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§ l. Introduction 

If dis a divisor ofthe positive integer n (notation: djn) and (d, njd) = l 
we say that d is a unitary divisor of n; notation: djjn; for instance we 
have always 1//n and njjn. 

Definition. The unitary convolution h(n) of two arithmetical functions 
f(n) and g(n) is defined by 

h(n) = ! /(d) g (i); 
d//n 

notation: h(n) = (f o g)(n). 
Now it is easy to introduce by means of th_is unitary convolution new 

arithmetical functions which may be regarded as the unitary analogues 
of well-known functions such as Mobius' function /h(n), Euler's function 
q;(n) and others. For example, it is possible to define the functions /h(n) 
and q;( n) by means of the formulas : 

{ lifn=l 
Lfh(d)= 0 if n>l' 
d/n 

n 
q;(n)= Lfh(d)a;· 

din 

Similarly, we now define their unitary analogues /h*(n) and q;*(n) by 

{ lifn=l 
L fh*(d) = 0 if n> l' 

d//n 

. n 
q;*(n) = ! /h*(d) d. 

d/!n 

In § 3 we shall derive some relations between these unitary functions, 
while in § 2 we shall develop the theory for the corresponding ordinary 
arithmetical functions. 
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§ 2. Relations, derived by means of the Dirichlet-product 

If we introduce in the set Q of all arithmetical functions the operations 
+ , defined by 

(f+ g)(n) = f(n) +g(n) 

and * , defined by 

(f * g)(n)= ~ f(d) g (i), 
d/n 

(the latter being the so-called convolution or Dirichlet-product), we get 
a domain of integrity in which the law of the unique factorization into 
primes holds [2], p. 982-985. The multiplicative group of units is formed 
by the functions f(n) with f(l) =1= 0; of this group the multiplicative functions 
(except the function which is identical zero) form a subgroup. 

This algebraic structure in Q furnishes us a method to introduce new 
arithmetical functions as generalizations of classical functions [2], p. 978-
979 and of proving known formulas in a very simple way. We may give 
a few examples. 

Defining the functions e(n) and IIX(n) by 

{ l ifn=l 
e(n)= 0 if n> l 

(i.e. e(n) is the unit-element in Q), 

e 
and writing f (n) for the inverse of the (unit-)function f(n), we have 

the well-known formulas (compare § l) 

e 
f-l(n) = Io (n), 

q;(n) = (/1 * l1)(n). 

We now define the function q;IX(n) by 

q;IX(n) = (/1 * I"')(n), 

hence 

Since f-l(n) and I"'(n) are both multiplicative, q;"'(n) is multiplicative 1). 

From the definition of q;"'(n) we see that 

1 ) More precisely: tp"'(mn) =tp"'(m) tp"'(n) ~~~):)), ex =F 0 which follows from [1], 
theorem 3. tp 

33 Series A 
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and hence 

cp"(n) =n" IT (1- 1"). 
pfn P 

The functions IP"(n) occur in the literature for various values of <X. If 
we put <X=2, 3, 4, ... we have cp"'(n)=J"(n), where J"(n) denotes Jordan's 
totient-function of order <X. As an example of a negative value of <X we 
mention a result of CESARO, see e.g. [4], p. 128: 

det !{,u, v}lp=l.2 .... ,n = (n !)2tp-1(1)tp-1(2) ... !p-l(n), 
v =1,2, ... ,n 

where {,u, v}=l.c.m. of ,u and v. 
g 

In the sequel f (n) denotes the convolutionproduct of g(n) and the 

inverse of an unit f(n); hence (t * f)(n) =g(n). 

Theorem 1. Let {No;(n)}, <X real, be a set of completely multi­
plicative arithmetical functions not containing the zero-function, such 
that N"'(n)·NfJ(n)=N"+f3(n) and let 'lfJ"(n)=(,u * N"')(n). 

Then 

Proof. 

(Np * 1fJ"'-f3Np)(n) = d~ 'lfJ"'-fJ(i) NfJ(i) Np(d) = 

Np(n) (lo * 'lfJcr.-p) (n)=Np(n)·Ncr.-p(n)=N"(n). 

From the definition of cp"'(n) it follows that cp"' (n) = 11"' (n); if we now 
tpp {3 

take N"'(n)=lcr.(n) in theorem 1, we get: 

Corollary 1. 

cp" = (n) = Cf?cr.-p(n) ·lp(n). 
tpp 

For <X, (3, <X-{3= 1, 2, 3, ... , this is a well-known result of Gegenbauer 
for the Jordan's functions, see e.g. [4], p. 149. 

Corollary 2. If we define as usual a"(n) = 2 d"'= (Io * I")(n) we have 
din 

a cr. 
= (n) = Cf?cr.-p(n) ·lp(n). 
O"p 

For <X= 2, 3, ... and f3=<X-1 this was proved by NEGOES, see [5]. The 
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functions qy"'(n) occur also in the following result of THACKER, see e.g. 
[4], p. 140: 

Theorem 2. Let r1, r2, ... , r'P<nl denote the qy(n) positive integers 
<.,n and prime to n; then for k=O, 1, 2, ... 

r1k +r2k + ... +r~<nl = 

nk { k ~ 1 qy(n)- co,ke(n) + c1,k tp-1(n) + ca,k tp-a( n) + C5,ktp-5( n) + ... } 

where 

C!,k= l~1 G) Bl+l if k>l, C!,k=O if k<.,l; 

as usual B1, B2, Ba, B4, B5, B6, . . . denote the Bernoullian numbers 
-~ ~ 0 -~ 0 2. 2) 

2' 6' ' SO' ' 42' """ ' 

Proof. Defining f/>k(n) by f/>k(n) =r1k +r2k + ... +r~<nl' k= 0, 1, ... , we 
have 

(f/>k * h)(n) = 1 dkf/>k (~) = 1 1 yk = .i yk = 
d/n d d/n (v,nfd)~l v~l 

1 
k+ 1 Ik+l(n) -co,kh(n) +c1,kh-1(n) +ca,klk-s(n) + .... 

Thus 
1 lk+1 Ik Ik-1 Ik-a 

f/>k(n)= k+ 1 h (n)-co,k Ik (n)+cl,k h (n)+ca,k Ik (n)+ ... 

and hence, it follows from theorem 1, putting Nx{n) =l"'(n): 

f/>k(n) = nk { k ~ 1 tp(n)- co,k e(n) + c1,k tp-1(n) + ca,k tp-a(n) + ... } . 

§ 3. Some unitary analogues 

Lemma 1. If bjja and cjjb then cjja. 

Proof. a=bf3, (b,f3)=1 and b=cy, (c,y)=l. Since cis a divisor 
of b we have (c, [3)=1 and thus (c, [3y)=1; hence, putting [3y=rx, we 
have a= crx, ( c, rx) = 1, which proves the lemma. 

Definition. Let n and m be two positive integers, 

r r 

n= Ilp~e and m= Ilp~e, 1Xe,f3e>0, 
e~I e~I 

with p1, p2, ... , Pr different prime-numbers; then we define 

r 

[ n, m] = II p~<"'e·f!el, 
e~I 

2) In this form the Bernoullian numbers can be defined symbolically by 
Bo = l, Bn = (l + B}n, n > l, if we put Bn = Bn. 
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where 

{ 0 if e<#-(3 
o(e<, (3) = 'f (3. 

C<l C<= 

It is clear that [n, m] is a unitary divisor of n and of m and that [n, m] 
is the largest number with this property. 

Lemma 2. ajj[b, c] if and only if ajjb and ajjc. 

Proof. Let ajjb and ajjc; then af3=b, (a,f3)=1 and ay=c, (a,y)=l. 
From this it follows that [b, c]=a[f3, y], (a, [(3, y])=1 and thus ajj[b, c]. 

Conversely, ajj[b, c ]jjb implies ajjb; similarly, ajjc. 

Theorem 3. With the ordinary addition + as additive operation 
and the unitary convolution o as multiplicative operation, the set Q of 
all arithmetical functions forms a commutative ring with unit-element. 

The unit-element is again the function 

{ 1ifn=1 
e(n) = 0 if n> 1 · 

The proof is very simple. We only check the associative law for the 
multiplicative operation: 

((fog) o h)(n) = 1 1 f(d')g(d")h(d 111 ) = 1' f(d')g(d")h(d 111 ), 

ddfll=n d'd"=d d'd"d"'=n 
(d,d'"l=l (d',d11 )=1 

where the dash in the summation -sign indicates that we sum only over 
the triples (d', d", d 111 ) with (d', d") = 1, (d'd", d 111 ) = l. This condition, 
however, is equivalent to (d', d")=(d", d 111 )=(d"', d')=1 and since this 
is symmetric in d', d", d 111 , the associative law follows. 

Again the group of units is formed by the functions f(n) with f(1)#-0. 
Of this group the multiplicative functions (except the zero-function) form 
a subgroup ([3], lemma 6.1). 

If f(n) is a unit, its inverse is denoted by y(n). 

It is easily seen that Q contains zero-divisors, hence with the above 
operations Q does not form a domain of integrity. 

We now introduce the unitary analogues of some ordinary arithmetical 
functions: 

e 
f-l*(n) = Io (n), 

({!"' *(n) = (f-l* o J"')(n) 3) 

a"' *(n) = (Jo o J"')(n), especially 

a0*(n)=<*(n), the number of unitary divisors of n. 

3) In the sequel tp1*(n) will be denoted bv rp*(n). 
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r 
Theorem 4. If n=II p:e, le>O, then 

e~I 

,u*(l)=l, ,u*(n)=(-lY, n>l; 

cp"'*(l)=l, cp"'*(n)=n"' IT (1- ~), n>l; 
e~I Pee 

a"'*(l)=l, a"'*(n)=n"' IT (l+ -h), n>l; 
e~I Pee 

especially 

r*(n)=2r, n>l. 

Proof. All the functions are multiplicative, so we have only to 
evaluate ,u*(pk), cp"' *(pk), a"' *(pk), k> 0. 

,u*(pk)J0(l)+,u*(l) 10(pk)=0, hence ,u*(pk)= -l. 

cp"' *(pk) = ,u*(pk) J"'(l) + ,u*(I) l"'(pk) =-I+ p"'k. 

a"' *(pk) =lo(pk) 1"'(1) +lo(l) I"'(pk) =I +p"'k. 

Theorem 5. Let {an};;"~ 1 be an arbitrary sequence of real or complex 
numbers and let An be defined by 

Then 

An= zaa,, n=I, 2, .... 
d//n 

det JArl'.~lJI'~ 1 • 2 , ...• n =a1·a2· ... ·an. 
v =1.2 •...• n 

Proof. If X is the matrix {b".}"~I .... ,n with 
~ ~l, ... ,n 

{ I if v//,u 
b "~ = 0 otherwise ' 

and Yisthematrix{a.b".} "~I ..... n' then clearly detX =land det Y =a1a2 ... an. 
~ ~l •... ,n 

For the general element c". of the matrix XYT we have on the other hand 

in view of lemma 2. Hence c"~=Arl',~l and therefore 

det JAr".~1 J =det X ·det Y =a1a2 ... an. 

From the definition of cp*(n) it follows immediately 

(Io o cp*)(n) = (lo o .u* o h)(n) =h(n), 

hence z cp*(d)=n. In this way we obtain the following 
d//n 
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Corollary of theorem 5. 

[1, 1], [1, 2], ... , [1, n] 
[2, 1], [2, 2], ... , [2, n] 

= tp*(1)tp*(2) ... tp*(n). 

[n, 1], [n, 2], ... , [n, n] 

This is the unitary analogue of the determinant of SMITH: 

(1, 1), (1, 2), ... , (1, n) 
(2, 1), (2, 2), ... , (2, n) 

=tp(1) tp(2) ... tp(n), 

(n, 1), (n, 2), ... , (n, n) 

see e.g. [6], VIII, Aufgabe 57. 

Theorem 6. Let {Na(n)}, 01- real, be a set of multiplicative functions, 
not containing the zero-function, such that 

Then 

N'"(n)·N8(n)=Na+f;(n), and let "Pa(n)=(tt* oNa)(n). 

~"" (n)=1p"_ 8 (n)·Np(n). 
{J 

The proof is similar to the one of theorem 1 and is omitted. Note that 
here the function N'"(n) need not be completely multiplicative. 

Corollary. 
tp* 
--; (n) =tJ?!-p(n) · lp(n), -­
tpa 

the analogue of the extension of Gegenbauer's relation. 
Following CoHEN [3], we denote by (a, n)* the largest divisor of a 

which is unitary divisor of n. The positive integers a<,n with (a, n)* = 1 
form the so-called semi-reduced system mod n. Now by a well-known 
argument of SYLVESTER, see e.g. [6], VIII, Aufgabe 21, we see that if 

1 

n= II p~e, the number of elements of the semi-reduced system is exactly 
e~l 

n n n _ 1 
( 1)- * n-~,- z,- ... + ~ + ... -n II 1--1 - tp (n). 

P1 P2 P1 P2 e~l Pee 

Theorem 7. Let r1, r2, ... , r'l'*<nl denote the elements of the semi­
reduced system mod n. 
Then 

r1k +r2k + .. · +r~*<nl =nk { k: 1 tp*(n) +ie(n) + C!,ktp": 1(n) +c3,ktp": 3(n) + ... } , 
k=O, 1, 2, .. .. 

Again the proof can be omitted, since it runs similarly to that of theorem 2. 

Mathematisch Instituut 
University of Amsterdam 
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