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Abstract 

In this note we investigate properties of Strong Mori domains, which form a proper subclass 
of Mori domains. In particular, we show that Strong Mori domains satisfy the Principal Ideal 
Theorem, the Hilbert Basis Theorem and the Krull Intersection Theorem. We also provide some 
new characterizations of Krull domains and show that the complete integral closure of a Strong 
Mori domain is a Krull domain. @ 1999 Elsevier Science B.V. All rights reserved. 

AMS Classijication: 13G05; 13A15; 13F05 

0. Introduction 

The subject of Mori domains continues to generate considerable interest. Mori do- 

mains are known to possess many properties regarding v-ideals that one finds in a 

Noetherian domain, regarding all ideals. However, some rather desirable properties do 

not carry over; most notably Mori domains need not permit primary decomposition of 

v-ideals and need not satisfy the Principal Ideal Theorem (PIT). 

In this paper we continue our investigation of Strong Mori (SM) domains, which 

form a proper subclass of Mori domains. In [17] we showed that every w-ideal of an 

SM domain has a primary decomposition consisting of w-ideals. In Section 1 of this 

paper we prove not only that SM domains satisfy the PIT, but also satisfy the Hilbert 

Basis Theorem and the Krull Intersection Theorem for finite-type w-modules. 

In Section 2 we discuss w-multiplication domains and provide some new characteri- 

zations of Krull domains. Finally, in Section 3 we define the w-dimension of a domain 

R, and show that the complete integral closure of an SM domain is a Krull domain. 
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Throughout this paper R denotes an integral domain with field of quotients K, and 

A4 represents an R-module. An ideal J of R is called a GV-ideal (denoted JE GV(R)) 
if J is finitely generated and J-’ = R. A torsion-free module M is called a w-module 
if whenever Jx CM (J E GV(R) and XEM @ K), then XEM. An ideal I of R is a 

w-ideal if I is a w-module over R. The w-envelope of the torsion-free module M 

is given by M, = {x EM @K : Jx GM for some J E GV(R)}, and is the minimal w- 

module containing M. A w-module M is said to be of finite type if M = B, for some 

finitely generated submodule B of M. A Strong Mori module (SM module) is a w- 

module which satisfies the ascending chain condition on w-submodules. Finally, R is 

an SM domain if R is an SM module over R. 

1. SM Domains 

For the convenience of the reader we begin by recording four facts previously 

established in [ 171. 

Proposition 1.1. Let P be a primary ideal of R. Then P is a w-ideal if and only if 

P,#R. 

Not every primary ideal (nor for that matter, every prime ideal) is a w-ideal. For 

example, consider R = Z[x] and P = R2 + Rx. Observe that P, = R. 
Recall that a proper submodule A of M is called P-primary if P = &??%?) is a 

prime ideal and rx EA (r E R, x EM) implies r E P or x EA. If in addition P = (A : M), 
we say that A is P-prime. 

Proposition 1.2. Let M be a w-module and let A be a primary submodule of M. Then 
A is a w-module tf and only if (A : M)W # R. Hence tf (A : M), # R, then (A : M) is a 

w-ideal. 

Proposition 1.3. If I is any ideal of R and M is torsion-free, then (IM), = (I,M,),. 
Consequently, for each positive integer n, (I”)W = ((IW)“)W. 

Proposition 1.4. Let I be a proper w-ideal of R and let M be a jnite-type w-module. 
If (IM)W = M, then M = 0. 

In [ 171 we showed that for submodules of a torsion-free module, the w-envelope of 

the intersection is the intersection of the w-envelopes. We now demonstrate a somewhat 

similar statement regarding sums. 

Lemma 1.5. Let M be torsion-free and let A,B be submodules of M. Then (A+B), = 

(A, + B,),. 
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Proof. Clearly (A+& G (A,+&),. It suffices then to show that A,+& C (A +B),. 

If x = u + v, where u EA, and v E B,, then there exist J,, J2 E GV(R) such that Jlu CA 

and J2v c B. Thus, JlJ2x CA + B, and note that J1J2 E GV(R). 0 

Let P be a prime ideal of R, and let A4 be any R-module. There need not be any 

P-prime submodules of M, even if P contains the annihilator of M. However, if A4 

is finitely generated, then for every submodule A of A4 and every prime ideal P of R 

such that (A : M) C P, A is contained in some P-prime submodule of M. Furthermore, 

in this case ((AtPM) : M) = P. We now prove similar results for the case of finite-type 

w-modules and w-submodules. 

Theorem 1.6. Let M be a finite-type w-module and let A be a w-submodule of M. 
Let P be a prime ideal of R minimal over (A :M). Then 

(1) ((A+PM),:M)=P 
(2) There exists a P-prime submodule Q of M which is minimal among P-prime 

submodules over A. 

Proof. (1) Clearly, P G ((A +PM),,, : M). Now, M is of finite type, so that M = B, 
for some finitely generated submodule B of M. We also have that P is a w-ideal 

[7, Proposition 1.11. Thus, if rc((A+PM),:M) then rBCrMc(A+PM),= 

(A+PB,), = (A+(PB,),), = (A+(PB),), = (A+PB),. Hence, for some JEGV(R) 
we have JrBC_A+PB. Choose xl,...,x,~B such that B=Rxl + . . . + Rx,,. Now 
for each 2 E J we have kxi = yi + ~~=, agxj, for some yi EM, aij EP (15 i, j <n). 

By the standard determinant argument, there exists acP such that (A”? - a)B C A. 

Thus, (A”? - a)M = (2”r” - a)B, = ((nnrfl - a)B),+, CA, = A. It follows that A’%” - 

aE(A :M) g P, and hence, ArEP. Consequently, Jr C P, so that rEP, = P. 
(2) Let Q={xEM:sxE(A+PA~), for some SER\P}. It is routine to show that PC 

(Q : M). If r E (Q : M) then rB & rM C Q. So there exists s E R\P such that srB C (A+ 

PM),. Thus, srM=srB, =(srB),+ C: (A+PM),, and we have srE((A+PM), :M) 
= P. It follows that r E P. 

NOW, if tx E Q, x EM and t E R, then stx E (A +PM), for some s E R\P. Conse- 

quently, t E P or x E Q, so that Q is prime. Now, let C be any P-prime submodule of M 

containing A. Then C is a w-module [17, Theorem 3.11, so that (A+PM), C C, = C. 
It follows that Q C C. 0 

Let A be a submodule of the torsion-free module M, and let r E R. In keeping with 

the usual notation we set (A :M r) = {x EM: rxEA}. Note that if A and M are both 

w-modules, then (A :M r) is likewise a w-module. 

Lemma 1.7. Let I be an ideal of an SM domain R, and let B be a w-submodule of a 
finite type w-module M. If C is a w-submodule of M which is maximal with respect 
to the property C n B = (IB),, then I”M C C for some positive integer n. 
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Proof. Since R is an SM domain, I, is of finite type. Hence, I, = (al,. _ , , a,,,) for some 

al,. . . , a, ~1. Choose i, 15 i <m. Now, for each positive integer k, let Bk = (C :M at). 
Note that B1 G B2 C . . is an ascending chain of w-submodules of M. Since M is an 

SM module [ 17, Theorem 4.51, there exists a positive integer t such that Bi = Bt for all 

j2 t. We claim that (afM+C), n B = (IB),. Note that (IB), = C fl B & (ajM+C), nB. 
NOW ifnE(a:M+C)nB, then x=aiy+u for some REM, UEC. Thus, aix=a:+‘y+ 

aiu E aiB C IB C (IB), C C. Hence, af+’ y E C, SO that y E Bt+l = Bt. Therefore, a:~ E C 

and thus, XE C n B = (IB),. Now, (a:M + C), n B = ((a:M + C) n B),y 2 ((IB),), = 

(IB),. 
By the maximality of C, we see that afM C ajM + C C C. Since this holds for each 

i (1 lilm), we can choose a positive integer n such that (al,. . . ,a,)“M C C. By 

Proposition 1.3 we have I”M ~((IW)“),J4=(((a~,...,a,),)“),M=((al,.. .,u~)~),,,M 

c((a ,,..., a,)“M),,,2C,=C. Cl 

Theorem 1.8 (Krull Intersection Theorem for SM domains). Let R be an SM domain 

and let M be a jinite type w-module. If B = nzl(ZkM),, where I is an ideal of R, 
then B = (IB),. If in addition I, #R, then B = 0. 

Proof. Let r be the collection of all w-submodules C of M such that CnB= (IB),. 
Note that r is nonempty since (IB)W E I-. M is an SM module, whence r has a maximal 

element, say C. By the previous result, I”M C C for some positive integer n. Hence, 

B= n~,(ZkM),&(I”M),CCW=C, and so B=BnC=(IB),. 
Now, B is of finite type, and since B = (IB),+ = (I+,,B), and I, #R, we see that B = 0 

as a result of Proposition 1.4. 0 

Let w Max R denote the set of ideals of R which are maximal in the set of all w- 

ideals of R. We will refer to these ideals as maximal w-ideals. In an SM domain, 

every w-ideal is contained in a maximal w-ideal. 

Theorem 1.9. R is an SM domain if and only if Rp is Noetherian for every PE w 
Max R and each non-zero element of R lies in only jinitely many maximal w-ideals. 
Furthermore, if R is an SM domain, then R = npEwMaxR Rp. 

Proof. Suppose that R is an SM domain. That R p is Noetherian was shown in 

[ 17, Proposition 4.61. The second part follows from [3, Proposition 2.2(b)] and [17, 

Proposition 5.71. 

Conversely, let x # 0 be an element of a w-ideal I of R, and let PI,. . . , P, be the 

maximal w-ideals of R which contain x. Now for each i, 15 i In, Re is Noetherian 

and, hence, there exist a positive integer k(i) and Xii,. . . ,x&(i) ~1 such that I, = (xii,. . . , 

xik(i))lq. Let B be the ideal of R generated by x and the collection of all such xv. So 

B is finitely generated and is contained in I. Also, for each i (15 i<n), Ic C Be. 
Furthermore, for each PE w Max R where P #fi for all i = 1,. . . , n, we have x $P; 
hence, Bp = Rp =Ip. Thus, Bp = Ip for all PE w Max R. It follows that B, =I, = I 
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[16, Lemma 1.51. In particular, I is of finite type, and thus, R is an SM domain 

[ 17, Theorem 4.31. Finally, if R is an SM domain, then R = nPEw MaxR Rp follows 

immediately from [17, Proposition 3.41. 0 

Corollary 1.10. Let R be an SM domain with dimR = 1. Then R is Noetherian. 

Proof. Every non-zero prime ideal P is a minimal prime to some non-zero element 

of R, whence a w-ideal [7, Proposition 1.11. Clearly, then P belongs to w MaxR. The 

result follows from Theorem 1.9 and [12, p.73, ex. lo]. 0 

It is worth noting that not every SM domain is Noetherian. For example, let F 
be any field and consider the polynomial ring R = F[x~,x~, . . .] in countably many 

indeterminates. Since R is a UFD, it is, therefore, an SM domain, but of course R 
is not Noetherian. One should also note that a Mori domain need not satisfy the 

Principal Ideal Theorem (see, e.g., [2]). However, we are now able to show that every 

SM domain does satisfy the PIT. 

Corollary 1.11 (PIT for SM domains). Let R be an SM domain and let x be a non- 

zero non-unit element of R. If P is a prime ideal of R minimal over (x), then ht P = 1. 

Proof. As before, P is necessarily a w-ideal, hence, P is contained in some maximal 

w-ideal Q of R. By Theorem 1.9, RQ is Noetherian and since PQ is a minimal prime 

over x in RQ, we have ht PQ = 1. It follows that ht P = 1. 0 

More generally, we have 

Corollary 1.12 (Generalized PIT for SM domains). Let R be an SM domain and let 
I=(al ,. . . ,an)w be a w-ideal of R. If P is a prime ideal of R minimal over I, then 
htPln. 

We now present the other main result of this section. 

Theorem 1.13 (The Hilbert Basis Theorem for SM domains). Zf R is an SM domain, 
then R[x] is likewise an SM domain. 

Proof. Let A be a w-ideal of R[x] and let I be the set of leading coefficients of the 

polynomials in A. Then Z, is a finite-type ideal of R, hence, there exist a positive integer 

m and al , . . . ,a, EI such that 1, = (al,. . . ,am)w. Let f,, . . . , fm be polynomials in A 
whose leading coefficients are al, . . . , a,, respectively, and whose degrees are nl, . . . , n,, 
respectively. Now let n = max{nt , . . . , n,} and let B = R[x] f, +. . . + R[x] fm. Then for 

any f EA, with leading coefficient a and degree k, there exists J E GV(R) such that 

JaC(al,..., a,). LetJ=(At ,..., At) and note that for each i, 15 i 5 t, there exist rq E R, 
1 <j<m, such that &a = cy=t rgaj. If k >n, then for each i (1 <i< t) let gi = nif - 

X7=1 rq fjxk-*J, and note that gi belongs to A and has degree strictly less than k. If we 
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still have deg gi > n for some i (15 i < t), we continue this process. After finitely many 

steps we have some J’ E GV(R) such that J’f C: (A n M) + B, where M = R @ Rx @ 
. . .@Rx”-‘, Note that A4 is an SM module, whence (A nM), = (Rh, + . . . +Rh,), for 

some hi , . . . , h, EA n M. Letting C = R[x]hl + . . . + R[x]hS we see that J’f C (A n M) + 
B C C, + B and thus J’[x]f C C, + B (as ideals of R[x]). Note that the choice of C 

is independent of the choice of f. It follows then that A 2 (C, + B)W = (C, + B,), = 
(C + B)W by Lemma 1.5. But C,BCA, so that (C + B)W cA,=A. Hence, A is of 

finite-type and thus R[x] is an SM domain. 0 

It is well known that an intersection with finiteness condition of Mori domains is 

itself a Mori domain. It is reasonable to ask whether a similar result holds regarding 

SM domains. The authors at present are unable to answer this question, however. 

2. w-Multiplication domains and Krull domains 

A fractional ideal Z of R is said to be w-invertible if (II-‘), = R. It is known that Z 

is w-invertible if and only if Z, is of finite type and Zp is principal for all P E w Max R 
(see, e.g., [l, 171). R is called a w-multiplication domain if the set of w-fractional ideals 

of finite type forms a group under w-multiplication. It is clear that a w-multiplication 

domain is a PVMD, where a PVMD is a domain in which each non-zero ideal is t- 

invertible; equivalently, the v-ideals of finite type form a group under v-multiplication. 

One should note that an analogue of the following theorem holds for PVMDs. 

Theorem 2.1. The following conditions are equivalent for a domain R. 
(1) Every non-zero finite type w-ideal of R is w-invertible. 
(2) Every finitely generated fractional ideal of R is w-invertible. 
(3) Every 2-generated fractional ideal of R is w-invertible. 
(4) For each non-zero prime w-ideal P of R, Rp is a valuation domain. 
(5) For each maximal w-ideal Q of R, RQ is a valuation domain. 
(6) R is integrally closed and for each non-zero a, b E R, the prime ideal (ax + b) 

K[x] fl R[x] of R[x] contains an element f = cy=, aixi such that (ao,. . . ,a”),,, = R. 
(7) R is a w-multiplication domain. 

Proof. (1) + (2). If Z is a finitely generated fractional ideal of R we can choose a 

non-zero r E R such that rZ C: R. Since rl, = (rZ)W is w-invertible, so is I. 

(2) + (3) and (4) + (5) are trivial. The proofs of (3) + (5), (5) + (6) and (6) + (7) 

are provided in [7, Theorem 1.11. For (7)+(l), see [6, Theorem 51. 

(5) + (4). Let P be a non-zero prime w-ideal of R and let Q be a maximal w-ideal of 

R containing P. Since RQ is a valuation domain, then Rp = (RQ)PRDis also a valuation 

domain. q 

By [ 13, Corollary 4.21 we have 
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Corollary 2.2. In a w-multiplication domain, every prime w-ideal is a t-ideal. 

Corollary 2.3. Let R be a w-multiplication domain and let P be a prime ideal of R. 

Then RP is a valuation domain if and only if P is a w-ideal. 

Corollary 2.4. Let R be a w-multiplication domain and let a, b be any non-zero 
elements of R. Then (a) n (b) is w-invertible, and hence, is a jinite type v-ideal. 

Before leaving the topic of valuation domains, we remark that it is well known that 

every Mori valuation domain is a DVR (see, e.g., [15, Corollary 21). 

Let a, b be non-zero elements of R. We will slightly abuse the standard notation and 

let (a:b)={xER:bxE(a)}. Clearly (a:b)=RnRz. 

Lemma 2.5. Let R be any domain and let P be a w-invertible prime w-ideal of R. 

Then the following hold 
(1) P is a minimal prime of a principal ideal and P = (a : b) for some non-zero 

a,bER. 
(2) P is a maximal w-ideal and P is also a v-ideal, 

Proof. Since P is w-invertible, then P-‘P $ P, and (1) follows from [ 11, Lemma 1.21. 

Now suppose that Q is any ideal of R which properly contains P. P is w-invertible, 

whence P is of finite type. Thus, there exists a finitely generated ideal B of R such that 

P = B,. Let J = B + Rc, where c is any element of Q\P. We will show that J-’ = R. 
This will imply that J belongs to GV(R), and since J&Q, we will have Qw = R, and 

the proof will be complete. So suppose that x E J-' . Then xcB C_ B C P, which implies 

XB c P. Thus, XP = xB, = (xB)~ C P, = P, so that x(PP-’ ) C PP-’ C R. It follows that 

xg(PP-I)-’ =((PP-‘),,,-l =R-‘=R. q 

Corollary 2.6. Let P be a w-invertible prime ideal of R. Then either P, = R or P is 

a maximal w-ideal. 

Proof. If P, #R then P is a w-ideal by Proposition 1.1. Apply Lemma 2.5. 0 

Proposition 2.7. Let P be a prime ideal of a w-multiplication domain R. Then P is 
a w-invertible w-ideal if and only tf P = (a : b) for some non-zero a, b E R. 

Proof. If P=(a: b) for some non-zero a,bER, then P=RflR% &a(a,b)-’ 

g (a : b) = P. Since R is a w-multiplication domain, then (a, b) is w-invertible, and 

thus P is w-invertible as well. It is clear that P is a v-ideal, and therefore a w-ideal. 

The converse follows from Lemma 2.5. 0 

Let I be an ideal of R. We say that I is the w-product of the prime ideals PI,. . . , P,, 
if Z, = (4 . . ‘P,),. We are now ready to give some new characterizations of Krull 

domains. 
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Theorem 2.8. The following are equivalent for a domain R: 
(1) R is a Krull domain. 
(2) Every non-zero ideal of R is w-invertible. 
(3) Every non-zero prime w-ideal of R is w-invertible. 
(4) Every non-zero ideal I with I, #R can be written uniquely as a w-product of 

a finite number of prime w-ideals of R. 
(5) R is an integrally closed SM domain. 
(6) R is a w-multiplication SM domain. 
(7) R is an SM domain and Rp is a D VR for each P E w Max R. 

(8) Every maximal w-ideal of R is w-invertible and has height one. 
(9) R is an SA4 domain and every maximal w-ideal of R is w-invertible. 

Proof. For (1) @ (2) ti (3), see [17, Theorem 5.41. 

(1) and (2) 3 (4). Let I be a non-zero ideal of R with 1, #R. Then there is a prime 

w-ideal PI which contains I, and note that (PI-‘PI), = R. Thus I =Z(P,-‘PI),, so 

that 1, = (I(P~~‘P~),), = (I(P,-‘PI)), = ((IP--‘),P,),. By Lemma 2.5, PI is a v-ideal, 

whence PI- ’ # R. Note that 1, # (IP; ’ ),,,, for otherwise, we would have PC1 = (P;’ )w 

= ((I-‘Z)Pr’), = (I-‘(IP,-‘),), = (I-‘I,,,), = (IF’Z), = R. Now if (IP;‘), = R, then 

Z, = (PI), = PI. Otherwise, we can choose a prime w-ideal P2 such that (IPlil), = 

((IP,-‘P;-‘)Pz), = ((IP,-‘P,-‘),P&. By the above argument, we see that Z, = 

((IP[lP~‘)wP~P~),. If (ZP;‘P;‘),#R, continue the process. Now R is an SM 

domain [ 17, Theorem 5.41, and thus, this process terminates, say (IP-’ . . . P,-’ )w = R 

for some prime w-ideals PI,. . . , P,. It follows that 1, = (9 . . . P,,),. 
To see that the above w-product is unique, suppose there exist prime w-ideals 

Ql,...,Qm such that 1, = (Qi . . . em),,,. Then Qi . . .Qmc(P~...P,),~(Pl),=Pl,and 
hence, without loss of generality, we may suppose Qi C PI. By Lemma 2.5, Qi is a 

maximal w-ideal, so that Qi = PI. The rest is now routine. 

(4) + (3). Let P be a non-zero prime w-ideal of R, and let c be a non-zero element 

in P. Then (c), = (PI . . . P,), for some prime w-ideals PI,. . . , P, of R. Because (c) 

is w-invertible, then for each i = 1,. . . , n, Pi is w-invertible, and thus is a maximal 

w-ideal, by Lemma 2.5. Now since Pk C P for some 1 5 k < n, then P=Pk is 

w-invertible. 

(l)=+(5). By [17, Theorem 5.41. 

(5) + (7). Observe that for each P E w Max R, Rp is an integrally closed Noetherian 

domain by Theorem 1.9, whence Rp is a DVR. 

(7)+(6)+(2). By Theorem 2.1. 

(3) and (7)+ (8). Note that every maximal w-ideal is prime. The result follows 

easily. 

(8) + (9). By [17, Theorem 4.31, it suffices to show that every prime w-ideal of R 

is of finite type. Now if P is a non-zero prime w-ideal, then by hypothesis P is a 

maximal w-ideal, and hence is w-invertible. Thus P = P, is of finite type. 

(9) + (7). Let P E w Max R. Note that Rp is Noetherian, and the maximal ideal PRp 

is principal. Thus Rp is a DVR. q 
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3. w-Overdomains 

Let T be an overdomain of R. If T is a w-module (as an R-module) then for 

convenience we say that T is a w-overdomain of R. It is clear that for any overdomain 

T of R, T, is a w-overdomain of R. 

Lemma 3.1. Let T be a w-overdomain of R. Then 
(1) I~JEGV(R) then JTEGV(T). 
(2) If Q is a w-ideal of T, then Q is a w-module over R, and thus QnR is a 

w-ideal of R. 

Proof. (1) First note that since J is a finitely generated ideal of R, then JT is a finitely 

generated ideal of T. Now, let L be the quotient field of T, and let XEL such that 

JTx C T. Since T is a w-module over R, then TX C T and hence x E T. Thus, (JT)-’ = T 

and so JTgGV(T). 
(2) Let JEGV(R) and suppose JxcQ for some XEQ@KCT@K. Then JTxCQ 

and thus XEQ, by (1). 0 

We define the w-dimension of R as w-dim R = sup{ht P: PE w Max R}. From 

Theorem 2.8 we see that the w-dimension of a Krull domain is at most 1. 

Theorem 3.2. For any domain R, the following are equivalent: 

(1) R is an SM domain with w-dim R 5 1. 

(2) For any non-zero w-ideal I of R, every descending chain of w-ideals of R 
containing I stabilizes. 

(3) For every positive integer n and every w-submodule M of R” such that rank 
M = n, every descending chain of w-submodules of R” containing M stabilizes. 

(4) For every finite type w-module M and every w-submodule N of M such that 
rank N = rankM, every descending chain of w-submodules of M containing N stabi- 
lizes. 

Proof. (l)*(2). Let 11 >Iz> ... be a descending chain of w-ideals of R contain- 

ing 1. By Theorem 1.9 there are only finitely many maximal w-ideals containing I, say 

S , . . . , P,,. For each i (1 < i 5 n), R~/lc is Artinian [12, Theorem 901, hence, there is 

a positive integer ki such that (Zt)f: = (Ik,)f: for all t 2 ki. Letting k = max{kt , . . . , k,,}, 

we have (&)p = (Zk)p for all t > k and for each PE {PI,. . . ,P,}. On the other hand, 

for each P E w Max R\{P,, . . . , P,}, since I $Z P we have (It)p = Rp for every positive 

integer t. Hence, It =1k for all t 2 k [16, Lemma 1.51. 

(2) + (1). For each non-zero x E R, there are only finitely many maximal w-ideals 

of R which contain x. This is so, because if PI, P2, . . . are distinct maximal w-ideals, 

each containing x, then PI 2 PI n P2 2 . . . is a descending chain which must stabilize, 

a contradiction. We now claim that for any P E w Max R and any non-zero w-ideal I 
of R, Rpjlp is Artinian and Rp is Noetherian. It will then follow by Theorem 1.9 
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that R is an SM domain. Suppose Ni > NZ > . . ’ is a chain of ideals of Rp which 

contain Ip. For each positive integer i, let Zi = Ni n R, and note that (Zi )W > (1~)~ > . . . 

is a descending chain of w-ideals of R containing Ip n R 2 I. Hence, there exists a 

positive integer k such that (Zi)w = (lk), for all i > k. Since (&)p = Jp for any ideal 

J of R, it follows then that Ni = (li)p = (&)p = Nk for all i 2 k, i.e., Rp/Ip is Artinian. 

Now suppose O#AcAl cAz& ... is a chain of ideals of Rp. Then, I = A n R # 0 and 

(I,)p = Ip = A. Thus Rp/A is Artinian, whence Rp/A is Noetherian. It follows that Rp 
is Noetherian. 

To see that w-dim R 5 1, let P E w Max R and let 0 # x E P. Then Rp/xRp is Artinian, 

whence, dim(Rp/xRp) = 0. Thus, PRp is a minimal prime of xRp and so ht(PRp) < 1. 

It follows that ht P 5 1. 

(2)+(3). Let Ni >Nz> ... be a chain of w-submodules of R” containing M. For 

each positive integer i, let Ci = n(Ni), where rc : R” + R is the nth projection. Since 

rankM=n we have rt(M)#O. Then (Cl), > (CZ)~ 2 .. 9 is a chain of w-ideals of 

R and hence must stabilize, say at the positive integer k. Now, let {ei,. . . , e,} be 

the standard basis of R” and let F = Rel @ ’ . . @Re,_l. Then NlnF>N2nF> ... 
is a chain of w-submodules of F containing A4 n F. Since rank (M n F) = n - 1, by 

induction this chain must stabilize, without loss of generality, at k as well. Now let 

XEN~ and let i be any positive integer such that i > k. Then n(x) E Ck C (Ci)w, and 

thus x(Jx) = Jn(x) C Ci for some J E GV(R). Since J is finitely generated, there ex- 

ists a finitely generated submodule B of Ni such that Z(B) = I. Thus, Jx c (F + 
B) fl Nk = (F nNk) + B C Ni, and since Ni is a w-module, we have x ENi. 

(3) =+ (4). This follows easily from the fact that M can be embedded in R”, where 

n =rankM. 

(4) + (2). This is trivial. 0 

From the above proof we have 

Corollary 3.3. Let R be an SM domain with w-dimR 5 1, and let I be a non-zero 
w-ideal of R. Then Rp/Ip is Artinian for all maximal w-ideals P which contain I. 

Theorem 3.4. Let R be an SA4 domain with w-dim R = 1, and let T be a w-overdomain 
of R such that T C K. Then T is an SM domain with w-dim T < 1. 

Proof. Let Q be a non-zero w-ideal of T. Since Qn R # 0 we can choose a non- 

zero x E R such that TX 2 Q. By Theorem 1.9 there are only finitely many maximal 

w-ideals of R containing x, say PI,. . . , P,. For any PE {PI,. . . , P,,}, Rp is Noetherian 

with dim Rp = 1, hence, TpjxTp is a finitely generated Rp-module by the proof of [ 12, 

Theorem 931. Let Ni > N2 _> . . . be a chain of w-ideals of T containing Q. Then there 

exists a positive integer k such that for each P E {PI,. . . , P,} we have (Nf )p = (Nk)p for 

all t 2 k. Note that for any P E w max R\{Pl , . , . , P,,>, since x @P, we have xTp = Tp and 

thus (Nt)p = (Nk)p for all positive integer t. Thus, Nt = Nk for all t 2 k ([16, Lemma 

1.51 and Lemma 3.1). Now apply Theorem 3.2. q 
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Finally, we make one further observation relating SM domains and Krull domains. 

Theorem 3.5. If R is an SM domain, then the complete integral closure of R is a 

Krull domain. 

Proof. This follows easily from Theorem 1.9, [S, Lemma 2.21, and the Mori Nagata 

Theorem. 0 
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