or is trivial.

(3) If Ti is the (only) normal subgroup of order p of G which is con-
tained in the minimal divisible normal subgroup Mi of G, the rank of the
product of all Ti is at most 2.

(4) Every set of divisible normal subgroups of G having pairwise trivial
intersection consists of at most p members.

(5) IN�G�/Z�G� is finite.
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Proof. D is abelian, so (1) follows from Theorem 3.
For the following, the reader is reminded that minimal divisible normal

subgroups of G need not intersect trivially; they do so if their intersec-
tions with the center of G do. Also L ∩ Z�G� is cyclic for every minimal
divisible noncentral normal subgroup L of G. Choose an element h ∈ G
and α ∈ IAut�G� such that hα �∈ �h�. Then h has finite order, and we may
take it to be of order a power of a prime q. We show (2) first for �h�D
instead of G. Assume that there are two minimal divisible h-invariant sub-
groups E!F of D which are operator isomorphic in �D!h�; operator iso-
morphism allows the choice of E!F with trivial intersection. We consider
�h�EF . Either �h� ∩EF = 1, or there is a minimal divisible h-invariant sub-
group T of D such that D ∩ �h� = T ∩ �h� and, without loss of generality,
T ∩F = 1. Substituting T for E in both cases we have �h� = �h! T � ∩ �h! F�
and �h� = ��h��α as intersection of two infinite subgroups, a contradiction.
This shows (2) for �D!h� and for G.

In the course of the argument we have also deduced �h� ∩D �= 1, and
so p = q. A minimal nonlocally cyclic h-invariant divisible subgroup of D
will always split into minimal hp-invariant divisible subgroups which are
operator-isomorphic in �hp�D. We therefore obtain G = �h�C�D�.

If the rank mentioned in (3) is more than 2, we have three divisible
normal subgroups A!B!C in D such that ABC = A× B × C; in this case
�h� = �h!A� ∩ �h!B� ∩ �h!C� is fixed by α, a contradiction. This shows (3).

If (4) is not satisfied, every cyclic subgroup in the group mentioned in
(3) occurs as some Ti. We know that �h� intersects nontrivially with this
subgroup. Let, for instance, Ti ⊆ �h�! Ti ⊆ Mi, and let Mj be some other
minimal divisible normal subgroup in D such that Mi ∩Mj = 1. Now �h� =
�h!Mi� ∩ �h!Mj�, and �h� is fixed by α, contrary to construction. This
contradiction shows that (4) is true.

Assume now that the rank of the subgroup mentioned in (3) is 2. Then
there are two h-invariant divisible subgroups U!V of D such that U ∩
V = 1. We find IN�G�U/U ⊆ N�G/U� ⊆ Z2�G/U� and IN�G�V/V ⊆
N�G/V � ⊆ Z2�G/V �. Since U ∩ V = 1, we obtain IN�G� ⊆ Z2�G�. If
all Ti coincide, two minimal h-invariant divisible subgroups U!V of D
have finite intersection, and as before we obtain IN�G��U ∩ V �/�U ∩ V � ⊆
Z2�G/�U ∩ V ��. By finiteness we have U ∩ V ⊆ Zs�G� for some finite s,
and IN�G� ⊆ Zs+2�G�, since G = C�D��h�. Assume now that IN�G� is
infinite; then the infinite subgroup D ∩ IN�G� contains an abelian divisible
subgroup, and this subgroup can only be contained in Z�G�. Now the quo-
tient group IN�G�/Z�G� has to be finite. Thus (5) is established and the
lemma is proved.

Examples IV. (A) Let P!Q be Prüfer p-groups and let A = �a�,
B = �b� be cyclic groups of order p2. We form the standard wreath
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products Pwr A = PAA and Qwr B = QBB. Let X = PA ∩ C�ap�
and Y = �b!QB� and choose two elements x! y of order p such that
x ∈ X ∩ Z�XA�; y ∈ Y ∩ Z�YB�. Now

G = 〈
X!Y! z�zp3 = 1� z−1uz = a−1ua ∀u ∈ X� z−1vz = b−1vb ∀v ∈ Y 〉

is defined. Let L = �zp2
xy�. Then the automorphism α fixing all elements

of XYL/L and mapping zL onto zxL belongs to IAut�G/L� but not to
PAut�G/L�.

(B) With the hypotheses of (A) (except that instead of L we consider
M = �zp2

! xy��, we have that XM ∩ YM ∩D = M ∩D = �x�M/M is the
intersection of all minimal divisible zM-invariant subgroups of DM/M , and
the automorphism β fixing all elements of DM/M and mapping zM onto
zxM is contained in IAut�G/M� but not in PAut�G/M�.
Theorem 4. Let G be an infinite group such that IAut�G� �= PAut�G�,

IN�G� is a Dedekind group, and IN�G�/Z�G� is infinite. Then the following
statements are true:

(1) The maximal abelian divisible subgroup D of IN�G� is a nontrivial
p-group, and it is the only nontrivial abelian divisible normal subgroup of G.

(2) If x ∈ G\C�D�, all infinite x-invariant subgroups of G contain D.
(3) G/C�D� is cyclic.
(4) If G/C�D� is a p-group, it is of order p and D has rank p− 1.
(5) If G/C�D� is not a p-group and D has rank m, the order of

G/C�D� is divisible by primes dividing pm − 1 but not dividing any pn − 1
with 1 ≤ n < m.

Proof. The maximal abelian divisible normal subgroup of G is a
p-subgroup, so the same is true for D ⊆ IN�G�. If G possesses more than
one divisible abelian normal subgroup, by Lemma 2, IN�G�/Z�G� is finite.
So (1) is true, and D is the only nontrivial abelian divisible normal sub-
group of G. We assume now the existence of an element x of order a
power of p such that ��x�C�D� � C�D�� = pk > p. Then D possesses non-
trivial xp-invariant divisible subgroups, and conjugation by elements of D
are no longer elements of IN�G�, by Lemma 2. So xp ∈ C�D�, and the
rank of D must be p − 1 since there is only one operator isomorphism
class for D. This shows (4); (3) and (2) are also true in this case.

The alternative is that G/C�D� is not a p-group; by the argument
above this means that there is no element of order p in G/C�D�. Now
D splits into a direct product of divisible x-invariant subgroups for every
x ∈ G\C�D�, which in turn yields that there is no such proper splitting for
any x ∈ G\C�D�, proving (2) for this case. This means in particular that
every x ∈ G\C�D� operates by conjugation without any fixed points on the
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socle S of D. Accordingly, abelian subgroups of G/C�D� have to be cyclic.
Since nonabelian supersoluble subgroups of G/C�D� would contain ele-
ments inducing power automorphisms in S, we obtain that S itself is cyclic
(and G/C�D� is cyclic) or G/C�D� is cyclic, since these nonabelian super-
soluble subgroups of G/C�D� do not exist. So in this case we see that (2),
(3), and (5) are true (the number theoretic condition being a consequence
of (2)). Theorem 4 is proved.

4. RADICAL GROUPS

In this section we show that the condition IAut�G� �= PAut�G� for an
infinite group G yields that the structures of the Hirsch–Plotkin radical and
the Baer radical are very restricted. We begin with

Theorem 5. Let G be an infinite group satisfying IAut�G� �= PAut�G�
and let L be a locally radical normal subgroup of G. Then L is a soluble
Chernikov group whose finite residual has one primary component.

Proof. We can assume that L is infinite. Let h be an element of G and
let α ∈ IAut�G� such that hα �∈ �h�. Then h has finite order. Put B = L�h�
and note that B is locally radical and IAut�B� �= PAut�B�. Hence B satisfies
the minimum condition by Theorem A of [5]. Thus L is periodic and locally
radical, so L is locally soluble. By I.E.6 of [6] , L is a soluble Chernikov
group. The rest follows from Theorem 3.

Corollary 6. Let G be an infinite group satisfying IAut�G� �= PAut�G�.
Then

(1) The Hirsch–Plotkin radical R of G is a soluble Chernikov group
which is hypercentral. Moreover, if S is the last term of the upper Hirsch–
Plotkin series, then S/R is finite and S is a soluble Chernikov group.

(2) The Baer radical B of G is a nilpotent Chernikov group. If A is
the subsoluble radical of G, then A is a soluble Chernikov group and A/B is
finite.

Proof. By Theorem 5 we know that S is a soluble Chernikov group
whose finite residual is contained in R. Thus S/R is finite, and, by I.H.4
of [6], R is hypercentral. So (1) is true.

By Lemma 2 of [2], B is a nilpotent Chernikov group. By (1) A is a
soluble Chernikov group. It is clear that the finite residual of A is contained
in B, so we have shown (2).
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5. CHERNIKOV GROUPS

We now characterize Chernikov groups G in which IAut�G� �= PAut�G�.

Theorem 6. Let G be an infinite Chernikov group and let D be the max-
imal divisible normal subgroup of G. Then IAut�G� �= PAut�G� if and only
if one of the following three statements holds true:

(1) IN�G� is infinite and Z�G� is finite. If D is not locally cyclic, G is
described in Theorem 4. If D is locally cyclic, then G/C�D� �= 1.

(2) IN�G�/Z�G� is finite, D �⊆ Z�G�, and G is described in Lemma 2.

(3) Z�G� is infinite, D ⊆ Z�G�, and D is a locally cyclic p-group;
furthermore,

(a) G possesses a normal subgroup of index p,
or

(b) there is an element x ∈ G′ of order a power of p such that o�x� >
Max�2! �D ∩G′��.

Proof. It is clear that IAut�G� �= PAut�G� whenever (1) or (2) holds.
Now assume that IAut�G� �= PAut�G�. By Lemma 2, Z�G� ∩ D is finite
or finite by locally cyclic. Note that (1) and (2) apply according to whether
D �⊆ Z�G� is the only abelian divisible normal subgroup or not.

It remains to prove that (3) holds if and only if IAut�G� �= PAut�G�. We
begin by showing the sufficiency. In case (a), there is a normal subgroup N
such that �G � N� = p, and there is an element x of p-power order such that
G = �x!N�. Since �x!D� is abelian and D is divisible, �x!D� = �y� × D
for some element y, and G = �y!N�. Now define α ∈ Aut�G�, fixing all
of the elements of N and mapping y onto yt, where t is an element of
order p from D. Then α ∈ IAut�G�\PAut�G�. Assume now that (a) is not
satisfied. Then the only minimal supplement L of D in G is generated by
elements of order prime to p; also G′ = �DL�′ = L′. Let K be the Hall
p′-subgroup of Z�G� and note that since D is a p-subgroup contained
in Z�G� we also have that KD/D is the Hall p′-subgroup of Z�G/D�.
Every α ∈ IAut�G� induces a power automorphism in G/D, and G/D =
LD/D ∼= L/�D ∩ L� is generated by elements of order prime to p. By
Cooper [4], the automorphism induced by α in G/D is central. So if y is
an element of order prime to p, we have �yD�α = ywD, where w ∈ K, and
in fact yα = yw. We see therefore that α induces the identity on L/K; in
particular, elements of order a power of p in L are fixed by α. This means
that α will induce a power automorphism in D which fixes all elements
of D ∩ L, for example, tα = t1+m for m = Max�2! �D ∩ L��. If z ∈ L is
an element of order a power of p such that ��z�� > Max�2! �D ∩ L��, the
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following automorphism β belongs to IAut�G�\PAut�G�:
uβ = u! ∀u ∈ L� uβ = u1+m! ∀u ∈ D�

(Here we note that the restriction of β to �z!D� is not a power automor-
phism.) To prove necessity we have to show that IAut�G� = PAut�G� if
neither (a) nor (b) is true. In this case we use the preceding argument to
find the minimal supplement L of D to be generated by all elements of
order prime to p, and if α ∈ IAut�G�, all of the elements in L of order a
power of p are fixed. If p = 2 and the only elements in L of order 2r have
order 2, then IAut�G� = PAut�G�. If this case does not arise and there is
no element in L of order a power of p and bigger than �D ∩ L�, and if,
furthermore, α ∈ IAut�G�, then �tα� = �t� and t−1tα ∈ �tm�, ∀t ∈ D, where
m = �D ∩ L�. Moreover, α restricted to �y!D� is a power automorphism
for all elements of order ps since ps ≤ m. This proves statement (3) and
completes the proof of Theorem 6.

An example for (1) is Example III(C); for (2) we have Example IV(A).
For statement (3) case (a) we have Example III(A). For case (b) and p = 2
choose a Prüfer 2-group A with element a of order 2 and B ∼= SL�2! q�
with q �= 2, with element b ∈ Z�B� of order 2. Now �A × B�/�ab� is an
example. For p �= 2 choose A a Prüfer p-group with element a of order p,
and B ∼= SL�p! q� with p2 dividing q− 1 and central element b �= 1. Again
�A× B�/�ab�, but A× �B/Z�B� are also examples.
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