MATHEMATICS

THE UNITARY ANALOGUES OF SOME IDENTITIES FOR
CERTAIN ARITHMETICAL FUNCTIONS

BY

H. JAGER

(Communicated by Prof. J. PoprEN at the meeting of June 24, 1961)

§ 1. Introduction

If d is a divisor of the positive integer » (notation: d/r) and (d, n/d)=1
we say that d is a unitary divisor of n; notation: dj/n; for instance we
have always 1//n and n//n.

Definition. The unitary convolution h(n) of two arithmetical functions
f(n) and g(n) is defined by

M= 3 1 (3);
d//n
notation: k(n)={(f o g)(n).

Now it is easy to introduce by means of this unitary convolution new
arithmetical functions which may be regarded as the wumnitary analogues
of well-known functions such as Mobius’ function u(n), Euler’s function
@(n) and others. For example, it is possible to define the functions u(n)
and ¢(n) by means of the formulas:

llifnzl

2 D=1 if o1

din
n
pm)= 3 u(d) 7.
a/m
Similarly, we now define their unitary analogues u*(n) and ¢*(n) by

{1 if n=1
0if n>1’

()= 3 p*(d) -

dl/n

In § 3 we shall derive some relations between these unitary functions,
while in § 2 we shall develop the theory for the corresponding ordinary
arithmetical functions.
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§ 2. Relations, derived by means of the Dirichlet-product

If we introduce in the set 2 of all arithmetical functions the operations
+ , defined by

(f+9)(m)=f(n)+g(n)
and *, defined by

1 o= 319 (3).

(the latter being the so-called convolution or Dirichlet-product), we get
a domain of integrity in which the law of the unique factorization into
primes holds [2], p. 982-985. The multiplicative group of units is formed
by the functions f(n) with f(1) = 0; of this group the multiplicative functions
(except the function which is identical zero) form a subgroup.

This algebraic structure in £ furnishes us a method to introduce new
arithmetical functions as generalizations of classical functions [2], p. 978-
979 and of proving known formulas in a very simple way. We may give
a few examples.

Defining the functions e(n) and I,(n) by

{1 if n=1
e(n) = 0 if n>1

(i.e. e(n) is the unit-element in ),

I (n)=n% « real

e
and writing = (n) for the inverse of the (unit-)function f(n), we have

f

the well-known formulas (compare § 1)

e
p(n) == (n),

p(n)=(u * I1)(n).
We now define the function ¢,(n) by

Pa(n)=(u * I,)(n),
hence

(IO * q)a)(n) =Ia(n)’

Since u(n) and I,(n) are both multiplicative, ¢,(n) is multiplicative 1).
From the definition of ¢,(n) we see that

Pl0F) = P+ D) ED + (PP + . ) = — D

1) More precisely: g, (mn)=g,(m) ¢,(n) _(mm)* , & 7% 0 which follows from [11,

theorem 3. Pa((m,n))

33 Series A
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The functions ¢,(n) occur in the literature for various values of «. If
we put «=2, 3, 4, ... we have ¢, (n)=J,(n), where J,(n) denotes Jordan’s
totient-function of order «. As an example of a negative value of x we
mention a result of CEsAro, see e.g. [4], p. 128:

det |{u, v}| , pm12 .n=(n!)2¢-1(1)<P—1(2)---q)—l('n),

where {u, »}=lc.m. of x and ».

In the sequelg (n) denotes the convolutionproduct of g(n) and the

f

inverse of an unit f(n); hence (f*%)(n)=g(n).

Theorem 1. Let {N,(n)}, « real, be a set of completely multi-
plicative arithmetical functions not containing the zero-function, such
that N, (n)-Ng(n)=N,,4(n) and let y,(n)=(u * N,)(n).

Then

NN
f; (1) =5 s(n)Np(n).

Proof.

n

e mesir= 1o(2)0(2) -

N(n) (Lo * vu-p) (n)=DNg(n)-N,_p(n)=Nu(n).

A I,

From the definition of ¢,(n) it follows that %(n)=1=(n); if we now
B B

take N, (n)=1I,n) in theorem 1, we get:

Corollary 1.
Pa
= (1) =@u_p(n) - I(n).
Ps
For «, B, x—f=1,2,3, ..., this is a well-known result of Gegenbauer
for the Jordan’s functions, see e.g. [4], p. 149.

Corollary 2. Ifwe define as usual g,(n)= > d*=(Io * I,)(n) we have

d/n
= (n) = s p(n) Ty(n).
B

For x=2, 3, ... and f=«—1 this was proved by NEGOES, see [5]. The
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functions ¢,(n) occur also in the following result of THACKER, see e.g.
[4], p. 140:

Theorem 2. Let ry,re, ..., r,, denote the ¢(n) positive integers
<n and prime to n; then for k=0, 1, 2, ...

rif+rok4 . 4k =

nk { 1 p(n)—co,xe(n) + c1,k p-1(n) + €3,k p-3(n) + C5, 5 P-5(N) + ... }

k+1
where
cip = — (k)B i k1, op=0 if k<l
LE=77\ ) P , ClLE= <l
as usual Bj, B, Bs, By, Bs, Bg, ... denote the Bernoullian numbers
11 1 1
@ 0, 50 0, 20 e 2).

Proof. Defining @x(n) by Pr(n)=ri¥+rek+...+rk,, k=0,1, ..., we
have

@rx Iym= S a0 (2)= 5 5 =Sy
din

din (v,n/d)=1 r=1

1
Tl Ipa(n)—coxIr(n)+c1,p Lp-1(n)+cs,xlx—3(n)+....
Thus
1 Ipa Iy I Iy 3

k-1
Dy(n) = ENY I=lc (n)—CO,k'I_'-—k- (m) +01,kI=k (%)+C3,k‘[=k (n)+ ...

and hence, it follows from theorem 1, putting N,(n)=1,(n):

Di(n)=nk { @(n) —co,xe(n) +c1,k p-1(n) 4¢3,k p—3(n) + .. }

1
k+1
§ 3. Some unitary analogues

Lemma 1. If bjla and c//b then cfa.

Proof. a=0b8, (b,)=1 and b=cy, (¢c,y)=1. Since ¢ is a divisor
of b we have (c¢,f)=1 and thus (c, fy)=1; hence, putting fy=c«, we
have a=cx, (¢, «)=1, which proves the lemma.

Definition. Let » and m be two positive integers,
n= ]L[lpge and m= f];pge, &g $o=>0,
o= e=
with p1, pe, ..., pr different prime-numbers; then we define
[, m= TT e,
e=1

2) In this form the Bernoullian numbers can be defined symbolically by
Bo=1,B, = (1 + B)*,n > 1, if we put B* = By,
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where
{ 0if a#£p

0 B)=1 4 if a=p"

It is clear that [n, m] is a unitary divisor of n and of m and that [x, m]
is the largest number with this property.

Lemma 2. af[b,c] if and only if a/b and afec.

Proof. Let a/b and affc; then af=b, (a, f)=1 and ay=c, (a,y)=1.
From this it follows that [b, c]=a[B, y], (a, [8, y])=1 and thus a//[b, c].
Conversely, a//[b, c]//b implies a/b; similarly, a/c.

Theorem 3. With the ordinary addition + as additive operation
and the unitary convolution o as multiplicative operation, the set 2 of
all arithmetical functions forms a commutative ring with unit-element.

The unit-element is again the function

{ 1if n=1
e(n) = 0if n>1"

The proof is very simple. We only check the associative law for the
multiplicative operation:
(fopobm= 3 3 [dydh@)= 3  Hd)gd)hd"),

dd"=n d’d"=d ardardn=n
@,d" =1 (d@.d") =1

where the dash in the summation-sign indicates that we sum only over
the triples (d’,d”,d") with (d',d")=1, (d'd",d”)=1. This condition,
however, is equivalent to (d',d")=(d",d")=(d",d’)=1 and since this
is symmetric in d’, d”, d”, the associative law follows.

Again the group of units is formed by the functions f(n) with f(1)+0.
Of this group the multiplicative functions (except the zero-function) form
a subgroup ([3], lemma 6.1). .

If f(n) is a unit, its inverse is denoted by ?(n).

It is easily seen that £ contains zero-divisors, hence with the above
operations 2 does not form a domain of integrity.

We now introduce the unitary analogues of some ordinary arithmetical
functions:

wHm) =1 (),
@a*(n)=(u* 0 I,)(n) 3)
oa*(n) =(Ip 0 1,)(n), especially

oo*(n)=1%(n), the number of unitary divisors of n.

3) In the sequel @1*(n) will be denoted bv ¢*(n).
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7
Theorem 4. If n=]] pl, [,>0, then
e=1
lu'*(l)=1, /u‘*(n)=(_l)ra n>1;
T 1
(pa*(l)=l, (pm*(n)=n"‘ ]_—_[ (1— pTlg), n>1;

e=1 4

L 1
Ga*(l)=1> Ga*(n):no‘ H <1+ 7)’ n>1;
e=1 Do

especially
T*(n)=2r, n>1.

Proof. All the functions are multiplicative, so we have only to
evaluate u*(p*), @.*(p*), o,*(p¥), k>0.
(%) Io(1) + pu*(1) Lo(p¥) =0, hence p*(pF)=—1.
@™ (0F) = p*(0%) Lo(1) + p*(1) I(pF) = — 1+ p=*.
0, (PF) = Lo(pF) Lo(1) + Lo(1) Lo(p*) = 1 + p*.

Theorem 5. Let {a,};2, be an arbitrary sequence of real or complex
numbers and let 4, be defined by

Then

b

:l if vfju
= | 0 otherwise

1,...,
For the general element c,, of the matrix X¥7 we have on the other hand

and Y is the matrix {a,b W} u=1....n, bhen clearly det X = 1and det Y = a1az...as,

n n
Cup= Z b,u a; b= Z Q= E Ay,
A=1 A=1 Altu,v]

in view of lemma 2. Hence c,,=4,,, and therefore
det |4, ;| =det X -det Y =amas...an.

From the definition of ¢*(n) it follows immediately
(oo ¢*)(n)=(lo o u* o I)(n)=1Ii(n),

hence > ¢*(d)=n. In this way we obtain the following
al/n
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Corollary of theorem 5.
(L, 1], [L,2], ..., [1, 7]

2 12 F2’ M = g0 g¥2) .. ).
[n 1] [n, 2] , [, n]

This is the unitary analogue of the determinant of SmrTH:
(1, 1), (1, 2), ..., (1, n)
(B 1 (22D e B 1) 09) . gt),
(n 1) (n 2) vees (m, 1)

see e.g. [6], VIII, Aufgabe 57.

Theorem 6. Let {V,(n)}, « real, be a set of multiplicative functions,
not containing the zero-function, such that

No(n)-Ng(n) =Ny 5(n), and let y,(n)=(u* o N,)(n).

Then

%"—;(n>=wa-a(n)-zvﬂ(n).

The proof is similar to the one of theorem 1 and is omitted. Note that
here the function N,(n) need not be completely multiplicative.

Corollary.
i:* (n) =gk_p(m) - Ip(m), -
the analogue of the extension of Gegenbauer’s relation.

Following CorHEN [3], we denote by (a, n), the largest divisor of a
which is unitary divisor of n. The positive integers a <n with (@, n), =1
form the so-called semi-reduced system mod n. Now by a well-known
argument of SYLVESTER, see e.g. [6], VIII, Aufgabe 21, we see that if

n= [] ple, the number of elements of the semi-reduced system is exactly

e=1
n n n
n—— — — — oot +...=0 <1———> = ¢p*(n).
pr P PrPE l_{ pe) ~ ¥ )
Theorem 7. Let ry, g, ..., 7y denote the elements of the semi-
reduced system mod n.
Then
1
rikrek4 ... +7]¢C>*(n)="lk {k—l— I p*(n)+1e(n) +c1,xp*1(n) + 3,6 9% 5(n) + },

k=0,1,2,....
Again the proof can be omitted, since it runs similarly to that of theorem 2.
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