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Spectral properties of quarks above Tc in quenched lattice QCD
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Abstract

We analyze the quark spectral function above the critical temperature for deconfinement in quenched lattice QCD using clover improved Wilson
fermions in Landau gauge. We show that the temporal quark correlator is well reproduced by a two-pole approximation for the spectral function
and analyze the bare quark mass dependence of both poles as well as their residues. In the chiral limit we find that the quark spectral function has
two collective modes which correspond to the normal and plasmino excitations. At large values of the bare quark mass the spectral function is
dominated by a single pole.
© 2007 Elsevier B.V.
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To explore the properties of hot and dense matter formed
by quarks and gluons above the critical temperature for decon-
finement (Tc) is an intriguing problem that has been addressed
in many studies. Recent experimental results on the properties
of the matter created in heavy ion collisions at the Relativis-
tic Heavy-Ion Collider (RHIC) suggest, that its time evolution
above Tc is well described by ideal hydrodynamics down to the
freeze-out temperature in the vicinity of Tc [1]. In order to un-
derstand better the structure of matter in this non-perturbative
region, it is desirable to identify the basic degrees of freedom
of the system and their quasi-particle properties.

At asymptotically high temperatures almost free quarks and
gluons are most certainly the basic degrees of freedom that con-
trol the properties of the Quark–Gluon plasma (QGP) [2]. In
this regime properties of the QGP can be analyzed using per-
turbative techniques. At lower temperatures the application of
hard-thermal loop (HTL) resummation [3] still allowed to de-
fine gauge independent propagators for quarks and gluons that
can be used to study properties of the QGP perturbatively. From
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these perturbative analyses it is known that the collective exci-
tations of gluons and quarks develop a mass gap (thermal mass)
that is proportional to gT [2–4], where g and T denote the
gauge coupling and temperature, respectively. Moreover, the
number of poles in the finite temperature quasi-particle prop-
agators is doubled. In addition to the normal modes, which
reduce to poles in the free particle propagator, plasmon and
plasmino modes appear.

At temperatures in the vicinity of Tc it is apriori not clear
whether a quasi-particle picture for quarks and gluons is valid
at all. However, lattice results on, e.g., baryon number and elec-
tric charge fluctuations in the vicinity of Tc [5] suggest that
quasi-particles with quark degrees of freedom are the carriers
of these quantum numbers. Quasi-particles also have been used
successfully to describe lattice QCD results on the equation of
state [6]. Moreover, the apparent quark number scaling of the
elliptic flow observed in the RHIC experiments [7] may also
suggest that quasi-particles with quark quantum numbers exist
even close to Tc. Despite the problem of gauge dependence of
quark and gluon propagators, it therefore is desirable to analyze
their properties at high temperature through a direct calculation
within the framework of QCD. In this Letter, we analyze dy-
namical properties of quarks above Tc in quenched lattice QCD.
These calculations have been performed in Landau gauge. So
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far, there have been only a few studies that address this prob-
lem in lattice calculations [8].

In order to understand the origin of the plasmino mode in the
quark propagator in the high temperature limit, it is instructive
to consider the quark propagator at intermediate temperature by
introducing some energy scale of the order of the temperature
[9–11]. In [9], the temperature dependence of the spectral func-
tion for fermions with scalar mass m has been considered in
QED. In this model, the spectral function at zero temperature
has two poles at energies ω = ±m, while in the high tempera-
ture limit, T/m → ∞, it approaches the HTL result, which has
four poles. The one-loop calculation performed in [9] clearly
showed that the two limiting forms of the spectral function are
connected continuously; in the spectral function a peak corre-
sponding to the plasmino gradually appears and becomes larger
with increasing temperature, in addition to the normal quasi-
particle peak [9].

In this Letter, we analyze the quark propagator at two val-
ues of the temperature, T = 1.5Tc and 3Tc, as a function of
the bare quark mass. To simplify the present analysis, all our
calculations have been performed for zero momentum. The dy-
namical properties of quarks at zero momentum are encoded in
the quark spectral function ρ(ω) which is related to the Euclid-
ean correlation function

(1)S(τ) = 1

V

∫
d3x d3y

〈
ψ(τ,x)ψ̄(0,y)

〉
,

through an integral equation

(2)S(τ) =
∞∫

−∞
dω

e(1/2−τT ) ω/T

eω/2T + e−ω/2T
ρ(ω),

with the quark field ψ , the spatial volume V , and the imagi-
nary time τ which is restricted to the interval 0 < τ < 1/T .
The Dirac structure of ρ(ω) is decomposed as

(3)

ρ(ω) = ρ0(ω)γ 0 + ρs(ω)

= ρ+(ω)Λ+γ 0 + ρ−(ω)Λ−γ 0,

with projection operators Λ± = (1 ± γ 0)/2. The charge conju-
gation symmetry leads to ρ0(ω) = ρ0(−ω), ρs(ω) = −ρs(−ω),
and ρ+(ω) = ρ−(−ω) = ρ0(ω) + ρs(ω) [9,12]. In the follow-
ing analysis, we concentrate on a determination of ρ±(ω) in-
stead of ρ0,s(ω), because excitation properties of quarks are
more apparent in these channels [9]. In analogy to Eq. (3) we
introduce the decomposition of the correlation function S(τ)

as S(τ) = S+(τ )Λ+γ 0 + S−(τ )Λ−γ 0, where S± are related
through S+(τ ) = S−(β − τ).

For free quarks with scalar mass mq the spectral functions,
ρ±(ω) = δ(ω ∓ mq), have quark and antiquark poles at ω =
±mq , respectively. In the high temperature limit, additional
poles, corresponding to the plasmino, appear at negative en-
ergy for ρ+(ω) and positive energy for ρ−(ω) [9,11,12]. While
the positivity of ρ±(ω) is ensured by definition, these spectral
functions are neither even nor odd functions. In the chiral limit,
however, ρs vanishes and ρ±(ω) become even functions.

To extract the spectral function ρ+(ω) from S(τ) using
Eq. (2), we assume that ρ+(ω) can be described by a two-pole
Table 1
Simulation parameters [15]

T/Tc Nτ Nσ β cSW κc a [fm]

3 16 64,48 7.457 1.3389 0.13390 0.015
12 48 7.192 1.3550 0.13437 0.021

1.5 16 64,48 6.872 1.4125 0.13495 0.031
12 48 6.640 1.4579 0.13536 0.041

ansatz,

(4)ρ+(ω) = Z1δ(ω − E1) + Z2δ(ω + E2),

where the residues Z1,2 and energies E1,2 > 0 have to be de-
termined from a fit to S+(τ ). The poles at ω = E1,−E2 corre-
spond to the normal and plasmino modes, respectively [9].

The correlation function S(τ) has been calculated at two
values of the temperature, T = 1.5Tc and 3Tc, in quenched
QCD using non-perturbatively improved clover Wilson fermi-
ons [13,14]. To control the dependence of our results on the fi-
nite lattice volume, N3

σ ×Nτ , and lattice spacing, a, we analyze
the quark propagator on lattices of three different sizes. The
gauge field ensembles used for this analysis have been gener-
ated and used previously by the Bielefeld group to study screen-
ing masses and spectral functions [15]. The different simulation
parameters are summarized in Table 1 [15]. For each lattice
size, 51 configurations have been analyzed. On the 643 ×16 lat-
tices and at our smallest temperature, T = 1.5Tc, we observed
for the largest values of the hopping parameter, i.e., closest
to κc , an anomalous behavior of the quark propagator on a few
gauge field configurations. The appearance of such exceptional
configurations in calculations with light quarks in quenched
QCD is a well-known problem in calculations with Wilson
fermions [16]. We identified 7 such configurations, which we
excluded from our analysis. The properties of the quark prop-
agator on these configurations will be discussed in more detail
elsewhere [17]. Quark propagators have been calculated after
fixing each gauge field configuration to Landau gauge. For this
we used a conventional minimization algorithm with a stop-
ping criterion, (1/3) tr |∂μAμ|2 < 10−11. In the Wilson fermion
formulation the bare mass, m0, is related to the hopping para-
meter κ , through the standard relation

(5)m0 = 1

2a

(
1

κ
− 1

κc

)
,

where κc denotes the critical hopping parameter corresponding
to the chiral limit, or vanishing quark mass.

To evaluate Eq. (1) numerically, we solve the linear equa-
tion Kψresult = ψsource for a given source ψsource, with K being
the fermion matrix. For this procedure, we use the wall source,
ψw

source = (1/V )
∑

x ψ(0,x), which we found to be very ef-
ficient in reducing the statistical error in the propagator cal-
culation. To reduce the statistical error further, we define the
correlation function S+(τ ) for each configuration by

(6)Slatt.+ (τ ) = 1

12
tr
[
S(τ)γ 0Λ+ + S(β − τ)γ 0Λ−

]
,

with the trace taken over Dirac and color indices.
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Fig. 1. The lattice correlation function Slatt.+ (τ ) at T = 3Tc for the lattice of size

643 × 16 with various values of κ , and the fitting result with the ansatz Eq. (4).

In Fig. 1, we show the numerical results for Slatt.+ (τ ) for
several values of κ calculated on a lattice of size 643 × 16 at
T = 3Tc. One sees that the shape of Slatt.+ (τ ) approaches that
of a single exponential function for smaller κ , while it be-
comes symmetric as κ approaches κc. In the vicinity of the
wall source, i.e., at small and large τ , we see deviations from
this generic picture which can be attributed to distortion effects
arising from the presence of the source. We thus exclude points
with τ < τmin and Nτ − τ < τmin from our fits to the ansatz
given in Eq. (4). The resulting correlation functions obtained
from correlated fits with τmin = 3 are shown in Fig. 1. One sees
that Slatt.+ is well reproduced by our fitting ansatz1; the χ2/dof
of our fits is between 2 and 3 at 0.1335 � κ � 0.134, while it
gradually increases as κ becomes smaller than κ = 0.1335. A
similar behavior is also observed for our other lattice sizes [17].

In Fig. 2, we show the dependence of E1,2 and Z2/(Z1 +Z2)

on the bare quark mass m0 for T = 1.5Tc and 3Tc. The re-
sults have been obtained from two-pole fits on lattices of
size 643 × 16. Errorbars have been estimated from a Jack-
knife analysis. The dotted line in this figure denotes the pole
mass determined from the bare lattice mass given in Eq. (5),
i.e., E1/T = m0/T = m0aNτ . The figure shows that the ratio
Z2/(Z1 + Z2) becomes larger with decreasing m0 and eventu-
ally reaches 0.5. The hopping parameters satisfying Z1 = Z2
are κ ′

c = 0.133974(10) for T = 3Tc and κ ′
c = 0.134991(9) for

T = 1.5Tc, which are consistent with the values for κc given in
Table 1. The latter had been obtained in [15] from a fit to crit-
ical hopping parameters determined in [14] from the vanishing
of the isovector axial current. The numerical results obtained
on 643 × 16 lattices show that E1 and E2 are equal within
statistical errors at κ = κ ′

c . The spectral function ρ+(ω) thus
becomes an even function at this point; the quark propagator

1 We also checked that fits based only on a single pole ansatz lead to unac-

ceptable large χ2/dof.
Fig. 2. The bare quark mass dependence of fitting parameters E1,2 and
Z2/(Z1 + Z2) at T = 1.5Tc and 3Tc for lattice 643 × 16.

becomes chirally symmetric despite the presence of a thermal
mass, mT ≡ E1 = E2. From Fig. 2, one also finds that the ratio
mT /T is insensitive to T in the temperature range analyzed in
this work, while it is slightly larger for lower T .

As m0 becomes larger, Z2/(Z1 + Z2) decreases and ρ+(ω)

is eventually dominated by a single-pole. One sees that E1
has a minimum at m0 > 0, while E2 is an increasing function
of m0. In the one-loop approximation, the peak in ρ+(ω) corre-
sponding to E1 (E2) is monotonically increasing (decreasing)
function of m0/T [9,17]. The quark mass dependence of poles
found here thus is qualitatively different from the perturbative
result. We find, however, that slope of E2 as function of m0/T

decreases with increasing T . This may suggest that the pertur-
bative behavior could eventually be recovered at much larger
temperatures.

In order to check the dependence of our results on the lattice
spacing and finite volume, we analyzed the quark propagator at
T = 3Tc for three different lattice sizes. Results for E1 and E2
are shown in Fig. 3. Comparing the results obtained on lattices
with different lattice cut-off, a, but same physical volume, i.e.,
643 ×16 and 483 ×12, one sees that any possible cut-off depen-
dence is statistically not significant in our analysis. On the other
hand we find a clear dependence of the quark energy levels on
the spatial volume; when comparing lattices with aspect ratio
Nσ /Nτ = 3 and 4 we find that the energy levels, E1,2, drop sig-
nificantly. A similar behavior is observed also at T = 1.5Tc.

The presence of a strong volume dependence of the quark
propagator is not unexpected. In fact, the thermal quark mass
arises as collective effect of low momentum gluons; gluons
at the soft scale p � gT play a crucial role to give rise to
the thermal mass at high temperatures [2,3]. However, on lat-
tices with given aspect ratio Nσ /Nτ low momentum gluons
are cut-off. The lowest non-vanishing gluon momentum is,
pmin/T = 2π(Nτ/Nσ ), which still is larger than unity on lat-
tices with aspect ratio Nσ /Nτ = 4. The situation may, nonethe-
less, be somewhat better in the temperature range explored
here as the temperature dependent coupling g(T ) is larger than
unity. An analysis of quark spectral functions on lattices with
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Fig. 3. The bare quark mass dependence of parameters E1, E2 at T = 3Tc for
lattices of size 643 × 16, 483 × 16 and 483 × 12.

even larger spatial volume is needed in the future to properly
control effects of small momenta. We attempted to estimate
the thermal mass in the V → ∞ limit by extrapolating the
results obtained for two different volumina. Defining mT ≡
(Z1E1 + Z2E2)/(Z1 + Z2)|κ=κc and assuming the volume de-
pendence of mT as mT (Nτ/Nσ ) = mT (0) exp(cN3

τ /N3
σ ), we

obtain mT (0)/T = 0.771(18) for T = 3Tc and mT (0)/T =
0.800(15) for T = 1.5Tc. This suggests that finite volume ef-
fects may still be of the order of 15% in our current analysis
of mT /T . Despite these problems, our result clearly shows that
light quarks near but above Tc have a mass gap that is of collec-
tive nature similar to that in the perturbative regime.

In this Letter, we analyzed the quark spectral function at
zero momentum for T = 1.5Tc and 3Tc as functions of bare
quark mass m0 in quenched lattice QCD with Landau gauge
fixing. We found that the two-pole approximation for ρ+(ω)

well reproduces the behavior of the lattice correlation func-
tion. It is argued that the chiral symmetry of the quark prop-
agator is restored at the critical value of κ and the shape of
the spectral function at this point takes a similar form as in
the high temperature limit having normal and plasmino modes
with thermal mass mT . As m0 is increased, ρ+(ω) approaches
a single-pole structure as one can naturally deduce intuitively.
The non-perturbative nature of thermal gauge fields is reflected
in the behavior of poles as functions of m0, which is qualita-
tively different from the perturbative result [9]. We also note
that the ratio mT /T decreases slightly with increasing T , which
is expected to happen at high temperature where m/T should
be proportional to a running coupling g(T ). Although results on
the quark propagator are gauge dependent, we expect that our
results for its poles suffer less from gauge dependence, because
the success of the pole approximation for ρ+(ω) indicates that
the quark propagator has dynamical poles near the real axis,
which are gauge independent quantities [9,18].

In the present study, we analyzed the quark spectral function
in the quenched approximation. Although this approximation
includes the leading contribution in the high temperature limit
[2] and thus is valid at sufficiently high T , the validity of this
approximation near Tc is nontrivial. For example, screening of
gluons due to the polarization of the vacuum with virtual quark–
antiquark pairs is neglected in this approximation. The coupling
to possible mesonic excitations [19,20], which may cause inter-
esting effects in the spectral properties of the quark [11], are
not incorporated, either. The comparison of the quark propaga-
tor between quenched and full lattice simulations would tell us
the strength of these effects near Tc .

In the future it will also be interesting to use results on
the non-perturbative structure of quark propagators as input for
phenomenological studies of the QGP phase. For example, ther-
mal properties of the charm quark [17] should be useful for the
understanding of properties of charmonia above Tc [19]. The
thermal mass of light quarks can also be used to evaluate de-
tails of their dynamics [21].

Although in this Letter we limited our analysis to zero mo-
mentum, a proper analysis at finite momentum [17] is needed
for the understanding of the entire quark spectral function. In
particular, the confirmation of the existence of a minimum in
the plasmino dispersion relation at finite momentum [4] clearly
is a challenging problem. The exploration of the gluon propa-
gator is also an important subject of further studies. To clarify
the origin of the quark mass dependence of E1 and E2, which
is qualitatively different from the perturbative result, as well as
the T dependence of the thermal mass, are open questions for
further numerical and analytic studies.
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