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a b s t r a c t

Product–sum property states that an ordered pair (sn, pn) is unique for any ordered set
a1, a2, . . . , an where ai, n ∈ N, and sn and pn are the sum and product of the elements of
the set, respectively. This fact has been exploited to develop an O(log(M)) time complexity
algorithm for pattern searching in a large dataset, where M is the number of records in
the dataset. Two potential applications (from databases and computational biology) of this
property have been demonstrated to show the effectiveness and working of the proposed
algorithm. The space complexity of the algorithm rises to the quadratic order.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Deriving useful knowledge from huge data and its further processing is an active research area in the field of computer
science. It is always desired to discover specific patterns, in large databases, relevant to the user’s need [1]. Some statistical
algorithms, for pattern searching, may generate some irrelevant patterns that may give some misleading information in
information processing systems. Therefore, the quality of knowledge thus developed depends on the closeness of such
patterns to the specific patterns. To extract effective information from a huge amount of data in databases, algorithms must
be efficient. A lot of research activity has been carried out in this direction; see for example [2–11].

In the existing literature in this area, Grover’s algorithm [12] is regarded as themost efficient one. It works on an unsorted
database of M records out of which only one item satisfies a given condition and only one record is retrieved. Grover’s
algorithm scans at an average ofM/2 records before finding the desired record, and its computational complexity isO(

√
M).

Given that a database containsM records, a problem of identification of records of which one or more satisfy a particular
property, is considered. An algorithm presented for this purpose is faster than Grover’s algorithm. Our algorithm is based
on the product–sum property of sets. Grover’s algorithm identifies only unique records whereas our algorithm searches for
queries demanding more than one record, in logarithmic computational complexity in terms of the number of records in
the database. A utility of our algorithm, in search of a continuous string of characters appearing in genomic data, is also
established.

The product–sum property is defined and some relationships are derived. A logarithmic complexity algorithm, to scan
databases using the product–sum property, is presented. Then, two examples, one from databases and the other from
computational genetics, are demonstrated to show the effectiveness and working of the algorithm.
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2. Product–sum property

Suppose that we have some data, call it D1, arranged in the form of m rows and n columns. So, the size of data will
be m × n. By an n-dimensional ordered data, we mean a set of n natural numbers, {a1, a2, a3, . . . , an} (say) such that
a1 ≤ a2 ≤ a3 ≤ · · · ≤ an. Such a set may be viewed as a row in D1, we call it a record in D1. An ordered pair of natural
numbers (n1, n2) (say) will be termed as two dimensional data. Themain idea is to transform D1 to two dimensional data D2
whose size is m × 2. The purpose of this paper is to construct an algorithm whose search space is D2 instead of D1 to check
the presence of some specific record in D1. For example, we consider two rows A = {2, 4, 512} (say SA3 ) and B = {8, 16, 32}
(say SB3 ) from the given data of size 5×3.Wemap SA3 and SB3 to (4096, 520) and (4096, 56), respectively. Thus corresponding
to each row in the data, we find an ordered pair.

Definition. Two subsets A and B of set of all positive real numbers are said to have product–sum property if the followings
hold: −

a∈A

a =

−
b∈B

b (1)

and ∏
a∈A

a =

∏
b∈B

b. (2)

For example, A4 = {1, 2, 3, 4} and B2 = {4, 6} satisfy product–sum property. Note that cardinalities of these two sets
are not same. On the other hands, note that if two rows An = {a1, a2, a3, . . . , an} and Bn = {b1, b2, . . . , bn} in D1 have
product–sum property then ai = bi for each i ∈ {1, 2, . . . , n} (we denote product and sum of n elements from a set An by
pAn and sAn , respectively). This assertion is proved using mathematical induction as follows: For n = 1, proof is trivial.
For n = 2, consider

A2 = {a1, a2} and B2 = {b1, b2}. (3)

Given that pA2 = pB2 and sA2 = sB2, where

pA2 = a1 · a2 and pB2 = b1 · b2
sA2 = a1 + a2 and sB2 = b1 + b2.

Now a1 + a2 = b1 + b2 implies that

a1 = b1 + b2 − a2. (4)

Using (4) and pA2 = pB2 we obtain

(b1 + b2 − a2)a2 = b1 · b2

which further implies that

a22 − (b1 + b2)a2 + b1b2 = 0. (5)

Keeping b1 and b2 arbitrarily fixed, (5) becomes quadratic in a2. Solving (5) we arrive at either a2 = b1 or a2 = b2. Since A2
and B2 are two rows therefore a1 = b1 and a2 = b2 and hence the result follows. Suppose that Ak = {a1, a2, . . . , ak} and
Bk = {b1, b2, . . . , bk} with

sAk =

k−
i=1

ai =

k−
i=1

bi = sBk and pAk =

k∏
i=1

ai =

k∏
i=1

bi = pBk (6)

always give ai = bi for 1 ≤ i ≤ k.
Consider Ak+1 = {a1, a2, . . . , ak, ak+1} and Bk+1 = {b1, b2, . . . , bk, bk+1} then

pAk+1 = ak+1

k∏
i=1

ai = bk+1

k∏
i=1

bi = pBk+1 and

sAk+1 = ak+1 +

k−
i=1

ai = bk+1 +

k−
i=1

bi = sBk+1

immediately implies ak+1 = bk+1. This proves the assertion.
Geometric interpretation: Consider a hyperbola C given by xy = p. Let P(x1, y1) be a point on C such that

x1 < y1. (7)
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Since equation of a line passing through P(x1, y1), having a slope of −1, is
y − y1 = (−1)(x − x1)

which implies that:
x + y = x1 + y1 = s (say). (8)

Also:
x1y1 = p. (9)

Eqs. (8) and (9) can also be satisfied by a point (y1, x1). Since x1 < y1, therefore selection of such a point P(x1, y1) is unique.
For N-dimensional hyperboloid bisected by an N-dimensional plane, there are infinity many possible points satisfying

Eqs. (1) and (2). Due to extension of condition (7) to N-dimensions, there is only one point satisfying Eqs. (1) and (2).

3. Algorithm

Before processing of algorithm, database is preprocessed as outlined below.

3.1. Preprocessing

Preprocessing includes the following steps.
(1) Construction of code table.
(2) Coding of database.
(3) Construction of product–sum table.
(4) Sorting the product–sum table.

Detailed algorithms of the above preprocessing steps are as follows.

3.1.1. Algorithm for construction of code table
An algorithm for construction codes for the database is as follows.

Input database.
Output List of codes of unique items in the database, i.e., unique_items_codes.
Algorithm Algorithm is as follows:

(1) Define list of unique items in the database as unique_items[].
(2) For each column of the database table:

• Search all unique items in the column and append them to the list unique_items.
(3) Find the length of unique_items, say K . Hence, size of unique_items_codes[] is also K .
(4) For i = 1 to K ,

• unique_items_codes [i] = c , where c is an integer and c > 1 (for example, c = i + 1).
(5) Sort unique_items_codes (for efficient use only).

3.1.2. Algorithm for coding of database
Input unique_items_codes, database.
Output A matrix ofM × N size, coded_data = [][] having the codes of each field.
Algorithm For all Fields of all the records of database[][], i.e., i = 1 to M and j = 1 to N ,

• Take a field of d of database [i][j] and find the code c of d in unique_items_codes.
• coded_data [i][j] = c .

3.1.3. Construction of product–sum table
Input Two matrices ofM × N andM × 2 sizes, i.e., coded_data = [][] having the codes of each field and an empty matrix

B[][] having products and sums, respectively.
Output Matrix B[][] having products and sums.
Algorithm For i = 1 to M .

• B[i][1] = product of all the numbers in the ith row of coded_data.
• B[i][2] = sum of all the numbers in the ith row of coded_data.

3.1.4. Sorting the product–sum table
Input Matrix B[][] having products and sums.
Output An M × 3 matrix ps[][] having products and sums, sorted and preserving index of occurrence in B.
Algorithm Sort the matrix B (with respect to B[][1] and then B[][2]) and copy values to ps such that ps[i][1], ps[i][2] and

ps[i][3] have product, sum and index, respectively.
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Table 1
An example database.

Day Outlook Temperature Humidity Wind Tennis Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Table 2
Code table for database shown in Table 1.

Term Numeric code Term Numeric code

Sunny 2 High 17
Overcast 3 Normal 19
Rain 5 Weak 23
Hot 7 Strong 29
Mild 11 Yes 31
Cool 13 No 37

Table 3
Sorted code table.

Term Numeric code Term Numeric code

Cool 13 Overcast 3
High 17 Rain 5
Hot 7 Strong 29
Mild 11 Sunny 2
No 37 Weak 23
Normal 19 Yes 31

3.2. Query searching algorithm

Searching a record in the database is carried out as follows.

Input Query q, database and ps.
Output I as a set of indices of occurrence of query record in the database.
Algorithm Search of the input query q is processed as follows.

(1) Assign numeric codes to q using unique_items and unique_items_codes, in coded_q.
(2) Calculate a = product of all numbers in coded_q.
(3) Calculate b = sum of all numbers in coded_q.
(4) Using binary search, find a and b in ps and assign all corresponding ps[][3] to I .

3.3. Computational complexity of query searching algorithm

Assigning the numeric codes to the query takes computational time of the orderO(MN) inworst case. A step of sorting the
unique_items_codes using binary search algorithm, reduces it to O(log(MN)) = O(log(M) + log(M)) = O(log(max(M,N))),
and usually M ≫ N . Calculation of a and b requires O(N). Furthermore, binary search requires a computational time of
O(log(M)). Therefore, overall computational complexity turns out to be O(log(M)).

4. Applications

Databases. Consider an example database shown in Table 1 (taken from [13]). Note that number of rows M and columns N
are 14 and 5, respectively. Then computational complexity turns out to be O(MN) in worst case, if each row is matched with
a query.
Preprocessing.

Let us assign the numerics to the terms in Table 1 as shown in Tables 2 and 3.
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Generating coded database and its products–sums, we obtain Eq. (8).
Query search.

2 7 17 23 37
2 7 17 29 37
3 7 17 23 31
5 11 17 23 31
5 13 19 23 31
5 13 19 29 37
3 13 19 29 31
2 11 17 23 37
2 13 19 23 31
5 11 19 23 31
2 11 19 29 31
3 11 17 29 31
3 7 19 23 31
5 11 17 29 37


Coded data table

H⇒



202 538 86
255 374 92
254 541 81
666 655 87
880 555 91
1 325 155 103
666 159 95
318 274 90
352 222 88
745 085 89
375 782 92
504 339 91
284 487 83
1 003 255 99


Product–sum table

H⇒



202 538 86 1
254 541 81 3
255 374 92 2
284 487 83 13
318 274 90 8
352 222 88 9
375 782 92 11
504 339 91 12
666 159 95 7
666 655 87 4
745 085 89 10
880 555 91 5
1 003 255 99 14
1 325 155 103 6


Sorted product–sum table.

(10)

Take a query, for example, q1 = [Overcast Mild High Strong Yes]. We convert the fields of query to numeric form
[3 11 17 29 31].Product and sum become (504339, 91). Using binary search, search 504339 in the ps array is found
in the row 8. The index given in row 8 is found to be 12. This implies that record D12 in the database has exact match with
q1.

For such a process, Grover’s algorithm requires O(
√
M) computations, whereas proposed algorithm requires O(log(M))

computations. In the rest of this section, we explore some potentials of the proposed algorithm which Grover’s algorithm
does not exhibit.

Consider a query q2 which asks for all the recordswith Play Tennis= ‘yes’. Code for ‘yes’ in the code table is 31.Wedivide all
values in the first column of sorted product–sum table by 31.We output the indices corresponding towhich division process
produces a zero remainder, i.e., [3 13 11 12 7 4 10 5],which are [3 4 7 9 10 11 12 13]when
sorted. Therefore, records D3,D4,D7,D9,D10,D11,D12 and D13 are the days when tennis was played.

In case, we want to replace a record [Overcast Cool Normal Strong Yes] by a new record [Sunny Cool Normal Strong No],
whose numeric form is [2 13 19 29 37]. Firstly, we find the location of the record in the database using the scheme
as mentioned above. This is record number 7. Replace the record at row number 7 with the new record in the database.
Now we identify which row in the last column of the ps table bas an index value 7. This is the 10th row of ps table. Now,
we replace the 10th row of ps table [24 948 42 7]by [530 062 100 7].Note that a replacement is a composition of a
deletion and then an insertion.

4.1. Computational biology

Consider two DNA Sequences as follows:

DNA1: aattatcatatcctgtaattgtttgatattgatttgcaaaat.
DNA2: tttgat.

Length of DNA 1:M .
Length of DNA 2: N .

Matching technique is similar to convolution and its overall computational complexity is O(NM).
Consider all possible sequences of DNA 1 and DNA 2 in the form of codons:

Possible sequences of DNA 1:

(1) aat tat cat atc ctg taa ttg ttt gat att gat ttg caa aat.
(2) a att atc ata tcc tgt aat tgt ttg ata ttg att tgc aaa at.
(3) aa tta tca tat cct gta att gtt tga tat tga ttt gca aaa t.

Possible sequences of DNA 2:

• ttt gat.

Preprocessing.
Generate a code table as shown in Table 4. Now, we generate product–sum tables for all possible codon sequences of

DNA 1 (see Tables 5–7).
Comparing the DNAs.

Assign codes to codons of DNA 2, i.e., (ttt, gat) → (23, 10). This requires a complexity of O(N). Now, we calculate
(product, sum) with a complexity of O(N), i.e., (product, sum) = (230, 33). Search this pair in the table product–sum for
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Table 4
Code table for DNA sequences.

Codon Numeric code Codon Numeric code

aaa 1 gtt 13
aat 2 taa 14
ata 3 tat 15
atc 4 tca 16
att 5 tcc 17
caa 6 tga 18
cat 7 tgc 19
cct 8 tgt 20
ctg 9 tta 21
gat 10 ttg 22
gca 11 ttt 23
gta 12

Table 5
Code assignment and product–sum for DNA sequence 1:
aat tat cat atc ctg taa ttg ttt gat att gat ttg caa aat.

Codon Code Codon Code Product Sum

aat 2 tat 15 30 17
tat 15 cat 7 105 22
cat 7 atc 4 28 11
atc 4 ctg 9 36 13
ctg 9 taa 14 126 23
taa 14 ttg 22 308 36
ttg 22 ttt 23 506 45
ttt 23 gat 10 230 33
gat 10 att 5 50 15
att 5 gat 10 50 15
gat 10 ttg 22 220 32
ttg 22 caa 6 132 28
caa 6 aat 2 12 8

Table 6
Code assignment and product–sum for DNA sequence 2: a
att atc ata tcc tgt aat tgt ttg ata ttg att tgc aaa at.

Codon Code Codon Code Product Sum

att 5 atc 4 20 9
atc 4 ata 3 12 7
ata 3 tcc 17 51 20
tcc 17 tgt 20 340 37
tgt 20 aat 2 40 22
aat 2 tgt 20 40 22
tgt 20 ttg 22 440 42
ttg 22 ata 3 66 25
ata 3 ttg 22 66 25
ttg 22 att 5 110 27
att 5 tgc 19 95 24
tgc 19 aaa 1 19 20

Table 7
Code assignment and product–sum for DNA sequence 3: aa
tta tca tat cct gta att gtt tga tat tga ttt gca aaa t.

Codon Code Codon Code Product Sum

tta 21 tca 16 336 37
tca 16 tat 15 240 31
tat 15 cct 8 120 23
cct 8 gta 12 96 20
gta 12 att 5 60 17
att 5 gtt 13 65 18
gtt 13 tga 18 234 31
tga 18 tat 15 270 33
tat 15 tga 18 270 33
tga 18 ttt 23 414 41
ttt 23 gca 11 253 34
gca 11 aaa 1 11 12
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DNA 1 with a complexity of O(M) and for sorted product–sum tables, searching costs O(log(M)). Therefore, the overall
computational complexity turns out to be O(log(M)).
Discussions and conclusions.

The proposed algorithm is based on the product–sum property and it is demonstrated that using the product–sum
property searching a unique record in the database requires logarithmic computational complexity time. This reduction
in computational time poses a burden in the form of increased space complexity. Space complexity to save the code table
and (product, sum) values are O(MN) and O(M), respectively. Therefore, space complexity rises from linear to quadratic
order. Note that insertions to and deletions from the database can be performed with the logarithmic computational time
complexity.

We compare the computational complexity of the proposed algorithm with the Grover’s algorithm [12] whose
computational complexity is O(

√
M). Consider that the number of records is 2p where p is an even integer. Complexity

of Grover’s algorithm becomes O(2p/2) and complexity of our algorithm becomes O(p). We know that p < 2p/2, for p > 4.
Therefore, our algorithm’s complexity is lesser than that of Grover’s algorithm if number of records is more than 24

= 16.
If numeric codes are natural numbers, then unique queries can be retrieved only. However, if the numeric codes are

relatively prime numbers, then any query asking a particular or some specific characteristics can also be retrieved. A problem
appears with relatively prime numbers is that sizes of numbers grow rapidly. A solution to this problem may be taking the
logarithms of the numbers rather than using the numbers themselves.
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