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This paper presents a computational technique based on the collocation method and
Müntz polynomials for the solution of fractional differential equations. An appropriate
representation of the solution via the Müntz polynomials reduces its numerical treatment
to the solution of a system of algebraic equations. The main advantage of the present
method is its superior accuracy and exponential convergence. Consequently, one can
obtain good results even by using a small number of collocation points. The accuracy
and performance of the proposed method are examined by means of some numerical
experiments.
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1. Introduction

Fractional calculus was first developed as a pure mathematical theory in the middle of the 19th century [1]. About
100 years later, engineers and physicists found applications for these concepts in their areas [2–4]. Fractional derivatives
provide an excellent instrument for the description of memory and hereditary properties of various materials and
processes [5]. In some cases, the fractional order models of real systems are more adequate compared to the integer order
models. So, in recent decades, the field of fractional calculus has attracted the interest of researchers in several areas
including physics, chemistry, engineering and even finance and social sciences [6,7,5].

This paper concerns the numerical solution of single term fractional differential equations

Dq
⋆y(t) = f (t, y(t)), 0 < q ≤ 1, (1)

with an initial condition y(0) = y0. Here Dq
⋆ denotes the fractional derivative in the Caputo sense [8,4],

Dq
⋆y(t) =

1
Γ (1 − q)

∫ t

0
(t − τ)−qy′(τ )dτ , 0 < q < 1, (2)

and f is a function of two variables from an appropriate functional space. Equations of this type arise in a number of
applications (see, for example [3–5]). During the past decades, several numerical methods have been used to solve fractional
differential equations of this type. Ford and Connolly [9] and Diethelm et al. [10] have reviewed some of the existing
methods and demonstrated their respective strengths and weaknesses. For further analytical and numerical schemes to
solve fractional differential equations, we refer the reader to [11–19].

In this article, a different approach for the numerical treatment of fractional differential equations is proposed. This
approach is based on the collocation method. Since a fractional derivative is a global operator, it is very natural to consider
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a global method like the collocation method for its numerical solution [20]. Spectral collocation methods are efficient and
highly accurate techniques for numerical solution of nonlinear differential equations. One of their prominent features is the
exponential convergence of the approximations [21–24].

The basic idea of the spectral collocation method is to assume that the unknown solution y(t) can be approximated by
a linear combination of some basis functions, called the trial functions, such as orthogonal polynomials. The orthogonal
polynomials can be chosen according to their special properties, whichmake them particularly suitable for a problem under
consideration.

Whereas the classical orthogonal polynomials work well for numerical solution of conventional differential equations,
their application for the fractional differential equations implies at least two difficulties in connection with the collocation
method. First, according to Theorems 6.33 and 6.38 in [8], solutions of fractional differential equation (1) can contain some
fractional-power terms that the classical orthogonal polynomials cannot match. In this case the rate of convergence of the
numerical approximations is not reasonable when the classical polynomial bases are used. Second, to apply a collocation
method, it is crucial that derivatives of any trial function can be expressed in terms of the same trial bases. But the fractional
derivatives of a classical polynomial are not polynomials, sowe cannot hope to obtain a good approximation for the fractional
derivatives via the classical orthogonal polynomials.

In the present article, we use the Müntz–Legendre polynomials, which are a family of generalized orthogonal
polynomials. These polynomials were introduced and investigated in [25–27]. A fractional derivative of aMüntz polynomial
is again a Müntz polynomial. This is a crucial feature of these bases for using them in the collocation method for numerical
solution of the fractional differential equations.We start with a construction of a stable numerical method for evaluating the
Müntz–Legendre polynomials and their fractional derivatives,which, to the best of our knowledge, has not been investigated
before. Then, by applying an appropriate finite or discrete representation of the solution based on the Müntz–Legendre
polynomials, the problem under consideration can be reduced to solve a system of algebraic equations that can be done by
a number of known methods.

The rest of the paper is organized as follows: In the next section, a brief overview of the orthogonal polynomials and
Gaussian quadrature is given. In Section 3, the Müntz–Legendre polynomials are introduced. The Section 4 is devoted to
presentation of a stable numerical method for evaluating the fractional derivatives of the Müntz–Legendre polynomials.
In Section 5, the collocation method is applied for numerical solution of the fractional differential equations. Finally, some
numerical examples are given in Section 6 to demonstrate the effectiveness of the proposed method.

2. A brief overview of orthogonal polynomials

2.1. Recurrence relations for orthogonal polynomials

Let w = w(t) be a weight function on the interval [a, b], i.e., a non-negative integrable function defined in [a, b]. The
integral

(u, v)w =

∫ b

a
u(t)v(t)w(t)dt, (3)

defines the inner or scalar product of the functions u(t) and v(t) over the interval [a, b] with respect to the weight function
w(t). The numbers

µr =

∫ b

a
t rw(t)dt, r = 0, 1, . . . , (4)

are called the moments related to the weight function w. For each weighted scalar product (3), there exist uniquely
determined polynomials πk ∈ Pk with the leading coefficient 1, which are orthogonal each to other with respect to this
scalar product. They satisfy a three-term recurrence relation

πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . . , (5)

with starting values π−1 := 0, π0 := 1, and with the coefficients

αk =
(tπk, πk)w

(πk, πk)w
, k = 0, 1, 2, . . . ,

βk =
(πk, πk)w

(πk−1, πk−1)w
, k = 1, 2, . . . . (6)

The three-term recurrence relation (5) is quite stable and can thus be conveniently employed for the numerical computation
of orthogonal polynomials [28].

For the classical orthogonal polynomials, e.g. Jacobi, Laguerre, and Hermite polynomials, formulae for the coefficients
αk and βk are known in closed form [28,29]. For the nonclassical weight functions, their recurrence coefficients are not
explicitly known. In this case, numerical techniques such as Stieltjes procedure or Chebyshev algorithm are used to evaluate
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the coefficients [30]. In this paper,we use the Chebyshev algorithm that derives the desired coefficients from themoments of
the underlying weight function w(t). In this way, all recurrence coefficients can be calculated. For the readers convenience,
the Chebyshev algorithm is presented below [28].

Algorithm 1. Chebyshev Algorithm
1. Initialization:

α0 =
µ1

µ0
, β0 = µ0,

σ−1,ℓ = 0, ℓ = 1, 2, . . . , 2n − 2,
σ0,ℓ = µℓ, ℓ = 0, 1, . . . , 2n − 1.

2. Construction (if n > 1): for k = 1, 2, . . . , n − 1 do

σkℓ = σk−1,ℓ+1 − αk−1σk−1,ℓ − βk−1σk−2,ℓ, ℓ = k, k + 1, . . . , 2n − k − 1,

αk =
σk,k+1

σk,k
−

σk−1,k

σk−1,k−1
,

βk =
σk,k

σk−1,k−1
.

The Chebyshev algorithm requires moments {µr}
2n−1
r=0 as input, and produces the recurrence coefficients {αk, βk}

n−1
k=0 . The

complexity of the algorithm is O(n2).

2.2. Jacobi polynomials

The well-known Jacobi polynomials P (α,β)

k with parameters α, β > −1 and their special cases are probably the most
widely used classical orthogonal polynomials for numerical solution of differential equations. The explicit form of Jacobi
polynomials that has been used e.g. in [29] is

P (α,β)

k (x) =

k−
m=0

(−1)k−m(1 + β)k(1 + α + β)k+m

m!(k − m)!(1 + β)m(1 + α + β)k


1 + x
2

m

, (7)

where
(d)0 = 1, (d)i = d(d + 1) · · · (d + i − 1).

This expression shows that P (α,β)

k are analytic functions of the parameters α and β . The Jacobi polynomials are orthogonal
over the interval (−1, 1) with respect to the weight function w(α,β)(x) = (1 − x)α(1 + x)β . The choice α = β = 0 yields
the Legendre polynomials, while choosing α = β = −1/2 gives Chebyshev polynomials.

In practice, one can compute the Jacobi polynomials using the following recurrence relation [23,28,29]

P (α,β)

0 (x) = 1, P (α,β)

1 (x) =
1
2
[(α − β) + (α + β + 2)x],

aα,β

1,k P
(α,β)

k+1 (x) = aα,β

2,k (x)P (α,β)

k (x) − aα,β

3,k P
(α,β)

k−1 (x), (8)
where

aα,β

1,k = 2(k + 1)(k + α + β + 1)(2k + α + β),

aα,β

2,k (x) = (2k + α + β + 1)[(2k + α + β)(2k + α + β + 2)x + α2
− β2

],

aα,β

3,k = 2(k + α)(k + β)(2k + α + β + 2). (9)
A useful formula that relates Jacobi polynomials and their derivatives is

d
dx

P (α,β)

k (x) =
1
2
(k + α + β + 1)P (α+1,β+1)

k−1 (x). (10)

2.3. Gauss-type quadrature rules

An n-point quadrature rule for the weight function w is called a formula of the type∫ b

a
f (t)w(t)dt =

n−
k=1

ωkf (τk) + Rn(f ), (11)

where the sum on the right-hand side of the equation provides an approximation to the integral and Rn is the error. The
numbers τk, k = 1, . . . , n are called nodes and ωk are called weights of the quadrature rule. Among all quadrature rules of
the form (11) those of the Gaussian type have the best performance. More precisely, if nodes τk andweightsωk are chosen in
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theway that quadrature rule (11) becomes exact for polynomials of degree atmost 2n−1, then this quadrature rule is called
a Gauss-type quadrature rule. It can be proved that the nodes τk in a Gaussian quadrature are the roots of the orthogonal
polynomial πn associated with the weight function and the weights ωk can be obtained from the following system of linear
equations:

n−
k=1

ωkτ
r
k = µr , r = 0, 1, . . . , 2n − 1. (12)

As n increases, finding roots ofπn and solving the linear system (12) become an ill-conditioned and time consuming problem.
Alternatively,we canuse theGolub–Welsch algorithm [31] to determine thenodes and theweights of aGaussian quadrature.
This approach is based on determining the eigenvalues and normalized eigenvectors of the following symmetric tridiagonal
matrix

Jn =



α0


β1 0
β1 α1


β2

β2 α2
. . .

. . .
. . .


βn−1

0


βn−1 αn−1

 . (13)

This matrix is known as the Jacobi matrix and its elements are obtained from the coefficients of the three-term recurrence
relation (5). The nodes τk are the eigenvalues of the matrix Jn and the corresponding weights ωk may be obtained from the
first components of the normalized eigenvectors. For more details see [28,32,31].

3. Müntz polynomials

In 1885, Weierstrass proved that every continuous function on a compact interval can be uniformly approximated
by algebraic polynomials. One of the first outstanding generalizations of the Weierstrass theorem is due to German
mathematician Herman Müntz [33].

Let Λ = {λ0, λ1, λ2, . . .} be a sequence of distinct positive numbers such that 0 ≤ λ0 < λ1 < · · · → ∞. The classical
Müntz–Szász theorem states that the Müntz polynomials of the form

∑n
k=0 akx

λk with real coefficients are dense in L2[0, 1]
if and only if

∑
∞

k=1 λ−1
k = +∞. If the constant function 1 belongs to the system, that is if λ0 = 0, then the same result holds

for C[0, 1] with the uniform norm. A proof of the Müntz–Szász theorem can be found in [34].
In this paper, we consider the Müntz–Legendre polynomials, which are orthogonal over the interval (0, 1) with respect

to the weight function w(x) = 1.

3.1. Müntz–Legendre polynomials

Let the complex numbers from the set Λn = {λ0, λ1, . . . , λn} satisfy the condition Re(λk) > −1/2. Then the
Müntz–Legendre polynomials on the interval (0, 1] are defined by (see [25–27])

Pn(x) := Pn(x; Λn) =

n−
k=0

Cn,kxλk , Cn,k =

n−1∏
ν=0

(λk + λ̄ν + 1)

n∏
ν=0,ν≠k

(λk − λν)

. (14)

For the Müntz–Legendre polynomials (14), the orthogonality relation

(Pn, Pm) =

∫ 1

0
Pn(x)Pm(x)dx =

δnm

λn + λ̄n + 1

holds true. It is easy to prove that Pn(1) = 1 and P ′
n(1) = λn +

∑n−1
k=0(λk + λ̄k + 1) [25].

In this paper, we consider the casewhen the powers of theMüntz basis elements build an arithmetic progression. In other
words, we assume that there exists a positive number α such that λk = kα. In this case, the Müntz–Legendre polynomials
on the interval [0, T ] are represented by the formula

Ln(t; α) :=

n−
k=0

Cn,k


t
T

kα

, Cn,k =
(−1)n−k

αnk!(n − k)!

n−1∏
ν=0

((k + ν)α + 1). (15)

The functions Lk(t; α), k = 0, 1, . . . , n form an orthogonal basis for Mn,α , where Mn,α is defined by

Mn,α = span{1, tα, . . . , tnα}, t ∈ [0, T ],

= {c0 + c1tα + · · · + cntnα : ck ∈ R, t ∈ [0, T ]}.
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3.2. Numerical evaluation of Ln(t; α)

A direct evaluation of Müntz–Legendre polynomials in the form (14) can be problematic in finite arithmetic, especially
when n is a large number and x is close to 1. These problems have been addressed by Milovanović in [27] and arise from
the fact that the coefficients Cn,k become very large when n increases, but their sums are always equal to 1. For example, for
n = 10 we get

L10(t; 1/2) = 11 − 660t1/2 + 12 870t − 120 120t3/2 + 630 630t2 − 2 018 016t5/2

+ 4 084 080t3 − 5 250 960t5/2 + 4 157 010t4 − 1 847 560t7/2 + 352 716t5.

In this section, we present a stable method for evaluating the Müntz–Legendre polynomials defined by (15). Our technique
is based on a three-term recurrence relation that is induced from the following theorem.

Theorem 3.1. Let α > 0 be a real number and t ∈ [0, T ]. Then the representation

Ln(t; α) = P (0,1/α−1)
n


2


t
T

α

− 1


(16)

holds true.

Proof. By substituting x = 2
 t
T

α
− 1 in (7), we get

P (0,1/α−1)
n


2


t
T

α

− 1


=

n−
k=0

(−1)n−k(1/α)n+k

k!(n − k)!(1/α)k


t
T

kα

=

n−
k=0

(−1)n−k

αkk!(n − k)!

n−1∏
ν=0

((k + ν)α + 1)


t
T

kα

=

n−
k=0

Cn,k


t
T

kα

= Ln(t; α),

and the proof is completed. �

So, in view of (8) and (9), the Müntz–Legendre polynomials Ln(t; α) can be evaluated by means of the three-term
recursion

L0(t; α) = 1, L1(t; α) =


1
α

+ 1


t
T

α

−
1
α

,

b1,nLn+1(t; α) = b2,n(t)Ln(t; α) − b3,nLn−1(t; α), (17)

where

b1,n = a0,1/α−1
1,n , b2,n(t) = a0,1/α−1

2,n


2


t
T

α

− 1


, b3,n = a0,1/α−1
3,n .

The stability of the three-term recurrence relation (17) compared to that of the power form (15) is illustrated in Fig. 1, where
we plotted the absolute errors in the values of Ln(T ; α) for α = 0.5 obtained by (17) and (15) for n = 1, . . . , 40. Note that
in all cases the relation Ln(T ; α) = 1 holds true. As we can see, the values obtained by using the power form (15) are quite
inaccurate for n ≥ 20. In contrast, with the recurrence relation (17) the values of Ln(t; α) can be evaluated accurately even
for large values of n.

4. Numerical evaluation of Dα
⋆Ln(t;α)

Let Ln(t; α) be defined by (15). Then the Caputo fractional derivative of Ln(t; α) can be represented in the form

Dα
⋆ Ln(t; α) :=

n−
k=1

Dn,k


t
T

(k−1)α

, Dn,k =
Γ (1 + kα)

Γ (1 + kα − α)Tα
Cn,k. (18)

The Eq. (18) was obtained from (15) by means of the well-known formula

Dα
⋆ t

β
=

Γ (1 + β)

Γ (1 + β − α)
tβ−α, α > 0, β > −1, t > 0. (19)

It is important to notice that Dα
⋆ Ln(t; α) ∈ Mn,α . Again, the coefficients Dn,k become very large when n increases and direct

evaluation of Dα
⋆ Ln(t; α) can be problematic, too. In what follows, we introduce a stable numerical method for evaluating of

Dα
⋆ Ln(t; α). One of the important components of this method is presented in the following theorem.
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Fig. 1. Errors in the values of Ln(T ; 0.5) versus n.

Theorem 4.1. Let 0 < α < 1 be a real number and t ∈ [0, T ]. Then the representation

Dα
⋆ Ln(t; α) =

1 + nα
αΓ (1 − α)Tα

∫ 1

0
(1 − x1/α)−αP (1,1/α)

n−1


2


t
T

α

x − 1

dx (20)

holds true.

Proof. By definition, we get

Dα
⋆ Ln(t; α) =

1
Γ (1 − α)

∫ t

0
(t − τ)−α d

dτ
Ln(τ ; α)dτ . (21)

The Eqs. (16) and (10) lead to the formula

d
dτ

Ln(τ ; α) =
1
Tα

(1 + nα)τ α−1P (1,1/α)

n−1


2
 τ

T

α

− 1


. (22)

Substituting (22) into (21) we arrive at the representation

Dα
⋆ Ln(t; α) =

1 + nα
Γ (1 − α)Tα

∫ t

0
(t − τ)−αP (1,1/α)

n−1


2
 τ

T

α

− 1


τ α−1dτ . (23)

Formula (20) follows now from (23) by applying the change of variables

τ = tx1/α, x ∈ [0, 1]. �

To calculate the integral on the right-hand side of (20), N-point Gaussian quadrature rule∫ 1

0
(1 − t1/α)−α f (t)dt =

N−
k=1

ω
(α)
k f (τ (α)

k ), f ∈ P2N−1 (24)

is used. Unfortunately, the weight functionw(t; α) := (1− t1/α)−α is a nonclassical one and no explicit formulae are known
for ω

(α)
k and τ

(α)
k . But we can use the Chebyshev and Golub–Welsch algorithms to calculate the nodes and weights in (24)

as discussed in 2nd Section. Let us note that the quadrature rule (24) with N = ⌈n/2⌉ becomes exact for computing the
integral in (20). After obtaining the nodes τ

(α)
k and weights ω

(α)
k , the fractional derivative Dα

⋆ Ln(t; α) can be computed by
using the formula

Dα
⋆ Ln(t; α) =

1 + nα
αΓ (1 − α)Tα

⌈n/2⌉−
k=1

ω
(α)
k P (1,1/α)

n−1


2


t
T

α

τ
(α)
k − 1


. (25)

Now, in the following three steps, we elaborate the computation of the nodes τ
(α)
k and weights ω

(α)
k in (25).

Step 1. Determine the moments µr given by (4). This can be done by using the following theorem.

Theorem 4.2. For the moments µr that correspond to the weight w(t; α) = (1 − t1/α)−α the formula

µr = αB(αr + α, 1 − α) (26)

is valid, where B(·, ·) is the Beta function.
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Proof. From (4), we have

µr =

∫ 1

0
t rw(t; α)dt =

∫ 1

0
t r(1 − t1/α)−αdt. (27)

If we set t = zα , Eq. (27) becomes

µr = α

∫ 1

0
zαr+α−1(1 − z)−αdz.

By noting that [4]

B(p, q) =

∫ 1

0
zp−1(1 − z)q−1dz, p, q > 0,

the proof is completed. �

Step 2. Calculate the coefficients α
(α)
k and β

(α)
k in the three-term recurrence relation (5) by using the moments (26) and the

Chebyshev algorithm. Unfortunately, the use of moments is numerically problematic inasmuch as they give rise to severe
ill-conditioning [28]. Thus, in order to obtain the double precision results at this step, the authors have performed the
computation inMAPLE with about 40 digits operations.
Step 3. Construct the tridiagonal Jacobi matrix JN as mentioned in (13) by using the coefficients α

(α)
k and β

(α)
k . The Jacobi

matrix allows then to compute the nodes and the weights in (25).

5. The collocation method

In this section, the collocation method [23,21] is applied for solving an initial value problem for a nonlinear fractional
differential equation

Dα
⋆ y(t) = f (t, y(t)), t ∈ (0, T ], (28)

y(0) = y0. (29)

Under certain conditions on the function f , the initial value problem (28)–(29) possesses unique solution y in an appropriate
space of functions (see e.g. [8,18] for details). Numerical evaluation of this solution is the aim of this section. At first, the
solution y is approximated by ỹn ∈ Mn,α as the finite sum

ỹn(t) :=

n−
k=0

akLk(t; α), (30)

where ak are unknown coefficients. It is worthwhile to note that if ỹn ∈ Mn,α , then Dα
⋆ ỹn belongs to Mn,α , too. This key

property is crucial for application of the collocation method to the initial value problem (28)–(29).
The unknown coefficients ak in approximation (30) are obtained from the initial condition

ỹn(0) = y0, (31)

and the fact that ỹn(t) should satisfy the fractional differential equation in some suitably chosen collocation points θi, i =

1, . . . , n. More precisely, the relations

Dα
⋆ ỹn(θi) = f (θi, ỹn(θi)), i = 1, . . . , n (32)

have to be valid.
It is a well-established fact, that a proper choice of collocation points is crucial for the accuracy of the numerical solution

and for its computational stability [23,22]. In our case, a particularly convenient choice for the collocation points θi is
θi = t1/αi , i = 1, . . . , n, where ti are Chebyshev–Gauss–Lobatto points associated with the interval [0, T ], i.e.,

ti =
T
2

−
T
2
cos

π i
n

, i = 0, . . . , n.

Substituting (30) into (31), the equation

g0(a0, . . . , an) :=

n−
k=0

akLk(0; α) − y0 = 0 (33)

is obtained. In its turn, Eq. (32) can be presented in form of n algebraic equations

gi(a0, . . . , an) :=

n−
k=0

akDα
⋆ Lk(θi; α) − f


θi,

n−
k=0

akLk(θi; α)


= 0, i = 1, . . . , n. (34)
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Note that Dα
⋆ Lk(θi; α) in (34) can be computed by using (25). The Eqs. (34) and (33) are nothing else than a system of (n+ 1)

equations for the (n + 1) unknown coefficients ak that can be written in the form

G(a) = 0, (35)

where a = [a0, a1, . . . , an]T and G : Rn+1
→ Rn+1 is defined as

G(a) =


g0(a0, . . . , an)
g1(a0, . . . , an)

...
gn(a0, . . . , an)

 .

In the case of linear fractional differential equations, (35) becomes a linear system. The coefficients ak are obtained by solving
this system of algebraic equations with one of the known methods. Substituting them into (30) leads to an approximated
solution of the fractional initial value problems (28)–(29).

6. Numerical results

This section is devoted to presentation of some numerical simulations obtained by applying the collocation method. The
algorithm for numerical approximation of solutions to the initial value problems for the fractional differential equations
that we discussed in the previous sections was implemented with Matlab. In the case of nonlinear equations, the Matlab
function fsolvewas used for solving the nonlinear system (35). For generating the nodes andweights in (25) the OPQMatlab
routines written by Gautschi [28] were employed.

In the case the exact solution y to a problem is known, the dependence of approximation errors on the discretization
parameter nwas estimated in 2-norm

en =

 n−
k=0

(ỹn(θk) − y(θk))2,

where ỹn is the approximated solution corresponding to the discretization parameter n.

Example 6.1. We start with a simple linear problem [4]

Dα
⋆ y(t) + y(t) = 0, y(0) = 1 0 < α ≤ 1.

The exact solution for this problem is given by y(t) = Eα(−tα), where Eα(z) is the Mittag-Leffler function defined by the
power series

Eα(z) =

∞−
k=0

zk

Γ (kα + 1)
, α > 0.

Algorithms for evaluation of the Mittag-Leffler function were presented e.g. in [35–38]. In our simulations, we used the
Matlab routines from [37] implemented according to the algorithm suggested in [35]. In Fig. 2, the approximation error en as
a function of the discretization parameter n for α = 0.25, 0.50, 0.75 and T = 1 is plotted in a semi-log coordinate system.
As expected, the error en shows an exponential decay that corresponds to its linear dependence from the discretization
parameter n. This result demonstrates the spectral accuracy of the collocation method.

Example 6.2. Our next example corresponds to the case when the solution y has a smooth derivative of order 0 < α < 1
[8,19]. Specifically, we consider the equation

Dα
⋆ y(t) =

40 320
Γ (9 − α)

t8−α
− 3

Γ (5 + α/2)
Γ (5 − α/2)

t4−α/2
+

9
4
Γ (α + 1) +


3
2
tα/2

− t4
3

− [y(t)]3/2

with a nonlinear and nonsmooth right-hand side. The analytical solution subject to the initial condition y(0) = 0 is given
by

y(t) = t8 − 3t4+α/2
+

9
4
tα.

The approximation error en for α = 0.25, 0.50, 0.75 and T = 1 is plotted in Fig. 3. As we can see, en decreases rapidly until
it takes a value about 10−15. This error can be explained by the computer round-off errors that prevent any further accuracy
improvements.

In Fig. 4, the approximated solutions obtained by our method for α = 0.50 and n = 6, 12 as well as the exact solution
are plotted. As one can see, the collocation method provides accurate results even with a small number of nodes (n = 12 in
the example).
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Fig. 2. Approximation error en versus n for various values of α (Example 6.1).

Fig. 3. Approximation error en versus n for various values of α (Example 6.2).

Fig. 4. Approximated solutions for α = 0.5 with n = 6, 12 nodes and the exact solution (Example 6.2).

Example 6.3. Next the fractional Riccati equation [39]

Dα
⋆ y(t) = 1 + 2y(t) − [y(t)]2, 0 < α ≤ 1,

subject to the initial condition y(0) = 0 is considered.
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Fig. 5. Approximated solution for α = 0.75, 0.80, 0.85, 0.90, 0.95 with n = 15 nodes and the exact solution for α = 1.0 (Example 6.3).

Table 1
Approximated solution for α = 0.5 andwith n = 10, 20, 30, 40 nodes (Example 6.3). Correct
decimal places of the approximations are highlighted in the bold face.

t n = 10 n = 20 n = 30 n = 40

0.2 0.9332 0.933183 0.933182830 0.9331828302720
0.4 1.3466 1.346649 1.346650336 1.3466503353693
0.6 1.5705 1.570565 1.570564952 1.5705649520653
0.8 1.7069 1.706875 1.706874594 1.7068745937766
1.0 1.7982 1.798214 1.798214731 1.7982147311079
1.2 1.8637 1.863872 1.863872124 1.8638721236212
1.4 1.9135 1.913559 1.913559556 1.9135595555231
1.6 1.9528 1.952643 1.952642348 1.9526423484866
1.8 1.9840 1.984313 1.984313450 1.9843134499528
2.0 2.0116 2.010593 2.010589863 2.0105898635732

The approximated solutions are evaluated for α = 0.75, 0.80, 0.85, 0.90, 0.95 with n = 15 nodes. The results of the
numerical simulations are plotted in Fig. 5. In contrast to a fractional α (0 < α < 1), for α = 1 the exact solution of the
Riccati equation with the initial condition y(0) = 0 is known:

y(t) = 1 +
√
2 tanh


√
2t +

1
2
ln

√
2 − 1

√
2 + 1


.

This exact solution is plotted in Fig. 5, too. One can see that as α approaches 1, the numerical solution converges to that of
the Riccati equation with α = 1. In Table 1, numerical results for the problem from Example 6.3 for α = 0.5 obtained by
the collocation method with various values of n in some points t ∈ [0, 2] are given. The accuracy and convergence of the
method is illustrated by highlighting all correct decimal places of the approximations in the bold face.

Example 6.4. The final example is the nonlinear equation [8]

Dα
⋆ y(t) = (0.5 − t) sin y(t) + 0.8t3, 0 < α ≤ 1,

subject to the initial condition y(0) = y0.
The approximated solutions for α = 0.28 with n = 15 nodes are plotted in Fig. 6. The obtained numerical results are in

very good agreement with the results presented in [8]. In Table 2, numerical results for the problem from Example 6.4 for
α = 0.28 and the initial condition y(0) = 1.6 obtained by the collocation method with various values of n in some points
t ∈ [0, 1] are given. The accuracy and convergence of the method is illustrated by highlighting all correct decimal places of
the approximations in the bold face.

7. Conclusions

In this paper, the collocation method has been adopted for numerical solution of the initial value problems for fractional
differential equations. A special family of the Müntz–Legendre polynomials was used as an approximation basis. The
collocationmethod is characterized by its simplicity, efficiency, and high accuracy. Thismethod can be readily implemented,
too, especially in the framework of the so called computer algebra systems. The accuracy and validity of the presented
methodwere demonstrated through numerical simulations for a number of examples. Of course, obtaining some theoretical
estimates for the approximation errors would be desirable. This work is currently in progress. Another direction for further
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Fig. 6. Approximated solutions for α = 0.28 with n = 15 nodes with five different initial values y(0) = 1.2, 1.3, 1.4, 1.5, 1.6 (Example 6.4).

Table 2
Approximated solution for α = 0.28, y(0) = 1.6 and with n = 10, 20, 30, 40 nodes
(Example 6.4). Correct decimal places of the approximations are highlighted in the bold face.

t n = 10 n = 20 n = 30 n = 40

0.1 1.8382 1.8382086 1.8382086235 1.83820862358424
0.2 1.8377 1.8377383 1.8377383455 1.83773834555485
0.3 1.8145 1.8145965 1.8145965052 1.81459650519912
0.4 1.7840 1.7839932 1.7839932850 1.78399328504674
0.5 1.7543 1.7543845 1.7543845332 1.75438453330184
0.6 1.7325 1.7326331 1.7326330909 1.73263309096366
0.7 1.7250 1.7251277 1.7251277702 1.72512777030217
0.8 1.7382 1.7381901 1.7381899697 1.73818996972004
0.9 1.7787 1.7785288 1.7785290416 1.77852904152860
1.0 1.8532 1.8541828 1.8541838725 1.85418387310940

research would be to extend the presented method to the systems of fractional differential equations, the so called multi-
term fractional differential equations, and fractional differential equations of the distributed order.
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