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Abstract 

A transversal of a hypergraph is a set of vertices meeting all the hyperedges. A k-fold transver- 

sal 52 of a hypergraph is a set of vertices such that every hyperedge has at least k elements of R. 

In this paper, we prove that a k-fold transversal of a balanced hypergraph can be expressed as a 

union of k pairwise disjoint transversals and such partition can be obtained in polynomial time. 

We give an NC algorithm to partition a k-fold transversal of a totally balanced hypergraph into 

k pairwise disjoint transversals. As a corollary, we deduce that the domatic partition problem is 
in polynomial class for chordal graphs with no induced odd trampoline and is in NC-class for 

strongly chordal graphs. 

Keywords: Balanced hypergraphs; Totally balanced hypergraphs; Transversal; k-fold transversal 

1. Introduction 

A O-l matrix is balanced if it does not contain as a submatrix an edge-vertex 

incidence matrix of an odd cycle. A O-1 matrix is totally balanced if it does not 

contain as a submatrix an edge-vertex incidence matrix of any cycle. A hypergraph H 
is an ordered pair (V,8) where V is a set of vertices and & is a family of subsets 

of V. The members of d are called hyperedges of H. Let V = {III, ~2,. . . ,v,} and 

&=(E,,E2 ,..., E,}. The sub-hypergraph of H( V,&) induced by a subset S c V, is 

an ordered pair (S, 8~) where &s = {Ei n S / E; E Q and Ei n S # 8). The partial hyper- 
graph of H( V, &) generated by a subset B c 8 is an ordered pair (S’, 5) where S’ is 

the set of vertices of hyperedges of 9. Let A(H) denote the hyperedge-vertex incidence 

matrix of a hypergraph H. A hypergraph H is balanced (respectively totally balanced) 
if A(H) is balanced (respectively totally balanced). The original definition of balanced 

hypergraph, due to Berge, is: a hypergraph is said to be balanced if every odd cycle 

* Corresponding author, present address: Department of Computer Science, University of Cologne, 

PohIigstraBe 1, Cologne, Germany. 

’ Supported in part by Czech research grants GAUK 194 and CiACR 0194/1996. 

0166-218x/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved 
PIISOl66-218X(97)00034-6 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81954538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


76 E. Dahlhaus et al. /Discrete Applied Mathematics 79 (1997) 75-89 

(~1,El,az,E2,...,E2~+1, al) has an edge Ei which contains at least three of its vertices 

aj. A graph is said to be chordal if it contains no induced cycle of length 4 or greater. 

A chordal graph is said to be strongly chordal if every cycle on six or more vertices 

contains a chord joining two vertices with an odd distance in the cycle. A trampoline 
is a chordal graph which has a Hamiltonian cycle xi, y1 ,x2, ~2,. . . ,xr, yr,xl where y, 

is of degree 2 for 1 < i < r and {x1,x2,. . . , x,} is a clique. A trampoline is an odd 
(even) trampoline if r is odd (even). 

Combinatorial graph problems in general, and partition problems in particular, have 

been studied widely. The well studied partition problems are coloring (partitioning 

vertex set by independent sets), clique covering (partitioning vertex set by cliques), 

transversal partitioning [2], and domatic partition (partitioning vertex set by dominating 

sets). A partition Vi, I’2,. . . , 6 of V is a domatic partition of a graph G if each E is a 

dominating set of G. The domatic partition problem is to find a domatic partition of 

maximum size. Such problems have an application in the optimum location of facilities 

in a network [ 181 and in communication networks [ 111. The domatic partition problem 

is shown to be NP-complete for circular arc graphs [4], chordal graphs, and bipartite 

graphs [ll]. It is polynomially solvable for interval graphs [18], strongly chordal graphs 

[ 11, 151 and proper circular arc graphs [4]. Moreover, this problem is proved to be in 

NC-class for interval graphs [19] . The domatic number of a graph G is the size of 

a maximum domatic partition of G and is denoted by dam(G). A graph G is domati- 
tally full if dam(G) = 6(G) + 1 where 6(G) is the minimum degree of a vertex in G. 

A transversal of a hypergraph is a set of vertices meeting all the hyperedges. Berge 

[2] has proved the following partition theorem pertaining to transversals in balanced 

hypergraphs. 

Theorem 1.1 (Berge [2]). In a balanced hypergraph H, the maximum number of pair- 
wise disjoint transversals equals the minimum cardinality of a hyperedge. 

Farber [8] has used this result to show that strongly chordal graphs are domatically 

full. Kaplan and Shamir [ 1 l] have used Farber’s result to find a maximum domatic 

partition of a strongly chordal graph in polynomial time. Brouwer et al. [5] have shown 

that the class of graphs whose neighborhood hypergraphs are balanced is identical to 

the class of chordal graphs with no induced odd trampoline. Thus it follows from the 

Berge’s result that 

Theorem 1.2 (Brouwer et al. [5]). Chordal graphs with no induced odd trampoline 
are domatically full. 

Since strongly chordal graphs are trampoline-free chordal graphs [8], chordal graphs 

with no induced odd trampoline form a superclass of strongly chordal graphs. Following 

Kaplan and Shamir’s work, two questions arise: 

(i) Is the domatic partition problem polynomially solvable for chordal graphs with no 

induced odd trampoline? 
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A B 

Fig. 1. Even trampoline (A) and odd trampoline (B) 

(ii) Does the domatic partition problem on strongly chordal graphs belong to NC-class? 

A set S of vertices of a graph G is called k-fold dominating if every vertex in S 

has at least k - 1 neighbors in S and every vertex in V\S has at least k neighbors 

in S. It is easy to verify that dam(G) 6 6 + 1 [ 181 and the vertex set V is a (6 + l)- 

fold dominating set of G where 6 is the minimum degree of a vertex in G. Thus the 

problem of partitioning a k-fold dominating set into k pairwise disjoint dominating 

sets is one step ahead of the domatic partition problem. Obviously, the union of k 

disjoint dominating sets in a graph is a k-fold dominating set but the converse is not 

always true. That is, the partition of a k-fold dominating set into k pairwise disjoint 

dominating sets is not always possible. In Fig. l(A) (an even trampoline), { 1,2,3,4} 

is a 2-fold dominating set which can be partitioned into two disjoint dominating sets 

{1,4} and {2,3}. In Fig. l(B) ( an odd trampoline), { 1,2,3} is a 2-fold dominating 

set which cannot be partitioned into two disjoint dominating sets. This leads to the 

following question which extends the domatic partition problem: 

Can a k-fold dominating set be partitioned into k pairwise disjoint dominating sets 

for all k, 1 6 k d 6(G) + l? 

In fact, we can show that this problem is NP-hard on chordal graphs even for k = 2. 

Theorem 1.3. The problem of partitioning a 2-fold dominating set of a chordal graph 

into two disjoint dominating sets is NP-hard. 

Proof. We reduce the problem of bicolorability of 3-uniform hypergraphs [9] to our 

problem. If H = (V, 8) is a 3-uniform hypergraph (i.e., every edge e E d is a 3-element 

subset of V), we construct a graph G( V’, E’) such that the vertex set V’ = V U 6 and 

the edge set E’ = {(u, u) / u, 2: E V} U {(w, e) 1 w E e E 8). Now G( V’, E’) is a chordal 

graph and V is a 2-fold dominating set of G( V’, E’). It is easy to verify that the 2-fold 
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dominating set V is partitioned into two disjoint dominating sets of G( V’, E’) if and 

only if H is bicolored. Thus the problem of partitioning a 2-fold dominating set of 

a chordal graph into 2 disjoint dominating sets is NP-hard. 0 

Berge’s concept of transversal partition includes the domatic partition problem. 

As the hyperedges of a hypergraph are the closed neighborhoods of a graph, the 

transversal partition reduces to the domatic partition [8]. A k-fold transversal 52 of 

a hypergraph is a set of vertices such that every hyperedge has at least k elements of 

s2. The above question can be pushed one step further as follows: 

Can a k-fold transversal of a hypergraph be partitioned into k pairwise disjoint 

transversals for all k 6 y, where y is the minimum cardinality of a hyperedge? 

The main result of this paper is to answer this question which extends Berge’s 

Theorem 1.1: 

Theorem 1.4. In a balanced hypergraph H, let y denote the minimum cardinality 
of a hyperedge. Then for any k < y, a k-fold transversal can be expressed as a union 
of k pairwise disjoint transversals. 

It is easy to note that k-fold transversal exists only for k 6 y. Berge’s proof [2] 

can be used directly to prove Theorem 1.4. Berge, however, does not indicate how 

to find a transversal partition from a k-fold transversal in a balanced hypergraph or 

in the special case of totally balanced hypergraphs. Claiming this, Kaplan and Shamir 

[ 1 I] have given an algorithmic proof for Theorem 1.4 in a totally balanced hypergraph. 

We modify Berge’s arguments to give an algorithmic proof of Theorem 1.4 for balanced 

hypergraphs. We give an NC algorithm to partition a k-fold transversal of a totally 

balanced hypergraph into k pairwise disjoint transversals. As a corollary, we deduce 

that the domatic partition problem is in NC-class for strongly chordal graphs. 

2. Sequential algorithm to partition a k-fold transversal in a balanced hypergraph 

Berge [2] deals with the partition of a k-fold transversal of a balanced hypergraph 

as follows: 

(i) He proves that a balanced hypergraph is bicolorable. 

(ii) Using (i), h e gives a constructive proof to partition a k-fold transversal into 

k pairwise disjoint transversals. 

Since Berge’s proof to bicolor a balanced hypergraph is not constructive, we give 

a polynomial-time algorithm to bicolor a balanced hypergraph in the following sub- 

section. The problem of bicoloring is to label the vertices of a hypergraph with two 

colors such that in each hyperedge both colors appear. The following algorithm for 

bicoloring a balanced hypergraph is a slight modification of Berge’s original analytical 

proof [2]. 
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Lemma 2.1. A bulanced hypergraph can be bicolored in polynomial time. 

Proof. We first compute an enumeration (vi, ~2,. , u,,) of V and then bicolor the 

vertices based on this enumeration order. For every i = 1,2,. , n, let Hi denote the 

sub-hypergraph of H induced by the vertices { 01, ~2,. . . , c;} and Gi denote the partial 

graph of Hi generated by the edges of Hi with exactly two elements. A vertex c of 

a graph G( V.E) is called an articulation vertex if the sub-graph of G induced by 

V\ { c} is disconnected. 

Now we compute an enumeration (vi, ~2,. . , v,) of V such that ci is a non-articulation 

vertex of G,. We design the enumeration order from u, to vi as follows: after enumer- 

ating u,, . , c;+2, ci+l, construct a spanning forest fi of Gi. It is known that a leaf of 

a spanning forest of a graph is a non-articulation vertex of the graph [l]. Hence pick 

any leaf of F; and call it 0;. 

Now we bicolor H( V, 8) using induction based on the enumeration order (vi, 02,. . . , 

21,). Assuming that cl, 212,. . . , c,_l admits a bicoloring (Si,&) in Hi_, , we color ui 

in Hi as follows. 

Case 1: If vi does not belong to any edge of size 2 in Hii, then add vi to Si. Then 

(SI U {Z’i},S2) is a bicoloring of Hi. 
Case 2: If r, belongs to any edge of size 2 in Hi, consider the vertices of {t’i, ~‘2,. . , 

ci- I} which are adjacent to t’i in G;. Since H is a balanced hypergraph, Gi is balanced 

and hence bipartite [2]. Since Gi is bipartite and z’; is not an articulation point of 

G,, the vertices of {ui, ~‘2,. . . , z’i_l} which are adjacent to V, in G;, have the same 

color in Hi_ 1; let Si be the class of vertices having this color. Then (Si, & u {u;}) is 

a bicoloring of Hi, because every edge of Hi with two elements is bicolored, since it 

is an edge of G, and every edge of Hi with more than two elements is also bicolored, 

since its intersection with { t’i ,212, . . . , vi- I} is bicolored. 

Thus H; is bicolored and hence by induction H is bicolored. It takes O(n + m) time 

to compute a spanning forest [l]. The algorithm computes spanning forest as many 

times as the number of vertices. Thus bicoloring needs O(n(n + m)) steps. 0 

Combining Berge’s proof [2] of Theorem 1.1 and the above bicoloring algorithm, 

a k-fold transversal Q of a balanced hypergraph can be partitioned into k pairwise 

disjoint transversals in p(n,m) time where p(n,m) is polynomial in n and m, and m is 

the number of the hyperedges. Using the fact that the edges of a balanced hypergraph 

satisfy Helly’s property [3, p. 4521, Prisner [16] has shown that balanced hypergraphs 

have 0(n2) hyperedges. Thus we have 

Theorem 2.2. A k-fold transversal of a balanced hypergraph can be partitioned in 
polynomial time. 

Corollary 2.3. The domatic partition problem can be solved for chordal graphs with 
no induced odd trampoline in polynomial time. 
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3. Parallel algorithm to partition a k-fold transversal in a totally balanced 

hypergraph 

In this section, let H( V, 8) denote a totally balanced hypergraph. Consider the 

hyperedge-vertex incidence matrix A(H) = (a(i,j)) with m rows representing the hyper- 

edges E,,Ez,...,E,,, of H and n columns representing the vertices 01, ~2,. . . , v, 

of H with 

a(i,j) = 
1 if vi EE,, 

0 if vi#Ej. 

From here on, the matrix A(H) will be denoted as A. A O-l matrix is called r-free 

if it does not contain the submatrix 

Let s2 be a k-fold transversal of a totally balanced hypergraph H. We shall use the 

following steps to partition a k-fold transversal Sz of a totally balanced hypergraph into 

k pairwise disjoint transversals Ql, 522,. , Ok: 

(1) Input the hyperedge-vertex incidence matrix A in the r-free form. 

(2) Prune matrix A and call the resulting matrix A-. 

(3) Assign colors to the non-zero entries of k such that 

(i) the non-zero entries of each column are assigned the same color and 

(ii) all the k colors appear in each row. 

(4) Assign a column with color CI to 52,. 

(5) Output transversal partition Sz,, 02,. . . , Qk of Q. 

Lubiw [14] described a polynomial algorithm to obtain a r-free ordering of a O-l 

matrix. In [7], an NC-algorithm to obtain a r-free ordering has been described. Latter 

algorithm is quite comphcated. Here we assume A is r-free. An example of r-free 

matrix A is given in Fig. 2. 

3.1. Pruning matrix A 

As a first step of the algorithm, we remove the unnecessary columns of A. When 

a transversal Sz is partitioned into k transversals, the vertices of V\s2 are not needed. 

Thus we remove the columns of the matrix A corresponding to the vertices of V\Q. 
The remaining matrix of A is still r-free and we again call it A with m rows and 

n columns. 

Let Ei denote the non-zero entries of row i of A. That is, Ei = {(i,j) 1 a(i,j) = 1, 

1 < j < n}. Also let Ri denote the k rightmost non-zero entries of row i and L; = Ej\Ri. 
Thus Ei =Li U Ri for every row i of A (see Fig. 3). In Fig. 2, for k = 3, L2 = {a(2,2), 

~(2~3)) and R2 = {a(2,4), ~(2,s)~ ~(2,lO)). 
We replace the non-zero entries of Li by zeros in each row i of A. That is, in each 

row i of A we keep only the k rightmost non-zero entries Ri of A and remove the rest. 
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Fig. 3. Matrix A. 

Fig. 2. An example of r-free matrix A. 

The resultant matrix of A is denoted by 2 = (a(i,j)). Now the non-zero entries of 2 

are the members of lJy=, Rj. In 2, there may be a column without any non-zero entry. 

This column may be colored arbitrarily at the end. So, now we assume that k has no 

such columns. 

For k = 3, Fig. 4 represents the pruned matrix 2 of A in Fig. 2. Using the facts 

that A is r-free and only the leftmost non-zero entries of a row of A are replaced to 

construct 2, it is easy to observe that 

Observation 3.1. 2 is r-free. 

Corresponding to 2, define 

bottom_row(j) = max{i 1 i(i,j) = 1). 

The bottomyow(j) of 2 is the row containing the bottommost non-zero entry of 

column j in k. In matrix d of Fig. 4, bottom_.row(3)= 1, bottom_row(8)=6 and 

bottom-row( IO) = 8. 
Corresponding to each row i of k, define 

c = {(i,j) E Ri 1 bottom_row(j) = i} and Q, = R;\E. 
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Fig. 4. An example of A= ($i,j)). 

In row 1 of matrix k of Fig. 4, PI ={(1,1),(1,2),(1,3)} and Q, =0. In row 2, 

S= {(2,4)} and Q2 = {C&8),(2,10)}. In row 5, ps =0 and Q5 ={(5,7),(5, lo), 

(5,l l)}. We observe the following from the fact that k is r-free: 

Observation 3.2. The members of Qi are the rightmost l’s of row i of k. That is, 

for any (i,jl) Efl and (i, j2) E Qi of row i, jl < jz (refer to Fig. 3). 

Corresponding to each row i of 2, define 

koZ(i) = 
min{ j 1 (i,j> E Qi} if Qi is non-empty, 

NIL if Qi is empty. 

Corresponding to each row i of 2, define 

prow(i) = 
bottom_row(koZ(i)) if AcoZ(i) # NIL, 

m if IcoZ(i) = NIL. 

Corresponding to row 1 of 2 in Fig. 4, AcoZ( 1) = NIL and prow( 1) = 8. For row 2, 

lcoZ(2) = 8 and ,LU-ow(2) = 6. For row 5, koZ(5) = 7 and prow(5) = 7. 

Corresponding to each row i of 2, define 

Cfprow(i) = {Wow(W) I (id E Qi) and &row(i) =Rprcnv(i)\Qpro,(i). 

Corresponding to row 1 of d in Fig. 4, &Ow~,~ = 0 and &,,,,(,) = {(8,9), (8, lo), 

(8,ll)). For row 2, 0,,r0w(2j = {(6,8),(6,10)} and &,+) = ((6,ll)). For row 5, 

Qpcrow(5) = {(7,7), (7, lo), (7,11)} and &OW(~) = 0. 

Observation 3.3. The entries of &.,,WCil are non-zero and &.,,w~r~ C: R,,,(i). 

Proof. The assertion follows from the fact that k is r-free and +row(i), 
icoZ(i)) = 1. 0 
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Fig. 5. The forest F of matnx 2. 

3.2. Constructing a forest 

P&w and Oprow(i) are as defined above. Note that the entries of QProwCi) need 

not be the rightmost l’s of row prow(i) as those of Qi in row i. It is true that Pi 

and &row(i) are of the same cardinality for any row i where IP, I= &,wc;~l = k - IQi I. 

Let R = UiM_,Ri. Now we construct a forest with vertex set R, the non-zero entries 

of 2. We define a Parent function on Ri = Pi U Q; for every row i = 1,2,. . ,m as 

follows: 

(i) On Qi, Parent: Q; -+ 0 pr0w(iJ is a bijective map such that Parent(Z(i,j))=G(prow 

(i),j) for every Z(i,j) E Qi. 

(ii) On Pi, Parent: Pi + P,,,(i) is a bijective map. (The Parent function on Pi is any 

bijective map onto Pp,,(i)). 

Let F denote the set of directed edges (u:u) such that v is a parent of u of F. 
On row 1 of 2 in Fig. 4, the Parent function is defined as Parent(G( 1,1)) = 

$8,9), Parent(G( 1,2)) = G(8,lO) and Parent(Z( 1,3)) = Z(8,ll). On row 2, the Parent 

function is defined as Parent($2,4)) = ti(6,l l), Parent(Li(2,8)) = G(6,8) and Parent 

(G(2,10))=~?(6,10). On row 5, the Parent function is defined as Parent(Z(5,7)) = 

a(7,7), Parent(Z(5,lO)) = Z(7,lO) and Parent(Z(5, 11)) = Z(7,ll) (see Fig. 5). 

Observation 3.4. F is a forest consisting of a set of rooted directed trees with the 

vertex set R. Moreover, F has exactly k directed trees whose roots are the non-zero 

entries of the bottommost row (that is, row m) of A-. 

Proof. The Parent function is well defined since it is a bijective map on Ri for every 

i = 1,2,. . . , m. The Parent function is strictly increasing with respect to the order of 

the rows, Therefore, there is no cycle in F and hence induces a forest. Moreover, the 

roots of the directed trees of the forest are in row m of k because the Parent function 

is strictly increasing with respect to the order of the rows. Since there are k non-zero 

entries in row m, F has exactly k directed trees. 0 
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Fig. 5 is the forest F constructed from the matrix 2 of Fig. 4. In the figure, Z(i,j) 

is represented by (i,j). 

Algorithm 3.5. Here is the parallel algorithm following the construction of the forest: 

l Input the hyperedge-vertex incidence matrix A in the I-free form. 

l Prune A to get the matrix A-. 

l Dejine the Parent function on R, the non-zero entries of A-, and construct forest F. 

l Color the members of R as follows: First assign distinct color to each root of the 

directed tree of F. Let u be a member of R. Then u will be a vertex of some tree 
of the forest. Let r be the root of the tree which contains u. The entry u of R is 

assigned the color of its root r. 

l Partition the columns according to the colors of the columns. That is, 52, is the 

set of columns with color c(. 

b Output transversal partition !21,522,. . . , Rk of L? 

Proof of Correctness. It is enough to prove the following: 

(i) The non-zero entries of each colu,mn 2 are assigned the same color. 

(ii) All the k colors appear in each row of 2. 

(i) It is enough to show that the non-zero entries of a column are in the same tree 

of forest F. For any column j, consider the set nj = {ci(i,j) = 1 1 i # bottom_row(j)} 

which contains all the non-zero entries of column j except a(bottom_row(j),j). For 

any element a(i,j) of I$,a(i,j) is in Qi of row i since if bottom-row(j). Thus, by 

the definition of the Parent function on Qi, the parent of ci(i, j) of I$ is in column 

j itself. Moreover, since the Parent function is strictly increasing with respect to the 

order of the rows, a(bottom_row(j),j) is an ancestor of l$. Hence all the non-zero 

entries of column j are in the same tree. 

(ii) To prove that all the k colors appear in each row of k, we use induction on the 

rows from the bottom. By induction hypothesis, we assume that all the k colors appear 

in row 1 for 1 >i. We know that urow(i)>i for any row i. All the k colors appear 

in row ,nrow(i) by induction hypothesis. Since the Parent function is a bijective map 

from Ri onto R,,,(i), all the k colors appear in row i. 0 

3.3. Complexity analysis 

To prune matrix A to get 2, it is enough to find the k rightmost non-zero entries 

of row i in A. This can be done by parallel prefix computation [13] in O(log n) time 

with 0(n2) processors. (Each row is processed independently and needs n processors). 

The major part of the algorithm is to design forest F, that is, to define the Parent 
function. For every column j, bottom-row(j) which is max{i 1 a(i,j) = l}, can be found 

in O(log n) time with 0(n2) processors using parallel maximum computation [lo]. Now 

the set Ri of row i can be partitioned into Pi and Qi in constant time with O(n2) pro- 

cessors, since Qi = {a(i,j) E Ri 1 bottom-row(j) # i}. Knowing the bottom-row function, 
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i,col(i) of row i of k which is min{j 1 i(i,j) E Q;}, can be obtained in O(log n) time 

with 0(n2) processors using parallel minimum computation [lo]. Since bottom-row 

function is known, prow(i) of row i is known since prow(i) = bottom_row(Jcol(i)). 

Now for each row i, P;, Q; and prow(i) are known. The function Parent : Qi + ~~trOW(i) 

can be evaluated in constant time. The function Parent : P; +&,,,(i) can be evaluated 

in logarithmic time with a work load of O(k). Note that the function Parent function 

on P, may be any bijective map onto &+,,(i). By parallel prefix computation, we can 

determine a canonical enumeration of &row(i), i.e. the jth element of PprOW(l~ gets the 

number j. In detail, we assign the jth element of R, with Xj = 1 if it is in Ppro\y(i) and 

with x, = 0 otherwise, and the jth element of R, gets index I if the sum of aif, j’ <j 

is 1. If the jth element of Ri is in &,,ci) then it is the Ith element of &,w(r). For 

each i, this can be done in O(log n) time with O(k/log n) processors [13]. 

The last and important stage is to color the vertices of forest F. For every vertex 

of the rooted directed tree of F, its root can be found in O(log n) time with 0(n2) 

processors. This can be done by pointer jumping technique described in [lo]. Thus 

Algorithm 3.5 runs O(log n) time using O(n*) processors. 0 

Theorem 3.6. A k-fold transversal of a totally balanced hypergraph can be parti- 

tioned into k transversals in O(log n) time with 0(n2) processors (provided that the 

incidence matrix is given in the r-free form). 

It is proved [14] that the neighborhood matrix of a strongly chordal graph is r-free 

if the vertices are arranged by strong elimination ordering. Since the computation of 

strong elimination ordering of strongly chordal graphs is in NC-class [7], the r-free 

neighborhood matrix can be realized in polylogarithmic time with polynomial number 

of processors. Thus we can state that 

Theorem 3.7. A k-fold transversal of a totally balanced hypergraph can be parti- 

tioned into k transversals in polylogarithmic time with polynomial number of 

processors. 

Corollary 3.8. The domatic partition problem is in NC-class for strongly chordal 

graphs. 

We would like to remark that the parallel algorithm to partition a k-fold transversal of 

a totally balanced matrix into k transversals can be transformed into an optimal parallel 

algorithm with O(n + m)/log n) processors working in O(log n) time. Here m is the 

number of non-zero entries in the matrix. Instead of implementing the matrix A as an 

array, we realize it by a doubly linked list and apply list ranking instead of parallel 

prefix [6]. 
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4. More on domination 

(1997) 75-89 

We call a graph k-unfolding if every k-fold dominating set can be partitioned into 

k sets, each of them dominating the original graph. We say that a graph is unfolding 

if it is k-unfolding for every k. The following two problems are of particular interest. 

k-fold domination 
Instance: A graph G and an integer r. 

Question: Does G contain a k-fold dominating set of size at most r? 

k-unfold domination 
Instance: A graph G and a k-fold dominating set D in G. 

Question: Can D be partitioned into k dominating sets? If yes, find a partition. 

Both these problems are NP-hard and we have proved in Theorem 1.3 that the 

2-unfold domination problem is NP-hard even when restricted to chordal graphs. Now, 

we will relate the unfolding property to domatic fullness of graphs and the concept of 

balanced matrices. 

Observation 4.1. Unfolding implies domatically full, but domatically full does not 

imply unfolding. 

Proof. The 3-trampoline is domatically full but not unfolding. 0 

In the sequel, N = (n(i,j))tjXl will denote the neighborhood matrix of a graph 

G(V,E) where V={vi,~ ,..., a,} and 

n(i, j) = 
{ 

1 if i=j or (vi,vj))EE, 

0 otherwise. 

Observation 4.2. A graph G is k-unfolding tf and only zffor every O-l vector X, 

N: 2 kl 

implies the existence of k O-l vectors y,, j+, . . , jk such that 

k 

f= c Ji and Nyi 21, i=1,2 ,..., k. 
i=l 

One can show that the graph of the three-dimensional cube is unfolding. On the other 

hand, it contains a cycle of length 4 as an induced subgraph. By Observation 4.1, since 

the cycle of length 4 is not domatically full, it is not unfolding. This shows that being 

unfolding is not a hereditary property. This leads us to the following definition: Call 

a graph hereditarily unfolding if every induced subgraph of G is unfolding. Obser- 

vation 4.2 leads to the following generalization of the concept of unfolding graphs 

(ZJ denotes the set of non-negative integers): Define a graph G weight unfolding if 
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for every k and every vector X E (Z,‘)“, 

Nx > kl 

implies the existence of k O-l vectors y,, yZ,. . . , yk such that 

k 

X= c ji and Nji 21, i=1,2 ,..., k. 

i=l 

Observation 4.3. Weight unfolding implies unfolding. 

Problem 4.4. Does unfolding imply weight unfolding? 

Similarly as we defined hereditarily unfolding graphs, we define a graph to be heredi- 

tarily weight unfolding if each of its induced subgraphs is weight unfolding. Of course, 

hereditarily weight unfolding implies hereditarily unfolding. Even if the answer to 

Problem 4.4 is negative, we can still ask 

Problem 4.5. Does hereditary unfolding imply hereditarily weight unfolding? 

We should note that these questions apply to graphs with induced cycles, since for 

chordal graphs the questions are settled by the result of Brouwer et al. [5] (reading that 

the neighborhood matrix of a graph is balanced if and only if it is an odd trampoline- 

free chordal graph). Hence 

Theorem 4.6. Zf G is chordal, then G is hereditarily weight unfolding tfl it is heredi- 

tarily unfolding ifs N is balanced ifs G is odd trampoline-free. In particular, interval 

graphs and strongly chordal graphs are hereditarily weight unfolding. 

We will continue the investigation of properties related to unfolding of dominating 

sets. 

Observation 4.7. Hereditarily weight unfolding does not imply that the neighborhood 

matrix is balanced. 

Proof. The cycle of length 6 can be shown to be hereditarily weight unfolding, but 

its neighborhood matrix is not balanced. 0 

Proposition 4.8. The only cycles that are unfolding are Cj, Cb and Cg. These 

particular cycles are hereditarily weight unfolding. 

Proof. First one proves that if a cycle is 3-unfolding then its length is divisible by 

three. Note that the only 3-fold dominating set of a cycle is the whole cycle. Moreover, 

every dominating set in a cycle of length n has size at least [g]. Therefore the vertex 
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set of C, can be partitioned into 3 dominating sets only if (and also if) n is divisible 

by 3. 

Next we show that no cycle of length 3m, m > 4 is 2-unfolding. Consider a 2-fold 

dominating set D={l, 2, 3, 5, 6, 7, 9, 10, 11}~{3i+ 1,3i+2: i 24, i<m}. Assume 

D can be divided into two dominating sets Ui and U2. Assume 1 E Ut . Then 2 E U2 

(otherwise 1 that has 2 and 3m $Z D as its neighbors cannot be a neighbor of an element 

of U,). For the same reason, 3 E UI. Then 5 E U2, because otherwise 4 is not a neighbor 

ofanelementinU2.Similarly,6EU~,7EU2,9EUi, lO~U~,andll~Ui.Ifm=4 
then 12 is not a neighbor of U2, a contradiction. One can show by induction that 

3i+ 1 E U2 and 3i+2E U, for i=4,5,..., m - 1. Therefore also in general, 3m is not 

in the neighborhood of U2. 
Finally, one can easily show by case analysis that cycles of length 3, 6, and 9 are 

2-unfolding (note that we have shown in the first part of the proof that cycles of length 
of 3m are 3-unfolding). Note that every proper subgraph of a cycle is a disjoint union 

of paths, and hence a strongly chordal graph. Therefore, the cycles C3, CS and C9 are 

hereditarily unfolding. For the proof of weight unfoldingness we refer to the technical 

report [12]. 0 

Problem 4.9. Characterize the classes of unfolding (weight unfolding, hereditarily 
unfolding, hereditarily weight unfolding) graphs. 

5. Conclusion 

We have proved that a k-fold transversal of a balanced hypergraph can be expressed 

as a union of k pairwise disjoint transversals and the partition of a balanced hyper- 
graph can be obtained in polynomial time. We have given an NC algorithm to partition 

a k-fold transversal of a totally balanced hypergraph into k pairwise disjoint transver- 

sals. As a corollary, we have derived that the domatic partition problem can be solved 

for chordal graphs with no induced odd trampoline in polynomial time and is in NC- 
class for strongly chordal graphs. Finally we discussed the problem how to character- 
ize graphs with the property that every k-fold dominating set can be partitioned into 

k dominating sets. We did not get a final answer. 
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