JOURNAL OF
PURE AND APPLIED ALGEBRA
ELSEVIER Journal of Pure and Applied Algebra 135 (1999) 155-165

On Strong Mori domains

Wang Fanggui ${ }^{\text {a }}$, R.L. McCasland ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Nanjing University, Nanjing 210008, People's Republic of China
${ }^{\mathrm{b}}$ Department of Mathematics, University of Dallas, Irving, TX 75062, USA

Communicated by E.M. Friedlander; received 18 December 1996; received in revised form 24 June 1997

Abstract

In this note we investigate properties of Strong Mori domains, which form a proper subclass of Mori domains. In particular, we show that Strong Mori domains satisfy the Principal Ideal Theorem, the Hilbert Basis Theorem and the Krull Intersection Theorem. We also provide some new characterizations of Krull domains and show that the complete integral closure of a Strong Mori domain is a Krull domain. (c) 1999 Elsevier Science B.V. All rights reserved.

AMS Classification: 13G05; 13A15; 13F05

0. Introduction

The subject of Mori domains continues to generate considerable interest. Mori domains are known to possess many properties regarding v-ideals that one finds in a Noetherian domain, regarding all ideals. However, some rather desirable properties do not carry over, most notably Mori domains need not permit primary decomposition of v-ideals and need not satisfy the Principal Ideal Theorem (PIT).

In this paper we continue our investigation of Strong Mori (SM) domains, which form a proper subclass of Mori domains. In [17] we showed that every w-ideal of an SM domain has a primary decomposition consisting of w-ideals. In Section 1 of this paper we prove not only that SM domains satisfy the PIT, but also satisfy the Hilbert Basis Theorem and the Krull Intersection Theorem for finite-type w-modules.

In Section 2 we discuss w-multiplication domains and provide some new charactcrizations of Krull domains. Finally, in Section 3 we define the w-dimension of a domain R, and show that the complete integral closure of an SM domain is a Krull domain.

[^0]Throughout this paper R denotes an integral domain with field of quotients K, and M represents an R-module. An ideal J of R is called a $G V$-ideal (denoted $J \in G V(R)$) if J is finitely generated and $J^{-1}=R$. A torsion-free module M is called a w-module if whenever $J x \subseteq M(J \in G V(R)$ and $x \in M \otimes K)$, then $x \in M$. An ideal I of R is a w-ideal if I is a w-module over R. The w-envelope of the torsion-free module M is given by $M_{w}=\{x \in M \otimes K: J x \subseteq M$ for some $J \in G V(R)\}$, and is the minimal w module containing M. A w-module M is said to be of finite type if $M=B_{w}$ for some finitely generated submodule B of M. A Strong Mori module (SM module) is a w module which satisfies the ascending chain condition on w-submodules. Finally, R is an $S M$ domain if R is an SM module over R.

1. SM Domains

For the convenience of the reader we begin by recording four facts previously established in [17].

Proposition 1.1. Let P be a primary ideal of R. Then P is a w-ideal if and only if $P_{w} \neq R$.

Not every primary ideal (nor for that matter, every prime ideal) is a w-ideal. For example, consider $R=\mathbb{Z}[x]$ and $P=R 2+R x$. Observe that $P_{w}=R$.

Recall that a proper submodule A of M is called P-primary if $P=\sqrt{(A: M)}$ is a prime ideal and $r x \in A(r \in R, x \in M)$ implies $r \in P$ or $x \in A$. If in addition $P=(A: M)$, we say that A is P-prime.

Proposition 1.2. Let M be a w-module and let A be a primary submodule of M. Then A is a w-module if and only if $(A: M)_{w} \neq R$. Hence if $(A: M)_{w} \neq R$, then $(A: M)$ is a w-ideal.

Proposition 1.3. If I is any ideal of R and M is torsion-free, then $(I M)_{w}=\left(I_{w} M_{w}\right)_{w}$. Consequently, for each positive integer $n,\left(I^{n}\right)_{w}=\left(\left(I_{w}\right)^{n}\right)_{w}$.

Proposition 1.4. Let I be a proper w-ideal of R and let M be a finite-type w-module. If $(I M)_{w}=M$, then $M=0$.

In [17] we showed that for submodules of a torsion-free module, the w-envelope of the intersection is the intersection of the w-envelopes. We now demonstrate a somewhat similar statement regarding sums.

Lemma 1.5. Let M be torsion-free and let A, B be submodules of M. Then $(A+B)_{w}=$ $\left(A_{w}+B_{w}\right)_{w}$.

Proof. Clearly $(A+B)_{w} \subseteq\left(A_{w}+B_{w}\right)_{w}$. It suffices then to show that $A_{w}+B_{w} \subseteq(A+B)_{w}$. If $x=u+v$, where $u \in A_{w}$ and $v \in B_{w}$, then there exist $J_{1}, J_{2} \in G V(R)$ such that $J_{1} u \subseteq A$ and $J_{2} v \subseteq B$. Thus, $J_{1} J_{2} x \subseteq A+B$, and note that $J_{1} J_{2} \in G V(R)$.

Let P be a prime ideal of R, and let M be any R-module. There need not be any P-prime submodules of M, even if P contains the annihilator of M. However, if M is finitely generated, then for every submodule A of M and every prime ideal P of R such that $(A: M) \subseteq P, A$ is contained in some P-prime submodule of M. Furthermore, in this case $((A+P M): M)=P$. We now prove similar results for the case of finite-type w-modules and w-submodules.

Theorem 1.6. Let M be a finite-type w-module and let A be a w-submodule of M. Let P be a prime ideal of R minimal over $(A: M)$. Then
(1) $\left((A+P M)_{w}: M\right)=P$.
(2) There exists a P-prime submodule Q of M which is minimal among P-prime submodules over A.

Proof. (1) Clearly, $P \subseteq\left((A+P M)_{w}: M\right)$. Now, M is of finite type, so that $M=B_{w}$ for some finitely gencrated submodule B of M. We also have that P is a w-ideal [7, Proposition 1.1]. Thus, if $r \in\left((A+P M)_{w}: M\right)$ then $r B \subseteq r M \subseteq(A+P M)_{w}=$ $\left(A+P B_{w}\right)_{w}=\left(A+\left(P B_{w}\right)_{w}\right)_{w}=\left(A+(P B)_{w}\right)_{w}=(A+P B)_{w}$. Hence, for some $J \in G V(R)$ we have $J r B \subseteq A+P B$. Choose $x_{1}, \ldots, x_{n} \in B$ such that $B=R x_{1}+\cdots+R x_{n}$. Now for each $\lambda \in J$ we have $\lambda r x_{i}=y_{i}+\sum_{j=1}^{n} a_{i j} x_{j}$, for some $y_{i} \in M, a_{i j} \in P(1 \leq i, j \leq n)$. By the standard determinant argument, there exists $a \in P$ such that ($\left.\lambda^{n} r^{n}-a\right) B \subseteq A$. Thus, $\left(\lambda^{n} r^{n}-a\right) M=\left(\lambda^{n} r^{n}-a\right) B_{w}=\left(\left(\lambda^{n} r^{n}-a\right) B\right)_{w} \subseteq A_{w}=A$. It follows that $\lambda^{n} r^{n}-$ $a \in(A: M) \subseteq P$, and hence, $\lambda r \in P$. Consequently, $J r \subseteq P$, so that $r \in P_{w}=P$.
(2) Let $Q=\left\{x \in M: s x \in(A+P M)_{w}\right.$ for some $\left.s \in R \backslash P\right\}$. It is routine to show that $P \subseteq$ $(Q: M)$. If $r \in(Q: M)$ then $r B \subseteq r M \subseteq Q$. So there exists $s \in R \backslash P$ such that $s r B \subseteq(A+$ $P M)_{w}$. Thus, $s r M-s r B_{w}=(s r B)_{w} \subseteq(A+P M)_{w}$, and we have $s r \in\left((A+P M)_{w}: M\right)$ $=P$. It follows that $r \in P$.

Now, if $t x \in Q, x \in M$ and $t \in R$, then $s t x \in(A+P M)_{w}$ for some $s \in R \backslash P$. Consequently, $t \in P$ or $x \in Q$, so that Q is prime. Now, let C be any P-prime submodule of M containing A. Then C is a w-module [17, Theorem 3.1], so that $(A+P M)_{w} \subseteq C_{w}=C$. It follows that $Q \subseteq C$.

Let A be a submodule of the torsion-free module M, and let $r \in R$. In keeping with the usual notation we set $\left(A:_{M} r\right)=\{x \in M: r x \in A\}$. Note that if A and M are both w-modules, then $\left(A:_{M} r\right)$ is likewise a w-module.

Lemma 1.7. Let I be an ideal of an SM domain R, and let B be a w-submodule of a finite type w-module M. If C is a w-submodule of M which is maximal with respect to the property $C \cap B=(I B)_{w}$, then $I^{n} M \subseteq C$ for some positive integer n.

Proof. Since R is an SM domain, I_{w} is of finite type. Hence, $I_{w}=\left(a_{1}, \ldots, a_{m}\right)$ for some $a_{1}, \ldots, a_{m} \in I$. Choose $i, 1 \leq i \leq m$. Now, for each positive integer k, let $B_{k}-\left(C: M a_{i}^{k}\right)$. Note that $B_{1} \subseteq B_{2} \subseteq \cdots$ is an ascending chain of w-submodules of M. Since M is an SM module [17, Theorem 4.5], there exists a positive integer t such that $B_{j}=B_{t}$ for all $j \geq t$. We claim that $\left(a_{i}^{t} M+C\right)_{w} \cap B=(I B)_{w}$. Note that $(I B)_{w}=C \cap B \subseteq\left(a_{i}^{t} M+C\right)_{w} \cap B$. Now if $x \in\left(a_{i}^{t} M+C\right) \cap B$, then $x=a_{i}^{t} y+u$ for some $y \in M, u \in C$. Thus, $a_{i} x=a_{i}^{t+1} y+$ $a_{i} u \in a_{i} B \subseteq I B \subseteq(I B)_{w} \subseteq C$. Hence, $a_{i}^{t+1} y \in C$, so that $y \in B_{t+1}=B_{t}$. Therefore, $a_{i}^{t} y \in C$ and thus, $x \in C \cap B=(I B)_{w}$. Now, $\left(a_{i}^{t} M+C\right)_{w} \cap B=\left(\left(a_{i}^{i} M+C\right) \cap B\right)_{w} \subseteq\left((I B)_{w}\right)_{w}=$ $(I B)_{w}$.

By the maximality of C, we see that $a_{i}^{t} M \subseteq a_{i}^{t} M+C \subseteq C$. Since this holds for each $i(1 \leq i \leq m)$, we can choose a positive integer n such that $\left(a_{1}, \ldots, a_{m}\right)^{n} M \subseteq C$. By Proposition 1.3 we have $I^{n} M \subseteq\left(\left(I_{w}\right)^{n}\right)_{w} M=\left(\left(\left(a_{1}, \ldots, a_{m}\right)_{w}\right)^{n}\right)_{w} M=\left(\left(a_{1}, \ldots, a_{m}\right)^{n}\right)_{w} M$ $\subseteq\left(\left(a_{1}, \ldots, a_{m}\right)^{n} M\right)_{w} \subseteq C_{w}=C$.

Theorem 1.8 (Krull Intersection Theorem for SM domains). Let R be an SM domain and let M be a finite type w-module. If $B=\bigcap_{k=1}^{\infty}\left(I^{k} M\right)_{w}$, where I is an ideal of R, then $B=(I B)_{w}$. If in addition $I_{w} \neq R$, then $B=0$.

Proof. Let Γ be the collection of all w-submodules C of M such that $C \cap B=(I B)_{w}$. Note that Γ is nonempty since $(I B)_{w} \in \Gamma . M$ is an SM module, whence Γ has a maximal element, say C. By the previous result, $I^{n} M \subseteq C$ for some positive integer n. Hence, $B=\bigcap_{k=1}^{\infty}\left(I^{k} M\right)_{w} \subseteq\left(I^{n} M\right)_{w} \subseteq C_{w}=C$, and so $B=B \cap C=(I B)_{w}$.

Now, B is of finite type, and since $B=(I B)_{w}=\left(I_{w} B\right)_{w}$ and $I_{w} \neq R$, we see that $B=0$ as a result of Proposition 1.4.

Let $w \operatorname{Max} R$ denote the set of ideals of R which are maximal in the set of all w ideals of R. We will refer to these ideals as maximal w-ideals. In an SM domain, every w-ideal is contained in a maximal w-ideal.

Theorem 1.9. R is an $S M$ domain if and only if R_{P} is Noetherian for every $P \in w$ Max R and each non-zero element of R lies in only finitely many maximal w-ideals. Furthermore, if R is an SM domain, then $R=\bigcap_{P \in w \operatorname{Max} R} R_{P}$.

Proof. Suppose that R is an SM domain. That R_{P} is Noetherian was shown in [17, Proposition 4.6]. The second part follows from [3, Proposition 2.2(b)] and [17, Proposition 5.7].

Conversely, let $x \neq 0$ be an element of a w-ideal I of R, and let P_{1}, \ldots, P_{n} be the maximal w-ideals of R which contain x. Now for each $i, 1 \leq i \leq n, R_{P_{i}}$ is Noetherian and, hence, there exist a positive integer $k(i)$ and $x_{i 1}, \ldots, x_{i k(i)} \in I$ such that $I_{P_{i}}=\left(x_{i 1}, \ldots\right.$, $\left.x_{i k(i)}\right)_{P_{i}}$. Let B be the ideal of R generated by x and the collection of all such $x_{i j}$. So B is finitely generated and is contained in I. Also, for each $i(1 \leq i \leq n), I_{P_{i}} \subseteq B_{P_{i}}$. Furthermore, for each $P \in w \operatorname{Max} R$ where $P \neq P_{i}$ for all $i=1, \ldots, n$, we have $x \notin P$; hence, $B_{P}=R_{P}=I_{P}$. Thus, $B_{P}=I_{P}$ for all $P \in w \operatorname{Max} R$. It follows that $B_{w}=I_{w}=I$
[16, Lemma 1.5]. In particular, I is of finite type, and thus, R is an SM domain [17, Theorem 4.3]. Finally, if R is an SM domain, then $R=\bigcap_{P \in w \operatorname{Max} R} R_{P}$ follows immediately from [17, Proposition 3.4].

Corollary 1.10. Let R be an $S M$ domain with $\operatorname{dim} R=1$. Then R is Noetherian.

Proof. Every non-zero prime ideal P is a minimal prime to some non-zero element of R, whence a w-ideal [7, Proposition 1.1]. Clearly, then P belongs to $w \operatorname{Max} R$. The result follows from Theorem 1.9 and [12, p.73, ex. 10].

It is worth noting that not every SM domain is Noetherian. For example, let F be any field and consider the polynomial ring $R=F\left[x_{1}, x_{2}, \ldots\right]$ in countably many indeterminates. Since R is a UFD, it is, therefore, an SM domain, but of course R is not Noetherian. One should also note that a Mori domain need not satisfy the Principal Ideal Theorem (see, e.g., [2]). However, we are now able to show that every SM domain does satisfy the PIT.

Corollary 1.11 (PIT for SM domains). Let R be an SM domain and let x be a nonzero non-unit element of R. If P is a prime ideal of R minimal over (x), then ht $P=1$.

Proof. As before, P is necessarily a w-ideal, hence, P is contained in some maximal w-ideal Q of R. By Theorem $1.9, R_{Q}$ is Noetherian and since P_{Q} is a minimal prime over x in R_{Q}, we have ht $P_{Q}=1$. It follows that ht $P=1$.

More gencrally, we have
Corollary 1.12 (Generalized PIT for SM domains). Let R be an $S M$ domain and let $I=\left(a_{1}, \ldots, a_{n}\right)_{w}$ be a w-ideal of R. If P is a prime ideal of R minimal over I, then ht $P \leq n$.

We now present the other main result of this section.
Theorem 1.13 (The Hilbert Basis Theorem for SM domains). If R is an SM domain, then $R[x]$ is likewise an SM domain.

Proof. Let A be a w-ideal of $R[x]$ and let I be the set of leading coefficients of the polynomials in A. Then I_{w} is a finite-type ideal of R, hence, there exist a positive integer m and $a_{1}, \ldots, a_{m} \in I$ such that $I_{w}=\left(a_{1}, \ldots, a_{m}\right)_{w}$. Let f_{1}, \ldots, f_{m} be polynomials in A whose leading coefficients are a_{1}, \ldots, a_{m}, respectively, and whose degrees are n_{1}, \ldots, n_{m}, respectively. Now let $n=\max \left\{n_{1}, \ldots, n_{m}\right\}$ and let $B=R[x] f_{1}+\cdots+R\lceil x\rceil f_{m}$. Then for any $f \in A$, with leading coefficient a and degree k, there exists $J \in G V(R)$ such that $J a \subseteq\left(a_{1}, \ldots, a_{m}\right)$. Let $J=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ and note that for each $i, 1 \leq i \leq t$, there exist $r_{i j} \in R$, $1 \leq j \leq m$, such that $\lambda_{i} a=\sum_{j=1}^{m} r_{i j} a_{j}$. If $k \geq n$, then for each $i(1 \leq i \leq t)$ let $g_{i}=\lambda_{i} f-$ $\sum_{j=1}^{m} r_{i j} f_{j} x^{k-n_{j}}$, and note that g_{i} belongs to A and has degree strictly less than k. If we
still have $\operatorname{deg} g_{i} \geq n$ for some $i(1 \leq i \leq t)$, we continue this process. After finitely many steps we have some $J^{\prime} \in G V(R)$ such that $J^{\prime} f \subseteq(A \cap M)+B$, where $M=R \oplus R x \oplus$ $\cdots \ominus R x^{n-1}$. Note that M is an SM module, whence $(A \cap M)_{w}=\left(R h_{1}+\cdots+R h_{s}\right)_{w}$ for some $h_{1}, \ldots, h_{s} \in A \cap M$. Letting $C=R[x] h_{1}+\cdots+R[x] h_{s}$ we see that $J^{\prime} f \subseteq(A \cap M)+$ $B \subseteq C_{w}+B$ and thus $J^{\prime}[x] f \subseteq C_{w}+B$ (as ideals of $R[x]$). Note that the choice of C is independent of the choice of f. It follows then that $A \subseteq\left(C_{w}+B\right)_{w}=\left(C_{w}+B_{w}\right)_{w}=$ $(C+B)_{w}$ by Lemma 1.5. But $C, B \subseteq A$, so that $(C+B)_{w} \subseteq A_{w}=A$. Hence, A is of finite-type and thus $R[x]$ is an SM domain.

It is well known that an intersection with finiteness condition of Mori domains is itself a Mori domain. It is reasonable to ask whether a similar result holds regarding SM domains. The authors at present are unable to answer this question, however.

2. w-Multiplication domains and Krull domains

A fractional ideal I of R is said to be w-invertible if $\left(I I^{-1}\right)_{w}=R$. It is known that I is w-invertible if and only if I_{w} is of finite type and I_{P} is principal for all $P \in w \operatorname{Max} R$ (see, e.g., $[1,17]$). R is called a w-multiplication domain if the set of w-fractional ideals of finite type forms a group under w-multiplication. It is clear that a w-multiplication domain is a PVMD, where a PVMD is a domain in which each non-zero ideal is t invertible; equivalently, the v-ideals of finite type form a group under v-multiplication. One should note that an analogue of the following theorem holds for PVMDs.

Theorem 2.1. The following conditions are equivalent for a domain R.
(1) Every non-zero finite type w-ideal of R is w-invertible.
(2) Every finitely generated fractional ideal of R is w-invertible.
(3) Every 2-generated fractional ideal of R is w-invertible.
(4) For each non-zero prime w-ideal P of R, R_{P} is a valuation domain.
(5) For each maximal w-ideal Q of R, R_{Q} is a valuation domain.
(6) R is integrally closed and for each non-zero $a, b \in R$, the prime ideal $(a x+b)$ $K[x] \cap R[x]$ of $R[x]$ contains an element $f=\sum_{i=0}^{n} a_{i} x^{i}$ such that $\left(a_{0}, \ldots, a_{n}\right)_{w}=R$.
(7) R is a w-multiplication domain.

Proof. (1) $\Rightarrow(2)$. If I is a finitely generated fractional ideal of R we can choose a non-zero $r \in R$ such that $r I \subseteq R$. Since $r I_{w}=(r I)_{w}$ is w-invertible, so is I.
$(2) \Rightarrow(3)$ and $(4) \Rightarrow(5)$ are trivial. The proofs of $(3) \Rightarrow(5),(5) \Rightarrow(6)$ and $(6) \Rightarrow(7)$ are provided in [7, Theorem 1.1]. For $(7) \Rightarrow(1)$, see [6, Theorem 5].
$(5) \Rightarrow(4)$. Tet P he a non-zero prime w-ideal of R and let Q be a maximal w-ideal of R containing P. Since R_{Q} is a valuation domain, then $R_{P}=\left(R_{Q}\right)_{P R_{Q}}$ is also a valuation domain.

By [13, Corollary 4.2] we have

Corollary 2.2. In a w-multiplication domain, every prime w-ideal is a t-ideal.
Corollary 2.3. Let R be a w-multiplication domain and let P be a prime ideal of R. Then R_{P} is a valuation domain if and only if P is a w-ideal.

Corollary 2.4. Let R be a w-multiplication domain and let a, b be any non-zero elements of R. Then $(a) \cap(b)$ is w-invertible, and hence, is a finite type v-ideal.

Before leaving the topic of valuation domains, we remark that it is well known that every Mori valuation domain is a DVR (see, e.g., [15, Corollary 2]).

Let a, b be non-zero elements of R. We will slightly abuse the standard notation and let $(a: b)=\{x \in R: b x \in(a)\}$. Clearly $(a: b)=R \cap R \frac{a}{b}$.

Lemma 2.5. Let R be any domain and let P be a w-invertible prime w-ideal of R. Then the following hold:
(1) P is a minimal prime of a principal ideal and $P=(a: b)$ for some non-zero $a, b \in R$.
(2) P is a maximal w-ideal and P is also a v-ideal.

Proof. Since P is w-invertible, then $P^{-1} P \nsubseteq P$, and (1) follows from [11, Lemma 1.2]. Now suppose that Q is any ideal of R which properly contains P. P is w-invertible, whence P is of finite type. Thus, there exists a finitely generated ideal B of R such that $P=B_{w}$. Let $J=B+R c$, where c is any element of $Q \backslash P$. We will show that $J^{-1}=R$. This will imply that J belongs to $G V(R)$, and since $J \subseteq Q$, we will have $Q_{w}=R$, and the proof will be complete. So suppose that $x \in J^{-1}$. Then $x c B \subseteq B \subseteq P$, which implies $x B \subseteq P$. Thus, $x P=x B_{w}=(x B)_{w} \subseteq P_{w}=P$, so that $x\left(P P^{-1}\right) \subseteq P P^{-1} \subseteq R$. It follows that $x \in\left(P P^{-1}\right)^{-1}=\left(\left(P P^{-1}\right)_{w}\right)^{-1}=R^{-1}=R$.

Corollary 2.6. Let P be a w-invertible prime ideal of R. Then either $P_{w}=R$ or P is a maximal w-ideal.

Proof. If $P_{w} \neq R$ then P is a w-ideal by Proposition 1.1. Apply Lemma 2.5.
Proposition 2.7. Let P be a prime ideal of a w-multiplication domain R. Then P is $a w$-invertible w-ideal if and only if $P=(a: b)$ for some non-zero $a, b \in R$.

Proof. If $P=(a: b)$ for some non-zero $a, b \in R$, then $P=R \cap R \frac{a}{b} \subseteq a(a, b)^{-1}$ $\subseteq(a: b)=P$. Since R is a w-multiplication domain, then (a, b) is w-invertible, and thus P is w-invertible as well. It is clear that P is a v-ideal, and therefore a w-ideal. The converse follows from Lemma 2.5 .

Let I be an ideal of R. We say that I is the w-product of the prime ideals P_{1}, \ldots, P_{n} if $I_{w}=\left(P_{1} \cdots P_{n}\right)_{w}$. We are now ready to give some new characterizations of Krull domains.

Theorem 2.8. The following are equivalent for a domain R :
(1) R is a Krull domain.
(2) Every non-zero ideal of R is w-invertible.
(3) Every non-zero prime w-ideal of R is w-invertible.
(4) Every non-zero ideal I with $I_{w} \neq R$ can be written uniquely as a w-product of a finite number of prime w-ideals of R.
(5) R is an integrally closed SM domain.
(6) R is a w-multiplication $S M$ domain.
(7) R is an $S M$ domain and R_{P} is a DVR for each $P \in w \operatorname{Max} R$.
(8) Every maximal w-ideal of R is w-invertible and has height one.
(9) R is an SM domain and every maximal w-ideal of R is w-invertible.

Proof. For (1) $\Leftrightarrow(2) \Leftrightarrow(3)$, see [17, Theorem 5.4].
(1) and (2) \Rightarrow (4). Let I be a non-zero ideal of R with $I_{w} \neq R$. Then there is a prime w-ideal P_{1} which contains I, and note that $\left(P_{1}^{-1} P_{1}\right)_{w}=R$. Thus $I=I\left(P_{1}^{-1} P_{1}\right)_{w}$, so that $I_{w}=\left(I\left(P_{1}^{-1} P_{1}\right)_{w}\right)_{w}=\left(I\left(P_{1}^{-1} P_{1}\right)\right)_{w}=\left(\left(I P_{1}^{-1}\right)_{w} P_{1}\right)_{w}$. By Lemma 2.5, P_{1} is a v-ideal, whence $P_{1}^{-1} \neq R$. Note that $I_{w} \neq\left(I P_{1}^{-1}\right)_{w}$, for otherwise, we would have $P_{1}^{-1}=\left(P_{1}^{-1}\right)_{w}$ $=\left(\left(I^{-1} I\right) P_{1}^{-1}\right)_{w}=\left(I^{-1}\left(I P_{1}^{-1}\right)_{w}\right)_{w}=\left(I^{-1} I_{w}\right)_{w}=\left(I^{-1} I\right)_{w}=R$. Now if $\left(I P_{1}^{-1}\right)_{w}=R$, then $I_{w}=\left(P_{1}\right)_{w}=P_{1}$. Otherwise, we can choose a prime w-ideal P_{2} such that $\left(I P_{1}^{-1}\right)_{w}=$ $\left(\left(I P_{1}^{-1} P_{2}^{-1}\right) P_{2}\right)_{w}=\left(\left(I P_{1}^{-1} P_{2}^{-1}\right)_{w} P_{2}\right)_{w}$. By the above argument, we see that $I_{w}=$ $\left(\left(I P_{1}^{-1} P_{2}^{-1}\right)_{w} P_{1} P_{2}\right)_{w}$. If $\left(I P_{1}^{-1} P_{2}^{-1}\right)_{w} \neq R$, continue the process. Now R is an SM domain [17, Theorem 5.4], and thus, this process terminates, say $\left(I P_{1}^{-1} \cdots P_{n}^{-1}\right)_{w}=R$ for some prime w-ideals P_{1}, \ldots, P_{n}. It follows that $I_{w}=\left(P_{1} \cdots P_{n}\right)_{w}$.

To see that the above w-product is unique, suppose there exist prime w-ideals Q_{1}, \ldots, Q_{m} such that $I_{w}=\left(Q_{1} \cdots Q_{m}\right)_{w}$. Then $Q_{1} \cdots Q_{m} \subseteq\left(P_{1} \cdots P_{n}\right)_{w} \subseteq\left(P_{1}\right)_{w}=P_{1}$, and hence, without loss of generality, we may suppose $Q_{1} \subseteq P_{1}$. By Lemma 2.5, Q_{1} is a maximal w-ideal, so that $Q_{\mathrm{I}}=P_{1}$. The rest is now routine.
(4) \Rightarrow (3). Let P be a non-zero prime w-ideal of R, and let c be a non-zero element in P. Then $(c)_{w}=\left(P_{1} \cdots P_{n}\right)_{w}$ for some prime w-ideals P_{1}, \ldots, P_{n} of R. Because (c) is w-invertible, then for each $i=1, \ldots, n, P_{i}$ is w-invertible, and thus is a maximal w-ideal, by Lemma 2.5. Now since $P_{k} \subseteq P$ for some $1 \leq k \leq n$, then $P=P_{k}$ is w-invertible.
$(1) \Rightarrow(5)$. By [17, Theorem 5.4].
$(5) \Rightarrow(7)$. Observe that for each $P \in w \operatorname{Max} R, R_{P}$ is an integrally closed Noetherian domain by Theorem 1.9, whence R_{P} is a DVR.
$(7) \Rightarrow(6) \Rightarrow(2)$. By Theorem 2.1.
(3) and $(7) \Rightarrow(8)$. Note that every maximal w-ideal is prime. The result follows easily.
$(8) \Rightarrow(9)$. By [17, Theorem 4.3], it suffices to show that every prime w-ideal of R is of finite type. Now if P is a non-zero prime w-ideal, then by hypothesis P is a maximal w-ideal, and hence is w-invertible. Thus $P=P_{w}$ is of finite type.
(9) \rightarrow (7). Let $P \in w \operatorname{Max} R$. Note that R_{P} is Noetherian, and the maximal ideal $P R_{P}$ is principal. Thus R_{P} is a DVR.

3. w-Overdomains

Let T be an overdomain of R. If T is a w-module (as an R-module) then for convenience we say that T is a w-overdomain of R. It is clear that for any overdomain T of R, T_{w} is a w-overdomain of R.

Lemma 3.1. Let T be a w-overdomain of R. Then
(1) If $J \in G V(R)$ then $J T \in G V(T)$.
(2) If Q is a w-ideal of T, then Q is a w-module over R, and thus $Q \cap R$ is a w-ideal of R.

Proof. (1) First note that since J is a finitely generated ideal of R, then $J T$ is a finitely generated ideal of T. Now, let L be the quotient field of T, and let $x \in L$ such that $J T x \subseteq T$. Since T is a w-module over R, then $T x \subseteq T$ and hence $x \in T$. Thus, $(J T)^{-1}=T$ and so $J T \in G V(T)$.
(2) Let $J \in G V(R)$ and suppose $J x \subseteq Q$ for some $x \in Q \otimes K \subseteq T \otimes K$. Then $J T x \subseteq Q$ and thus $x \in Q$, by (1).

We define the w-dimension of R as w - $\operatorname{dim} R=\sup \{$ ht $P: P \in w \operatorname{Max} R\}$. From Theorem 2.8 we see that the w-dimension of a Krull domain is at most 1 .

Theorem 3.2. For any domain R, the following are equivalent:
(1) R is an $S M$ domain with $w-\operatorname{dim} R \leq 1$.
(2) For any non-zero w-ideal I of R, every descending chain of w-ideals of R containing I stabilizes.
(3) For every positive integer n and every w-submodule M of R^{n} such that rank $M=n$, every descending chain of w-submodules of R^{n} containing M stabilizes.
(4) For every finite type w-module M and every w-submodule N of M such that $\operatorname{rank} N=\operatorname{rank} M$, every descending chain of w-submodules of M containing N stabilizes.

Proof. (1) \Rightarrow (2). Let $I_{1} \supseteq I_{2} \supseteq \cdots$ be a descending chain of w-ideals of R containing I. By Theorem 1.9 there are only finitely many maximal w-ideals containing I, say P_{1}, \ldots, P_{n}. For each $i(1 \leq i \leq n), R_{P_{i}} / I_{P_{i}}$ is Artinian [12, Theorem 90], hence, there is a positive integer k_{i} such that $\left(I_{t}\right)_{P_{i}}=\left(I_{k_{i}}\right)_{P_{i}}$ for all $t \geq k_{i}$. Letting $k=\max \left\{k_{1}, \ldots, k_{n}\right\}$, we have $\left(I_{t}\right)_{P}=\left(I_{k}\right)_{P}$ for all $t \geq k$ and for each $P \in\left\{P_{1}, \ldots, P_{n}\right\}$. On the other hand, for each $P \in w \operatorname{Max} R \backslash\left\{P_{1}, \ldots, P_{n}\right\}$, since $I \nsubseteq P$ we have $\left(I_{t}\right)_{P}=R_{P}$ for every positive integer t. Hence, $I_{t}=I_{k}$ for all $t \geq k$ [16, Lemma 1.5].
$(2) \Rightarrow(1)$. For each non-zero $x \in R$, there are only finitely many maximal w-ideals of R which contain x. This is so, because if P_{1}, P_{2}, \ldots are distinct maximal w-ideals, each containing x, then $P_{1} \supseteq P_{1} \cap P_{2} \supseteq \cdots$ is a descending chain which must stabilize, a contradiction. We now claim that for any $P \in w \operatorname{Max} R$ and any non-zero w-ideal I of $R, R_{P} / I_{P}$ is Artinian and R_{P} is Noetherian. It will then follow by Theorem 1.9
that R is an SM domain. Suppose $N_{1} \supseteq N_{2} \supseteq \cdots$ is a chain of ideals of R_{P} which contain I_{P}. For each positive integer i, let $I_{i}=N_{i} \cap R$, and note that $\left(I_{1}\right)_{w} \supseteq\left(I_{2}\right)_{w} \supseteq \cdots$ is a descending chain of w-ideals of R containing $I_{P} \cap R \supseteq I$. Hence, there exists a positive integer k such that $\left(I_{i}\right)_{w}=\left(I_{k}\right)_{w}$ for all $i \geq k$. Since $\left(J_{w}\right)_{P}=J_{P}$ for any ideal J of R, it follows then that $N_{i}=\left(I_{i}\right)_{P}=\left(I_{k}\right)_{P}=N_{k}$ for all $i \geq k$, i.e., R_{P} / I_{P} is Artinian. Now suppose $0 \neq A \subseteq A_{1} \subseteq A_{2} \subseteq \cdots$ is a chain of ideals of R_{P}. Then, $I=A \cap R \neq 0$ and $\left(I_{w}\right)_{P}=I_{P}=A$. Thus R_{P} / A is Artinian, whence R_{P} / A is Noetherian. It follows that R_{P} is Noetherian.

To see that $w-\operatorname{dim} R \leq 1$, let $P \in w \operatorname{Max} R$ and let $0 \neq x \in P$. Then $R_{P} / x R_{P}$ is Artinian, whence, $\operatorname{dim}\left(R_{P} / x R_{P}\right)=0$. Thus, $P R_{P}$ is a minimal prime of $x R_{P}$ and so $\operatorname{ht}\left(P R_{P}\right) \leq 1$. It follows that ht $P \leq 1$.
(2) \Rightarrow (3). Let $N_{1} \supseteq N_{2} \supseteq \cdots$ be a chain of w-submodules of R^{n} containing M. For each positive integer i, let $C_{i}=\pi\left(N_{i}\right)$, where $\pi: R^{n} \rightarrow R$ is the nth projection. Since $\operatorname{rank} M=n$ we have $\pi(M) \neq 0$. Then $\left(C_{1}\right)_{w} \supseteq\left(C_{2}\right)_{w} \supseteq \cdots$ is a chain of w-ideals of R and hence must stabilize, say at the positive integer k. Now, let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of R^{n} and let $F=\operatorname{Re}_{1} \oplus \cdots \oplus \operatorname{Re}_{n-1}$. Then $N_{1} \cap F \supseteq N_{2} \cap F \supseteq \cdots$ is a chain of w-submodules of F containing $M \cap F$. Since $\operatorname{rank}(M \cap F)=n-1$, by induction this chain must stabilize, without loss of generality, at k as well. Now let $x \in N_{k}$ and let i be any positive integer such that $i \geq k$. Then $\pi(x) \in C_{k} \subseteq\left(C_{i}\right)_{w}$, and thus $\pi(J x)=J \pi(x) \subseteq C_{i}$ for some $J \in G V(R)$. Since J is finitely generated, there exists a finitely generated submodule B of N_{i} such that $\pi(B)=\pi(J x)$. Thus, $J x \subseteq(F+$ B) $\cap N_{k}=\left(F \cap N_{k}\right)+B \subseteq N_{i}$, and since N_{i} is a w-module, we have $x \in N_{i}$.
(3) \Rightarrow (4). This follows easily from the fact that M can be embedded in R^{n}, where $n=\operatorname{rank} M$.
$(4) \Rightarrow(2)$. This is trivial.
From the above proof we have
Corollary 3.3. Let R be an $S M$ domain with $w-\operatorname{dim} R \leq 1$, and let I be a non-zero w-ideal of R. Then R_{P} / I_{P} is Artinian for all maximal w-ideals P which contain I.

Theorem 3.4. Let R be an $S M$ domain with $w-\operatorname{dim} R=1$, and let T be a w-overdomain of R such that $T \subseteq K$. Then T is an $S M$ domain with $w-\operatorname{dim} T \leq 1$.

Proof. Let Q be a non-zero w-ideal of T. Since $Q \cap R \neq 0$ we can choose a nonzero $x \in R$ such that $T x \subseteq Q$. By Theorem 1.9 there are only finitely many maximal w-ideals of R containing x, say P_{1}, \ldots, P_{n}. For any $P \in\left\{P_{1}, \ldots, P_{n}\right\}, R_{P}$ is Noetherian with $\operatorname{dim} R_{P}=1$, hence, $T_{P} / x T_{P}$ is a finitely generated R_{P}-module by the proof of [12, Theorem 93]. Let $N_{1} \supseteq N_{2} \supseteq \cdots$ be a chain of w-ideals of T containing Q. Then there exists a positive integer k such that for each $P \in\left\{P_{1}, \ldots, P_{n}\right\}$ we have $\left(N_{t}\right)_{P}=\left(N_{k}\right)_{P}$ for all $t \geq k$. Note that for any $P \in w \max R \backslash\left\{P_{1}, \ldots, P_{n}\right\}$, since $x \notin P$, we have $x T_{P}=T_{P}$ and thus $\left(N_{t}\right)_{P}=\left(N_{k}\right)_{P}$ for all positive integer t. Thus, $N_{t}=N_{k}$ for all $t \geq k$ ([16, Lemma 1.5] and Lemma 3.1). Now apply Theorem 3.2.

Finally, we make one further observation relating SM domains and Krull domains.
Theorem 3.5. If R is an $S M$ domain, then the complete integral closure of R is a Krull domain.

Proof. This follows easily from Theorem 1.9, [8, Lemma 2.2], and the Mori Nagata Theorcm.

Acknowledgements

The authors take this opportunity to thank the referee for his/her many thoughtful and helpful suggestions.

References

[1] D.D. Anderson, M. Zafrullah, On t-invertibility III, Comm. Algebra 21 (1993) 1189-1201.
[2] V. Barucci, D.F. Anderson, D.E. Dobbs, Coherent Mori domains and the Principal Ideal Theorem, Comm. Algebra 15 (1987) 1119-1156.
[3] V. Barucci, S. Gabelli, Ilow far is a Mori domain from being a Krull domain, J. Pure Appl. Algebra 45 (1987) 101-112.
[4] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[5] S. Glaz, W.V. Vasconcelos, Flat ideals II, Manuscripta Math. 22 (1977) 325-341.
[6] M. Griffin, Some results on Prüfer v-multiplication rings, Canad. J. Math. 19 (1967) 710-722.
[7] J.R. Hedstrom, E.G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1984) 37-44.
[8] W. Heinzer, J. Ohm, R.L. Pendleton, On integral domains of the form $\cap D_{P}, P$ minimal, J. Reine Angew. Math. 241 (1970) 147-159.
[9] E.G. Houston, S.B. Malik, J.L. Mott, Characterizations of \star-multiplication domains, Canad. Math. Bull. 27 (1984) 48-52.
[10] E.G. Houston, M. Zafrullah, Integral domains in which each t-ideal is divisorial, Michigan Math. J. 35 (1988) 219-300.
[11] E.G. Houston, M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989) 1955-1969.
[12] I. Kaplansky, Commutative Rings, revised ed., University of Chicago Press, Chicago, 1974.
[13] J.L. Mott, M. Zafrullah, On Prüfer v-multiplication domains, Manuscripta Math. 35 (1981) 1-26.
[14] J.L. Mott, M. Zafrullah, On Krull domains, Arch. Math. 56 (1991) 559-568.
[15] J. Querré, Sur une propriété des anneaux de Krull, Bull. Sci. Math. 2 sér. 95 (1971) 341354.
[16] Wang Fanggui, On w-projective modules and w-flat modules, Algebra Colloq. 4 (1997) 112-120.
[17] Wang Fanggui, R.L. McCasland, On w-modules over Strong Mori domains, Comm. Algebra, 25 (1997) 1285-1306.
[18] M. Zafrullah, Ascending chain conditions and star operations, Comm. Algebra 17 (1989) 1523-1533.

[^0]: * Corresponding author. E-mail: mccaslan@acad.udallas.edu.

