
Applied Computing and Informatics (2014) 10, 68–81
King Saud University

Applied Computing and Informatics
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
On the security of SSL/TLS-enabled

applications
* Corresponding author. Tel.: +91 79 30510617.

E-mail addresses: maniklal_das@daiict.ac.in (M.L. Das), navkar.samdaria@gmail.com (N. Samdaria).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

2210-8327 ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.aci.2014.02.001
Manik Lal Das *, Navkar Samdaria

DA-IICT, Gandhinagar, India

Received 20 August 2012; revised 31 January 2014; accepted 11 February 2014

Available online 26 February 2014
KEYWORDS

Secure Socket Layer;

Transport Layer

Security;

Authentication;

Public key certificate;

Man-in-the-middle

attacks;

One-time pad
Abstract SSL/TLS (Secure Socket Layer/Transport Layer Security)-enabled

web applications aim to provide public key certificate based authentication,

secure session key establishment, and symmetric key based traffic confidentiality.

A large number of electronic commerce applications, such as stock trading,

banking, shopping, and gaming rely on the security strength of the SSL/TLS pro-

tocol. In recent times, a potential threat, known as main-in-the-middle (MITM)

attack, has been exploited by attackers of SSL/TLS-enabled web applications,

particularly when naive users want to connect to an SSL/TLS-enabled web ser-

ver. In this paper, we discuss about the MITM threat to SSL/TLS-enabled web

applications. We review the existing space of solutions to counter the MITM

attack on SSL/TLS-enabled applications, and then, we provide an effective

solution which can resist the MITM attack on SSL/TLS-enabled applications.

The proposed solution uses a soft-token based approach for user authentication

on top of the SSL/TLS’s security features. We show that the proposed solution is

secure, efficient and user friendly in comparison to other similar approaches.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights

reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2014.02.001&domain=pdf
mailto:maniklal_das@daiict.ac.in
mailto:navkar.samdaria@gmail.com
http://dx.doi.org/10.1016/j.aci.2014.02.001
http://www.sciencedirect.com/science/journal/22108327
http://dx.doi.org/10.1016/j.aci.2014.02.001

On the security of SSL/TLS-enabled applications 69
1. Introduction

Secure Socket Layer/Transport Layer Security (SSL/TLS) (Dierks and Rescorla,
2008) protocol is typically integrated into application for protecting data sent
via HTTP between clients and servers, which is also known as HTTP over TLS
(HTTPS). In an SSL/TLS-enabled application, client first sends a hello message
to the server then the server, upon confirming negotiated parameters, sends the
server’s hello message along with server’s digital certificate to the client. The ser-
ver’s digital certificate provides information about the server’s public key, certifi-
cate validity period, owner and issuer information. Once the client authenticates
the server using the server’s certificate, the client and the server establish session
keys, which are symmetric keys used to encrypt and decrypt information ex-
changed during the SSL/TLS session and to verify message integrity. As a result,
the SSL/TLS-enabled application aims to provide digital certificate-based server
authentication, public key based key exchange, and session key based data confi-
dentiality using a standard symmetric key encryption (e.g., AES) algorithm. In
addition, message integrity is checked using message authentication codes (Fig. 1).

The SSL/TLS protocol is composed of four subprotocols – Handshake, Change-
CipherSpec, Record, and Alert subprotocols (Dierks and Rescorla, 2008). The
Handshake subprotocol allows the client to authenticate the communicating ser-
ver using server’s public key certificate (we note that the client authentication is
an optional security support the protocol offers that can also be achieved using
the client’s certificate), key exchange between the client and server using public
key algorithm followed by keying material generation, and data confidentiality
for traffic security using symmetric key encryption algorithm. The working prin-
ciple of the Handshake protocol is as follows. A client, who wants to connect
Figure. 1 Certificate warning at the client on SSL/TLS-enabled application.

70 M.L. Das, N. Samdaria
to an SSL/TLS-enabled web application, is required to communicate to the server
a list of ciphers and algorithms (known as cipher suites) that the client can sup-
port. Upon receiving the client’s request, the server selects a suitable cipher and
required algorithms from the client’s cipher suites. If the server does not agree
to a common cipher suite from the list given by the client, then both the client
and the server are required to negotiate further toward an agreeable cipher suite.
Once the server selects a suitable cipher suite from the client’s list, the server sends
its public key certificate along with the selected cipher suite to the client. The client
now verifies the server’s certificate and if the certificate is found valid then the ser-
ver is authenticated. We note that the client’s authentication can also be checked
by the server, but it is an optional step. If the server wants to check for client’s
authentication then the server asks for the client’s certificate. Once the server
authentication is confirmed, the client and the server establish a master secret
key using a key exchange algorithm based on RSA, Diffie-Hellman, or Fortezza.
With this master key, both the client and the server generate key material (e.g.,
encryption key, MAC key) using a pseudo-random function (PRF) and other
ephemeral parameters while using the SSL protocol, and for TLS protocol, it
applies the HMAC and PRF to generate the key material. The Handshake subpro-
tocol ends with the client’s and server’s message authentication codes of all previ-
ously exchanged messages, to protect the Handshake from message tampering.
The Record subprotocol secures application data using the keys (MAC keys
and encryption keys) computed in the Handshake subprotocol. Basically, the Re-
cord subprotocol is responsible for protecting the application data in the current
session. The Alert subprotocol is invoked when any error or warning occurs while
running the other subprotocols.

Informally, not all SSL/TLS-enabled applications require client’s authentica-
tion as long as the server gets paid off for the client’s service. This optional client’s
authentication in SSL/TLS-enabled application opens up a potential security
loophole to attackers (Oppliger and Gajek, 2005) who could try to convince a na-
ive client with a fake server certificate and if he succeeds, he would be able to cap-
ture all sensitive data from the client. This type of attack usually takes the SSL/
TLS-enabled communication into some vulnerable state by tampering the security
indicators and making the user believing that the connection is established with
the legitimate server, but the client is actually connected to the attacker’s server.
For example, suppose the attacker produces a fake server certificate in place of
the legitimate server certificate and the client accepts the fake certificate without
checking the correctness of the certificate. After that, when the client wants to con-
nect to the same legitimate server (for which the client has already accepted the
fake certificate), the client will be routed to the attacker’s server. This type of at-
tack is known as MITM attacks on SSL/TLS-enabled application. Recently, SSL
Stripping attacks (Marlinspike, 2009), (Shin and Lopes, 2011), (Zhao et al., 2012)
also pose a serious threat to defeat SSL/TLS protection to web application. In SSL
stripping attack, the user believes that an SSL/TLS connection has been

On the security of SSL/TLS-enabled applications 71
established with the target server, while the attacker has the ability to view the
user’s traffic in clear-text. The attacker suppresses the SSL/TLS peer negotiation
messages and provides the user with a ‘‘stripped’’ version of the requested website,
provoking the user to communicate to the server through an insecure channel.

1.1. Our contributions

We discuss the existing solutions to counter the MITM attacks on SSL/TLS-en-
abled applications. As most of the solutions consider the client authentication
as an important factor, we discuss the solution space for password, graphical user
interface, and token-based approaches for user authentication. We then present an
efficient solution using soft-token based client’s authentication that can resist SSL/
TLS-enabled application from MITM attacks. We analyze the proposed solution
for its security feature on top of the SSL/TLS protocol security, and provide its
efficiency in comparison to other approaches.

1.2. Organization of the paper

The remainder of the paper is organized as follows. Section 2 reviews the SSL/TLS
protocol, discusses MITM attacks on SSL/TLS-enabled application, and outlines
existing solutions for MITM threats on SSL/TLS-enabled transactions. Section 3
presents the proposed solution for securing SSL/TLS-enabled application from
MITM attacks. Section 4 analyzes the proposed solution and compares the pro-
posed solution with related approaches. We conclude the paper in Section 5.

2. MITM Attacks on SSL/TLS-enabled Applications

An MITM attack is a form of active attack in which the attacker intercepts and
selectively modifies intercepted data in order to impersonate a legitimate party
involved in client and server communication. Based on intended services and busi-
ness perspectives, several SSL/TLS-enabled web applications do not employ client
authentication as a requirement, instead the web applications enable SSL/TLS in
server authentication mode. The reason behind this is justified by saying that the
server delivers services as long as the client pays the required amount to the server
(e.g., online shopping facilitated by Amazon, eBay), so the client authentication is
not required for such scenarios. Therefore, it is client’s responsibility to check
whether s/he is talking to the correct server or not. In SSL/TLS protocol, on re-
ceipt of the communicating server’s certificate, the client may get a warning if
any of the following occurs: (i) the Root Certifying Authority (CA) is not recog-
nized (or trusted) by the client; (ii) the certificate is invalid/expired; and (iii) the
common name (CN) of the certificate does not match with the Domain Name
Server. In such cases, the client should check for a possible reason and drop the
connection if not convinced with the warning message window. It is observed that

72 M.L. Das, N. Samdaria
most of the time the client does not pay attention to such an important warning,
and accepts the exception and stores the server’s certificate in its specified location.
Once the client stores a fake certificate in its memory, the damage has been done,
as s/he is going to talk to a fake server though the connection is protected by SSL/
TLS protocol. This type of situation opens up a door to MITM attacker (Burk-
hold, 2002) on SSL/TLS-enabled application. Another potential scenario is the
stripping attacks (Marlinspike, 2009; Shin and Lopes, 2011; Zhao et al., 2012)
on SSL-enabled web applications. SSL stripping attacks assume that an attacker
is present in the middle of the victim and the server.

Many websites provide a secure connection between the client and the server by
using HTTPS for protecting user credentials, confidential information such as
login form, password change, money transaction and so on. Although the server
response comes over HTTPS, the attacker changes all
to before the victim receives the target web page. The
victim believes that s/he sends the credentials over a secure connection (HTTPS)
to the server, but the attacker gets the information by stripping off the connection
by HTTP in place of HTTPS. It is also important for the attacker to keep a list of
all HTTP substitutions that he has made so that he can send the HTTPS request
back to the communicating server. Finally, the MITM attacker spoofs the client to
a vulnerable state and steals useful parameters from the client. Although modern
browsers support many indicators (e.g., padlock) to provide information regard-
ing the connection, a naive client generally ignores such indications and falls into
the trap. In some cases, the attacker is able to manipulate these indicators leaving
no clue to the user.

In (Li and Wu, 2003), authors proposed a tamper resistant TrustBar in the
browser to visualize the certificate information. In Ye and Smith, 2002, a concept
of synchronized random boundaries has been proposed so as to distinguish be-
tween the authentic parts of the browser’s GUI and the rendered content received
by the server. Another approach that needs fewer changes at the browser is the use
of dynamic security skin (Dhamija and Tygar, 2005), where the browser has a per-
sonalized area which needs to be customized by the user according to his/her will.
It is believed that the attacker cannot spoof the personalized area without knowing
the exact specification of the area. We now discuss some approaches for user
authentication on top of the SSL/TLS protocol security strengths in order to mit-
igate the MITM attacks on SSL/TLS-enabled web applications.

2.1. Password-based approach

Password-based user authentication is widely used in many real-world applica-
tions. Saito et al. (2008) proposed a protocol for binding the SSL/TLS session with
the client using the user’s password. Saito et al’s protocol binds HTTP authenti-
cation over SSL/TLS in server authentication mode. As HTTP authentication
does not encrypt its channel and client does not authenticate the server, binding

On the security of SSL/TLS-enabled applications 73
the client’s authentication over SSL/TLS in the server authentication mode can
make the communication secure. The interesting feature of their protocol is that
it binds user authentication without modifying the SSL/TLS, HTTP and HTTPS
protocols. The protocol works as follows. Client and server first establish an SSL/
TLS connection in the server authentication mode. After that the server authenti-
cates the user by using HTTP authentication in arbitrary time. However, the ser-
ver can control timing to obtain user’s password. This is a convenient feature than
the fixed timing of authentication in SSL/TLS Handshake. In order to meet these
goals, Saito et al’s protocol works with the following steps:

(i) Establishing SSL/TLS Handshake in server authentication mode.

(A1) Client fi Server: client_hello.
(A2) Server fi Client: server_hello, server’s public key certificate (cert).
(A3) Client fi Server: {pre-master-secret}cert.
(A4) Client fi Server: fMACKm of ðA1–A3ÞgKe

.
(A5) Server fi Client: fMACKmofðA1–A4ÞgKe

.
(ii) HTTP user authentication over the SSL/TLS channel.
(B1) Client fi Server: fRequest for some pagegKe
.

(B2) Server fi Client: fRequest for user authenticationgKe
.

(iii) Exchanging and verifying user credentials for binding authentication.

(C1) Client fi Server: fuser id;hðCN;cert; hðuser id; password;KmÞÞgKe

.
(C2) Server fi Client: fCN;hðuser id;password;hðCN;cert;KmÞÞ;Requested

pagegKe
.

The symbols CN, MAC, Km, Ke and h(.) indicate Common Name in the server
certificate, Message Authentication Codes, MAC key, Encryption key and hash
function, respectively. Messages A1–A5 represent the SSL/TLS handshake proto-
col. With the Handshake protocol, the client and server establish a master secret
key by which they can derive MAC key (Km) and encryption key (Ke). The mes-
sages B1 and B2 involve user authentication steps using HTTP and encryption
key Ke. The messages C1 and C2 involve user’s password. The server locally com-
putes h(CN, cert, h(user_id, password, Km)) and compares it with the one received
in C1, while the client computes h(user_id, password, h(CN, cert, Km)) and com-
pares it with the one received in C2. If they validate the received content success-
fully, then they believe that the communication is mutually authenticated. With
the step (iii), the protocol Saito et al., 2008 can bind the client’s authentication
using the user’s password which can avoid the MITM attack on SSL/TLS session
in the server authentication mode.

2.2. GUI-based approach

Authentication mechanisms such as PassFaces (PassFaces, 2009) and PASSpicture
(Exum, 2007) use the natural ability of humans to recognize images. With the
PASSpicture based approach normal textual password is being replaced with a

74 M.L. Das, N. Samdaria
sequence of clicks on an image. There are other variants which work in similar
ways (e.g., clicks on an image or draw a secret picture). Instead of using only
textual password, graphical password can employ bidirectional authentication,
where the server provides its authenticity to the user by displaying user’s graphical
password, which was chosen by the user at the time of his/her registration. Upon
confirmation, the user authenticates to the server using a kind of challenge-
response mechanism. Although, the GUI-based approach provides some
resistance to MITM attacks, the mechanism cannot survive once the adversary
captures user’s graphical password.

2.3. One-Time-Password approach

There are many One-Time-Password (OTP) (Rubin, 1996) mechanisms, such as
OTP manual, OTP automatic, OTP synchronous, and OTP asynchronous. These
mechanisms are briefly explained as follows.

– OTP manual (e.g. Scratch card): A piece of paper or card containing OTP.
The OTP must be securely printed and mailed to the customer. Using the
OTP the user can login to the system and after that the OTP has no value.
In other words, the adversary cannot do anything by knowing the OTP once
it is used, as the user is going to use a different OTP for the next time.

– OTP automatic (e.g. SMS): Instead of scratching the OTP from a card, the
OTP is sent to the registered user’s mobile phone/PDA via Short Message
Service (SMS). Many banking applications use this concept to protect their
applications from phishing.

– OTP synchronous (e.g. Hardware/Software token): The time-synchronized
OTP is same as SecurID, a hardware/software token, where each user is
given a personalized token that generates an OTP every 30 or 60 s. The
token’s clock must be synchronized with the clock of the server.

– OTP asynchronous: In this case, the authentication server generates a ran-
dom challenge and sends it to the user. The user enters the challenge into
his/her token, which in turn, generates a result based on the challenge and
some seed/secret value stored in the token’s memory (which is known to
the authentication server). Then the user sends the result back to the authen-
tication server. Here, the challenge is valid for a short time decided by the
server, and only the authentication server needs to keep track of the validity
period. The advantage of the OTP asynchronous is that the clock of the
user’s token and the authentication server does not require to be
synchronized.

We note that the OTP manual-based user authentication would make user com-
fortable for frequent server access. The OTP automatic is secure in comparison to
the OTP manual, but a third party (e.g., mobile service provider) dependency

On the security of SSL/TLS-enabled applications 75
would be a bottleneck in this mechanism. The token-based OTP for user authen-
tication is a secure mechanism, but synchronization is again a bottleneck.

2.4. Token-based approach

Token-based user authentication employs two-factor authentication mechanism.
User enters his/her PIN and the token generates a 6-digit or 8-digit random code,
which the user enters into the authentication server used for intended application.
The authentication server computes the code on its own and checks whether user’s
code matches with its code or not. Both the user and the server should be in the
same clock drift in order to accept user’s token generated code. RSA SecurID
(RSA SecurID, 2010) is a standard reference for token-based two-factor authen-
tication, which has got enormous acceptance in industry and Government sectors.
One can also integrate token-based user authentication to SSL–VPN enabled
application for strong authentication purpose. Since the token generated code is
random in nature, the MITM cannot use it for the next run by retransmitting it
to the server, which will be discarded by the server. Some implementations of
the SSL/TLS session-aware user authentication have been proposed in Oppliger
et al. (2006, 2008) that provide the following two ways:

– Hardware-token based implementation: This approach employs impersonal
tokens (that is, tokens which are not user specific) with token specific secret
keys. These impersonal tokens are used for user authentication to the ACE
server (RSA SecurID, 2010). The token has a small display on which the
user enters his/her PIN and generates the code. The code is then used to
authenticate the user. Although the approach provides security against
MITM, employing such token-based implementation increases complexity
and also requires extra cost.

– Soft-token based implementation: In this approach, the concept of hard-
ware-token is converted to soft-token by emulating its functionality in soft-
ware. Soft-token based solution is less expensive than the hardware-token
based solution, but it suffers from additional security risks such as keylogger
attacks and visual spoofing.

3. The proposed protocol

We present a soft-token based solution to mitigate the MITM threat on SSL/TLS-
enabled web applications. The participating entities of our protocol are as follows:

– User/client, who wants to access SSL/TLS-enabled applications.
– Server that hosts the SSL/TLS-enabled application.

76 M.L. Das, N. Samdaria
Before accessing the application, user/client requires to register with the server
securely. Upon successful registration, user shares its identity (UID), password
(PWD) and a pattern code (PC) with the server. The pattern code is an additional
security measure that is added to our proposed solution. The pattern code is a
shape or a sequence of matrix element A(i, j) of a pattern matrix (Kumar and
Raghavan, 2008). Each cell of the pattern matrix is an image that represents a
character. During the registration process, the user is provided a randomly gener-
ated pattern matrix and is asked to choose some sequence of positions by typing
the characters present in the pattern matrix, which then becomes the user’s pattern
code, PC. The Fig. 2 shows the user’s PC, which is captured in the shaded region
(we note that the sequence of user’s PC is superscribed with numbers 1 to 7 in the
shaded region), that is, PC in Fig. 2 is B{#(S7&. The protocol works as follows.
When the user/client wants to access to the server, the client and server establish
an SSL/TLS session key K using the SSL/TLS handshake protocol. After that, the
server generates a soft-token containing PC, UID, and an authentication code,
AC, where AC =MAC(PC; h(all previous SSL/TLS messages)) and MAC(.) is
a message authentication code. The soft-token provides user the visual charac-
ter-by-character feedback of PC once the user inputs to AC. The browser will also
have a small display where the compressed hash value of all the previous SSL/TLS
messages will be displayed. This area can be customized by the user, thereby
avoiding any visual spoofing attack. The user generates AC using the hash value
displayed on the browser and her/his pattern code PC. Then, the user submits UID
and AC to the server. After receiving AC, the server also calculates AC using the
hash value and PC corresponding to the UID. If the computed AC is same as the
received AC then the client is authenticated by the server. The user can stop input-
ting to AC if s/he does not see the pattern code corresponding to the chosen pat-
tern at the time of registration. The process of inputting to AC and displaying PC
is shown in Fig. 3. Each character of AC is coupled with the SSL/TLS session so
that the adversary is unable to use the same message in a different SSL/TLS
session. The protocol is given below:
Figure. 2 Pattern matrix and pattern code.

Figure. 3 Pattern matrix and authentication code.

On the security of SSL/TLS-enabled applications 77
(A1) C fi S: client_hello.
(A2) S fi C: server_hello, server public key certificate (cert).
(A3) C fi S: {pre-master-secret}cert.
(A4) C fi S: MACKm of A1–A3.
(A5) S fi C: MACKm of A1–A4.
(A6) C fi S: fRequest for some informationgKe

.
(A7) S fi C: fRequest for user authentication using tokengKe

.
(A8) C fi S: fuser id;ACgKe

.
(A9) S fi C: fRequested informationgKe

.

Messages A8 and A9 occur as many times as the server sends challenge to the
client.

4. Analysis

4.1. Security analysis

The SSL (ver. 3.0)/TLS (ver. 1.0 or later) protocol provides server authentication,
session key establishment and data confidentiality security services. In addition to
these security services, the proposed protocol provides additional security measure
for user authentication code checking using pattern matrix. The pattern matrix
was selected by the user at the time of registration process and stored it securely
at the server. When the user wants to connect to the server s/he has to select
the appropriate patter code from the displayed pattern matrix on the legitimate
server. Without knowing the pattern matrix chosen by the user, the attacker

78 M.L. Das, N. Samdaria
cannot provide the correct patter matrix to the user/client, which eliminates the
MITM attacks on SSL/TLS-enabled applications.

4.1.1. Server authentication

In SSL/TLS server authentication mode, the client receives the server certificate
through the server_hello message. Upon seeing the server’s certificate, the client
can check its validity (by checking the issuer, subject, validity period, trust chain,
purpose of the certificate) whether s/he is interacting with the correct server or not.
However, the correctness checking of the server certificate by a naive user is a bot-
tleneck. Moreover, if the client (i.e., browser) accepts (or stores somehow) a fake
certificate of the (attacker) server then the user’s password will get leaked to the
attacker, because the user will enter his/her password after establishing the SSL/
TLS connection to the attacker server in believing that s/he is talking to the correct
server. Below we show that how the proposed protocol can counter this threat by
authenticating the client on server stored client’s information.

4.1.2. Client authentication

Many SSL/TLS-enabled applications do not employ public key certificate based
client authentication. The reason behind is that the client’s authentication is not
required for such applications. Other possible reasons are: (i) employing public
key certificate for client’s authentication increases computational cost; (ii) client
is required to buy certificate from a trusted authority; (iii) mobility issues for client
certificate that is, if the client wants to access the server from different places
across several machines or browsers, then the client has to carry its certificate in
a device. Now if the server imposes client’s authentication as a mandatory require-
ment then instead of using certificate based client authentication one can use a
soft-token based approach. The proposed solution is based on soft-token for client
authentication on server stored client’s information, which can avoid the MITM
attack on SSL/TLS-enabled applications, as explained below.

Suppose that an attacker attempts to mount an MITM attack by impersonating
a user who wants to access a server enabled with the SSL/TLS protocol. We as-
sume that the attacker establishes the SSL/TLS session with user and another
SSL/TLS session with the server who hosted the SSL/TLS-enabled application.
In the scenario between user and attacker, the attacker presents a false token to
the user and asks for the UID and AC. Then, the attacker forwards the UID to
the server so as to spoof the user. In this situation, the server will abort the session,
as the server can identify that the AC given by the user does not belong to the same
SSL/TLS session as the server sees a different hash of SSL/TLS messages. Further-
more, the user is not revealing her/his credentials at any stage. Therefore, the at-
tacker cannot get user’s pattern code PC in order to impersonate the user. The
scenario is depicted in the Fig. 4 (K1 and K2 are SSL/TLS session keys), where
the attacker will not be able to succeed in gaining anything, as two different values

Figure. 4 Safeguard against MITM attacks on SSL/TLS-enabled application.

On the security of SSL/TLS-enabled applications 79
of ACs for the two different sessions are being executed by the attacker while inter-
acting with the user and the server. Even though the attacker submits a fake server
certificate to the client and if the client accepts it, the attacker cannot gain any-
thing from the client as the attacker does not have any knowledge of the user’s
AC stored in the server. Therefore, MITM attacks cannot work in the proposed
solution.

4.1.3. Replay attack

The session key of the proposed protocol is generated by pre-master secret key,
client and server’s random numbers, and other session specific parameters. If an
adversary intercepts messages from the current or previous run of the protocol
and tries to replay any messages in a new run of the protocol to get access of
the server, then the adversary will not be succeeded because the server will discard
the request as the messages will not pass the freshness property. The usage of ran-
dom numbers of client and server in the session helps in resisting the replay attack.
Therefore, the proposed protocol is not vulnerable to replay attack.

4.1.4. Password guessing attack

In the conventional password-based user authentication protocol, attacker at-
tempts to guess user’s password by intercepting messages between the user and
the server. Once the attacker guesses the user’s password correctly, he will then
impersonate the user for gaining access to the server. In the proposed protocol,
the user password is not communicated to the server. Instead, the user generates
an authentication code AC using the patter matrix chosen by the user at the time
of registration to the server. This avoids password guessing attacks in the pro-
posed protocol. In other words, the proposed protocol prevents the password
guessing attack.

Table 1 Comparison of different approaches.

Approach Resistance to MITM attack Computational cost User Friendliness

Password-based Yes Low Yes

GUI-based No High Yes

One-Time-Password based Yes High No

Hard-token based Yes High No

Proposed Soft-token based Yes Low Yes

80 M.L. Das, N. Samdaria
4.2. Performance

We give a comparison of all approaches that we have discussed in the paper in
Table 1. From the table we can see that the proposed soft-token based approach
provides optimal solution in terms of security and efficiency.

The proposed solution is also usable. The user is required to input the AC and
then s/he will be able to see the PC chosen at the time of registration. The ap-
proach does not require registered user to carry any device/token while s/he is
roaming from one place to another place. Only thing s/he requires to remember
at the time of connecting to the server is her/his patter code PC, which is similar
to remembering a password.

5. Conclusions

We have discussed about the MITM threat to SSL/TLS-enabled web applications.
We reviewed the existing approaches for user authentication and proposed a
soft-token based user authentication. By enabling the proposed solution in SSL/
TLS-enabled web application, the MITM attacks can be avoided. The proposed
solution requires a trusted display (controlled by the legitimate server) on the
browser to render the compressed value of the hash of SSL/TLS handshake mes-
sages. The proposed solution is computationally efficient and provides additional
security on top of the SSL/TLS protocol’s security strength.

References

Burkholder, P., 2002. SSL Man-in-the-Middle Attacks. SANS Institute Information Security.

Dhamija, R., Tygar, J.D., 2005. The battle against phishing: dynamic security skins. In: Proc. of the Symposium

on Usable Privacy and Security. ACM Press, pp. 77–88.

Dierks T., Rescorla E., 2008. Transport Layer Security Protocol. Network Working Group, RFC 5246. Available

from: <http://tools.ietf.org/html/rfc5246>.

Exum, T., 2007. Graphical passwords. In: Communication Security. <http://www.infosecwriters.com/textre-

sources/pdf/GraphicalPasswordsTExum.pdf> (Retrieved December 2013).

Kumar, T.R., Raghavan, S.V., 2008. PassPattern System (PPS): a pattern-based user authentication scheme. In:

Proc. of the International IFIP-TC6 Networking Conference on AdHoc and Sensor Networks, Wireless

Networks, Next Generation Internet. ACM Press, pp. 162–169.

Li, T.Y., Wu, Y., 2003. Trust on web browser: attack vs. defense. In: Proc. of International Conference on

Applied Cryptography and Network Security (ACNS), LNCS 2846, pp. 241–253.

Marlinspike, M., 2009. New Tricks for Defeating SSL in Practice. In BlackHat.

http://refhub.elsevier.com/S2210-8327(14)00003-9/h0010
http://refhub.elsevier.com/S2210-8327(14)00003-9/h0010
http://tools.ietf.org/html/rfc5246
http://www.infosecwriters.com/textresources/pdf/GraphicalPasswordsTExum.pdf
http://www.infosecwriters.com/textresources/pdf/GraphicalPasswordsTExum.pdf
http://refhub.elsevier.com/S2210-8327(14)00003-9/h0025
http://refhub.elsevier.com/S2210-8327(14)00003-9/h0025
http://refhub.elsevier.com/S2210-8327(14)00003-9/h0025

On the security of SSL/TLS-enabled applications 81
Oppliger, R., Gajek, S., 2005. Effective Protection against Phishing and Web spoofing. Communications and

Multimedia Security, pp.32–41.

Oppliger, R., Hauser, R., Basin, D., 2006. SSL/TLS session-aware user authentication – or how to effectively

thwart the man-in-the-middle. Comput. Commun. 29 (12), 2238–2246.

Oppliger, R., Hauser, R., Basin, D., 2008. SSL/TLS session-aware user authentication revisited. Comput. Secur.

27 (3–4), 64–70.

PassFaces, 2009. <http://www.passfaces.com/enterprise/products/web access.htm> (Retrieved June 2009).

RSA SecurID: Securing Your Future with Two-factor Authentication. <http://www.rsa.com/> (Retrieved

January 2010).

Rubin, A.D., 1996. Independent one-time passwords. In: The USENIX Association of Computing Systems, vol.

9, pp.15–27.

Saito, T., Sekiguchi, K., Hatsugai, R., 2008. Authentication binding between TLS and HTTP. In: Proc. of the

International Conference on Network-Based Information Systems, LNCS 5186, pp. 252–262.

Shin, D., Lopes, R. 2011. An empirical study of visual security cues to prevent the SSL stripping attack. In: Proc.

of the Computer Security Applications Conference (ACSAC 2011), ACM, pp. 287–296.

Ye, Z.E., Smith., S. 2002. Trusted paths for browsers. In: Proc. of the USENIX Security Symposium, pp. 263–

279.

Zhao, S., Wang, D., Zhao, S., Yang, W., Ma, C., 2012. Cookie-Proxy: a scheme to prevent SSLStrip attack. In:

Proc. of the International Conference on Information and Communications Security (ICICS’12), LNCS 7618,

pp. 365–372.

http://refhub.elsevier.com/S2210-8327(14)00003-9/h0045
http://refhub.elsevier.com/S2210-8327(14)00003-9/h0045
http://refhub.elsevier.com/S2210-8327(14)00003-9/h0050
http://refhub.elsevier.com/S2210-8327(14)00003-9/h0050
http://www.passfaces.com/enterprise/products/web%20access.htm
http://www.rsa.com/

	On the security of SSL/TLS-enabled applications
	1 Introduction
	1.1 Our contributions
	1.2 Organization of the paper

	2 MITM Attacks on SSL/TLS-enabled Applications
	2.1 Password-based approach
	2.2 GUI-based approach
	2.3 One-Time-Password approach
	2.4 Token-based approach

	3 The proposed protocol
	4 Analysis
	4.1 Security analysis
	4.1.1 Server authentication
	4.1.2 Client authentication
	4.1.3 Replay attack
	4.1.4 Password guessing attack

	4.2 Performance

	5 Conclusions
	References

