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• Impact of multiple stressors on fish eco-
logical status was investigated in Euro-
pean rivers.

• Across 3105 sampling sites, we found
15 different stressor categories.

• Of all sites, 28% were unimpacted.
• Impaired sites were affected by single
stressors (30%) or in combination
(42%).

• Interactions of stressors were additive
(40%), synergistic (30%) and antagonis-
tic (30%).
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This work addresses human stressors and their impacts on fish assemblages at pan-European scale by analysing
single andmultiple stressors and their interactions. Based on an extensive dataset with 3105 fish sampling sites,
patterns of stressors, their combination and nature of interactions, i.e. synergistic, antagonistic and additive were
investigated.
Geographical distribution and patterns of seven human stressor variables, belonging to four stressor groups (hy-
drological-, morphological-, water quality- and connectivity stressors), were examined, considering both single
and multiple stressor combinations. To quantify the stressors' ecological impact, a set of 22 fish metrics for var-
ious fish assemblage types (headwaters, medium gradient rivers, lowland rivers and Mediterranean streams)
was analysed by comparing their observed and expected response to different stressors, both acting individually
and in combination. Overall, investigated fish sampling sites are affected by 15 different stressor combinations,
including 4 stressors acting individually and 11 combinations of two or more stressors; up to 4 stressor groups
per fish sampling site occur. Stressor-response analysis shows divergent results among different stressor catego-
ries, even though a general trend of decreasing ecological integrity with increasing stressor quantity can be ob-
served. Fish metrics based on density of species ‘intolerant to water quality degradation’ and ‘intolerant to
oxygen depletion” responded best to single andmultiple stressors and their interactions. Interactions of stressors
were additive (40%), synergistic (30%) or antagonistic (30%), emphasizing the importance to consider interac-
tions in multi-stressor analyses. While antagonistic effects are only observed in headwaters and medium-gradi-
ent rivers, synergistic effects increase from headwaters over medium gradient rivers andMediterranean streams
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to large lowland rivers. The knowledge gained in this work provides a basis for advanced investigations in Euro-
pean river basins and helps prioritizing further restoration and management actions.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Across Europe, human stressors impact aquatic ecosystems and their
inhabiting communities, especially in rivers and streams. In the past,
strong single stressors such as organic pollution or flood protection
were prevalent. Today, a complex mixture composed of e.g. hydrologi-
cal-, morphological-, connectivity- and chemical stressors impacts the
functioning of aquatic ecosystems and related ecosystem services,
resulting from urban and agricultural land use, hydropower generation,
climate change and other factors (Schinegger et al., 2012; Hering et al.,
2014). In Europe, EU and member state legislation have been
established to manage and protect running waters, first and foremost
under the EU Water Framework Directive (WFD, European
Commission, 2000), which demands the “good ecological status” of all
water bodies (i.e. the related management units). This is addressed in
6-year planning- and management phases and by use of multiple Bio-
logical Quality Elements (BQEs) for status assessment. Europe's first
River Basin Management Plans (RBMPs) from 2009 indicate that 56%
of European rivers fail to achieve good ecological status, as they are af-
fected by a complex set of stressors (European Environment Agency,
2012).

Fish are especially sensitive BQEs for riverine ecosystems, as they
react significantly to almost all kinds of human stressors, including eu-
trophication, acidification, chemical pollution, flow regulation, physical
habitat alteration and fragmentation (Ormerod, 2003). Fish also can be
classified by a series ofmetrics based on assemblage structure and func-
tions to reflect the ecological health of the assemblage (Pont et al.,
2006). Further, they tend to be better indicators of stressors acting at
wider spatial and temporal scales, such as hydromorphological distur-
bances and connectivity loss (Sindilariu et al., 2006; Birk et al., 2012;
Marzin et al., 2012).

A first pan-European study investigated the response of fish assem-
blages to single and multiple human stressors across broad river types
(Schinegger et al., 2013; Trautwein et al., 2013) with 17 fishmetrics de-
scribing biological and ecological functional traits. Especially density
and biomass metrics were found useful for impact assessment in dis-
tinct river types. Moreover, fish responded to multiple stressors in all
river types in this study, indicating that it is no longer sufficient to ex-
plain the relationships between human stressors and BQEs assuming
simple dose-response reactions.

Stressors often interact, implying that an addition of the individual
stressor effects may underestimate the joint effect (Brown et al.,
2013). Additive effects on biota equal the sumof stressor's individual ef-
fects, synergistic interactions are present whenmultiple stressor effects
exceed those of additive ones and antagonistic effects are lower than the
sumof individual stressors (Crain et al., 2008; Folt et al., 1999). This calls
for a wider perspective on stressors and their interactions, to better un-
derstand the mechanistic principles behind stressor-response relation-
ships and to provide an overview on patterns and trends. However,
studies addressing interactive effects ofmultiple stressors have been es-
sentially based on mesocosm experiments (e.g. Townsend et al., 2008;
Matthaei et al., 2010; Piggott et al., 2012; Piggott et al., 2015a), with lim-
ited transferability to the reality of field conditions due to the restricted
spatial and temporal scales of most studies (Piggott et al., 2015a). Fur-
thermore, the few studies using empirical data and taking stressor inter-
actions and related response of fish and macroinvertebrates into
account typically were conducted at a regional scale or in a single
river basin (Wenger et al., 2011; Roberts et al., 2013; Walters et al.,
2013; Lange et al., 2014). So far, the complex nature of multiple
stressors with special emphasis on their interactive effects on biota
has never been addressed at a wider continental scale.

The project MARS (Managing Aquatic ecosystems and water Re-
sources under multiple Stress) was funded by the European Union to
support Europeanwater policies (e.g. theWFD and others) andwas ini-
tiated to overcome knowledge gaps of multiple stressor effects on biota
in rivers, lakes, transitional waters and groundwater. The related MARS
framework aims to provide required knowledge, understanding and
tools (e.g. analytical ‘cookbooks’) on how stressors interfere and impact
upon ecological status and ecosystem services (Hering et al., 2014; Feld
et al., 2016). Within MARS, Nõges et al. (2016) reviewed 219 papers on
ecological evidence of multiple stressor impacts, finding that despite a
huge conceptual knowledge base in aquatic ecology, few studies actual-
ly provide quantitative evidence ofmultiple stressor effects on biota, es-
pecially over large spatial extents. They also note a lack of data and
standardised investigation methods. Thus, we here contribute to the
MARS European-wide analyses by addressing multiple stressor effects
on fish assemblages at the continental scale. We hypothesise that i)
river-type-specific stressor patterns (number and combination of
stressors) can be observed across Europe, ii) that river-type specific
fish metrics can be identified to show a response to single and multiple
stressors and iii) that stressor interactions (additive, antagonistic or
synergistic effects) within these river types are reflected differently by
these metrics.

2. Methods

2.1. Fish sampling data and metrics

In total, 3105 fish sampling sites located in 14 European countries
were available for our analyses, extracted from an extensive European
database (EFI+ Consortium, 2009; Schinegger et al., 2016). Sites were
sampled by electrofishing (wading) following European standards
(CEN, 2003) and were associated with four fish assemblage types
(FATs, i.e. headwater streams (HWS), medium gradient rivers (MGR),
lowland rivers (LLR) and Mediterranean streams (MES)) based on fish
community and predicted by environmental characteristics
(Trautwein et al., 2013). The entire dataset includes 125 fish species re-
corded, whereof 15 are exotic species (12%). In this work, we target
structural and functional groups in fish communities rather than the
species level. Thus, no special focus was put on exotic species, as both
native as well as exotic species can take up the same function in the
available form of the data set.

Overall, 22 fishmetrics associatedwith five structural and functional
attributes of fish assemblages (biodiversity, habitat, reproduction, tro-
phic level and water quality sensitivity) were selected (Table 1), based
on the findings of Schinegger et al. (2013) and EFI+ Consortium
(2008) in terms of response to single and multiple stressors.

2.2. Stressor data/stressor combinations

For fish sampling sites, 13 selected and pre-classifiedhuman stressor
variables (according to Schinegger et al., 2012 and Schinegger et al.,
2013) were available, on a scale ranging from 1 (indicating no stress)
to 5 (indicating high stress). Due to lack of variation (rare occurrence
of stressor, low variation of gradient) in preliminary stressor analyses,
six of the selected stressor variables were not considered in further
steps. Remaining stressors were used to differentiate unimpacted sites
from single- or multiple impacted ones (Table 2).

http://creativecommons.org/licenses/by/4.0/


Table 1
Description and coding of fishmetrics available for analyses. Main trait groups are biodiversity (biodiv), habitat sensitivity (hab), trophic level (troph), water quality sensitivity (wq) and
reproduction (repro). Variants are number of species (nsp), density (dens; Ind./ha) or biomass (biom; kg/ha). Direction of response can be increasing (incr) or decreasing (decr) under
stress. Asterisk in row “coding” indicates metrics that were log-transformed to resemble normal distribution.

Metric group Trait Description Unit Coding(s) Direction Response according to literature

Nsp_all biodiv Total number of species nsp nsp_all incr/decr Generally declines, may show stress-specific increase
in species poor river types

HINTOL_150 hab Species with habitat degradation
intolerance of juveniles b150 mm

n/ha dens_HINTOL150 decr Reaction of juvenile individuals (b150 mm) of species
intolerant to habitat degradation

HTOL_HTOL hab Species with habitat degradation tolerance kg/ha perc_biom_HTOL_HTOL* incr Reaction of species having a large flexibility in terms
of habitat degradation

HabSp_RHPAR hab Species with preference to spawn in
running waters

n/ha dens_HabSp_RHPAR* decr Degradation of lotic spawning habitats
nsp nsp_HabSP_RHPAR

Repro_LITH repro Species spawning exclusively on gravel,
rocks, stones, cobbles or pebbles

n/ha dens_Repro_LITH decr Degradation of gravel spawning habitats, sensitive to
siltation

Atroph_INSV troph Insectivorous species nsp nsp_Atroph_INSV decr Surrogate for evaluating the degree that the
invertebrate assemblage is degraded by human
pressures

Atroph_PISC troph Piscivorous species nsp perc_nsp_Atroph_PISC* decr Top predator, surrogate for prey fishes
Atroph_OMNI troph Food of adult consists of N25% plant

material and N25% animal material.
Generalists

kg/ha perc_biom_Atroph_OMNI* inc Degree that the food base is altered to favour species
that can digest both plant and animal foodsnsp perc_nsp_Atroph_OMNI*

WQgen_INTOL wq Species which are in general intolerant to
usual water quality parameters

kg/ha biom_WQgen_INTOL* decr Reaction of species with narrow flexibility in terms of
water quality degradationn/ha dens_WQgen_INTOL*

n/ha perc_dens_WQgen_INTOL
nsp perc_nsp_WQgen_INTOL

WQgen_TOL wq Species which are in general tolerant to
usual water quality parameters

kg/ha biom_WQgen_TOL* incr Reaction of species having a wide flexibility in terms
of water quality degradationnsp nsp_WQgen_TOL

n/ha perc_dens_WQgen_TOL*
WQO2_O2INTOL wq Species which are tolerant to low oxygen

concentration. N6 mg/l in water
kg/ha biom_WQO2_O2INTOL* decr Reaction of species with narrow flexibility in terms of

oxygen concentration problemsn/ha dens_WQO2_O2INTOL*
nsp perc_nsp_WQO2_O2INTOL
n/ha perc_dens_O2INTOL

WQO2_O2TOL wq Species which are tolerant to low oxygen
concentration: 3 mg/l or less

nsp perc_nsp_WQO2_O2TOL* incr Reaction of species having a wide flexibility in terms
of oxygen concentration problems
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Sites without or only with slight stressors were considered as
“unimpacted” (class 1 and2), while otherswere categorized as “impact-
ed” (class 3 to 5). The resulting stressor categories (either one or more
stressors present at one site, Table 2) were grouped according to four
stressor groups, i.e. connectivity (C), hydrology (H), morphology (M)
and water quality (W). To account for natural variability in fish metric
measurements, we considered the FATs presented in the data set
(Trautwein et al., 2013) for identification of frequently reoccurring
stressor categories and the subsequent analyses.

Fishmetric responses were only compared to stressor categories oc-
curring frequently in the four FATs (n ≥ 20).

2.3. Standardization of metrics

In order to standardize fishmetric values to a comparable numerical
range and to set a common sign of response to stressors, we used a stan-
dardization procedure based on the ecological quality ratio (EQR). This
standardization procedure is commonly used with ecological quality
Table 2
Stressor variables considered in subsequent analyses. Stressor groups are hydrological stress (H

Stressor variable Abbreviation
Stressor
group Explanation and description of intensit

Impoundment H_imp H Natural flow velocity reduction on site
Water abstraction H_waterabstr H Site affected by water flow alteration/m

the mean annual flow), 5 = strong (mo
Instream habitat
alteration

M_instrhab M Alteration of instream habitat condition

Embankment M_embank M Artificial embankment; 1 = no (natura
intermediate (continuous embankmen

Barriers segment
downstream

C_B_do C Barriers on segment level downstream

Eutrophication W_eutroph W Artificial eutrophication; 1 = no, 3 = l
Organic pollution W_opoll W Is organic pollution observed; 1 = no,
indices to express results as a ratio of the monitored to reference, i.e.
unimpacted conditions (Van de Bund & Solimini, 2007). All metrics'
valueswere therefore transformed into EQRs by an equation expressing
site measurements relative to the mean metric measurement of
unimpacted sites within the same FAT. For a more reliable result, out-
liers were first eliminated from unimpacted sites.

The EQR's calculation was differentiated according to the expected
direction of metrics response to increasing human stressors
(Trautwein et al., 2013). Some metrics are considered to decrease in
value with increasing stressor (e.g. less fish in a guild resulting in re-
duced abundance and biomass, reduction of number of species) while
others are expected to increase (e.g. metrics regarding tolerant species).
The EQRwas calculated for each site as follows: Formula A is applied for
metrics expected to increase under an increasing intensity of stressors.
For metrics expected to decrease with an increasing intensity of
stressors, the EQR is calculated as indicated in Formula B. For metrics
expressed as percentages that increase with an increasing intensity of
stressors, the complementary percentage is utilized achieving a proxy
), morphological stress (M), connectivity stress (C) and water quality stress (W).

y classes

due to impoundment; 1 = no (no impoundment), 3 = weak, 5 = strong
inimum flow; 1 = no (no water abstraction), 3 = weak to medium (less than half of
re than half of mean annual flow)
s; 1 = no, 3 = intermediate, 5 = high

l shoreline), 2 = slight (local presence of artificial material for embankment), 3 =
t but permeable), 5 = high (continuous, no permeability)
; 1 = no, 4 = partial, 4 = yes

ow, 4 = intermediate (occurrence of green algae), 5 = extreme (oxygen depletion)
3 = weak, 5 = strong
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metric, which is expected to decrease with an increasing number of
stressors (Formula C).

Formula A (for increasing metrics) EQRsite ¼ meanðMetricref sitesÞþ1
Metricsiteþ1 .

Formula B (for decreasing metrics) EQRsite ¼ Metricsitesþ1
meanðMetricref sitesÞþ1.

FormulaC(forpercent increasingmetrics)EQRsite ¼ 101−Metricsite
101−meanðMetricref sitesÞ.

For the calculation of each site's EQR, only unimpacted sites of the
same FAT were used as basis for the reference condition, i.e. the mean
metric value of the unimpacted sites (within the same FAT). This step
compensates for environmental effects that might influence the sam-
pling site. Out of the set of metric variables, 12 were log-transformed
before EQR calculation, to make naturally skewed distributions better
comparable and interpretable (Table 1). Commonly, EQRs range from
0 to 1, however, in a slight deviation from the WFD scaling method,
e.g. for the ‘intercalibration exercise’ (Willby et al., 2014), this study
uses the mean metric value of the unimpacted sites instead of a maxi-
mum value, hence providing a more robust index but also allowing ex-
ceedance of the 0 to 1 limits. The resulting indices still express trait
metrics, since the EQR standardization is essentially a scalar transforma-
tion (i.e. EQRs still have a linear relationship with the original metrics).

2.4. Prediction of joint effects

The dataset consists of sites that are affected only by single stressors
and sites that are affected bymultiple stressors. Firstwe calculated EQRs
for all sites with single stressors. Then, the expected joint effect of mul-
tiple stressors occurring at one site was predicted by multiplying the
mean EQRs of single stressors occurring at this site (Coors & De
Meester, 2008). For interpretation, all stressor categories with metric
responses differentiating significantly from the unimpacted sites were
considered. Significant negative deviation from the reference was
assessedwith a one-sampleWilcoxon-Man-Whitney (U-) test. Further-
more, stressor combinations, i.e. stressor categories of multiple
stressors, that did not significantly differ from the unimpacted sites
but did significantly differ from either their predicted EQR value and/
or any of the single stressors they consisted of were included. The
mean EQR of a stressor category can be understood as the mean proba-
bility of sites affected by this category to achieve the reference metric
value. The effect of multiple stressors therefore can be predicted as the
joint probability of the involved single stressors, i.e. the product of
their EQRs. To determine stressor interaction, the predicted EQR of a
stressor combination was tested against actual observed values with
the corresponding stressor combination in a one sample Wilcoxon
Mann-Whitney test. If the true mean did significantly deviate from the
expectation, the stressor combination was considered to be interactive,
whereas it was considered additive if expectation and observation
aligned. Synergistic interaction between stressors is indicated by a sig-
nificantly stronger observed effect of the combined stressors than that
predicted from the single stressors, whereas an antagonistic interaction
is indicated by a significantly weaker effect of the combined stressors
than predicted (Coors & DeMeester, 2008). Fig. 1 displays the method-
ological framework, which aims (1) to test a significant difference be-
tween reference sites (REF), sites affected by single stress and by
multiple stress as well as (2) to identify the “nature of multiple stress”,
i.e. additive (ADD), synergistic (SYN) or antagonistic (ANT).

All statistical analyses were performed in R version 3.2.5 (R
Development Core Team, 2016).

3. Results

3.1. Distribution of stressor categories

In terms of frequent stressor categories (impoundments, water ab-
straction, eutrophication, organic pollution, barriers downstream, em-
bankment and instream morphological alteration) we found 15
variants, i.e. single stressors or combinations with a frequency of 20 or
more sites (Table 3).

Only 27% of all sampling sites were considered as unimpacted (no/
slight stress), but 30% of sites were affected by single stress (C, H, M or
W). Double stress (CH, CM, CW, HM, HW and MW) occurred at 23% of
sites and triple (CHM, CHW, CMW, HMW) at 15%. When considering
all stressors in combination, 5% of sites were affected by this category
(quadruple stress - CHMW; Table 3).

Within FAT HWS, water quality stress (W) was the most frequent,
followed by hydrological stress (H) and connectivity stress (C), along
with the combination of hydrological and water quality stress (HW).
Other frequent combinationswere connectivity andwater quality stress
coupled (CW) or together with hydrological stress (CHW).

Water quality stress was also most frequent in MGR, along with its
combination with morphological stress (MW), as well as with morpho-
logical and connectivity stress altogether (CMW). In this FAT all other
possible single, double, triple and quadruple stressor categories oc-
curred frequently, with a large amount of sites (90) affected by the
four-way combination (CHMW).

For LLR, hydrological stress co-occurringwithwater quality (HW) as
well as with water quality- and morphological stress (MW) occurred
frequently, followed by each of these individually and then by their
four-way combination with connectivity and hydrological stress
(CHMW). In summary, issues with water quality were prevalent in all
multiple stressor categories in this FAT.

The proportion of sites with single water quality stress in MES (104)
was almost as big as the one of unimpacted sites (109) and water qual-
ity stress againwas involved in all multiple stressor categories, especial-
ly in combination with either hydrological stress (HW) alone or with
hydrological and connectivity stress together (CHW). No other stressor
category occurred with any frequency apart for hydrological stress
individually.

Fig. 2 shows the spatial distribution of stressor categories across
Europe.

3.2. Response of fish metrics to single and multiple stressors

All metrics selected for analyses (Table 1) showed a significant re-
sponse to stressors, whether to single or multiple ones (Tables 4–7).
In HWS, 21 metrics revealed a significant deterioration from reference
condition (18 responding to single stressors and 21 to multiple ones).
ForMGR, all metrics showed a significant response (19metrics to single
stressors, all 22 to multiple ones). In LLR, 18 metrics showed a signifi-
cant response (10 to single stressors 17 to multiple ones) and in MES,
16 metrics were responsive (15 metrics to single stressors and 12 to
multiple ones). The results for individualmetrics and FATs are displayed
in Figs. A1–A4 in the Annex.

3.3. Additive, synergistic and antagonistic effects

In terms of interactive effects of stressors, Tables 4–7 and Figs. A1–A4
show the metric behaviour for single and multiple stress categories, i.e.
whether the stressors cause significant deterioration from unimpacted
sites and whether they do interact in combination. In HWS, most inter-
actionswere of additive or antagonistic nature. Additive effectswere ob-
served for water quality stress in combination with connectivity stress
(CW) aswell aswith hydrological stress (HW), especially formetrics re-
lated to intolerance to water quality degradation, oxygen depletion and
habitat alteration (Table 4). Triple stress (CHW)here showed antagonis-
tic responses especially for density and biomassmetrics and additive re-
sponse especially for biomass metrics. For the combination of
connectivity and hydrological stressors (CH), only antagonistic effects
were observed. Synergistic effects of multiple stressors only were de-
tected for 3 metrics, two related to water quality degradation toler-
ance/intolerance (biom_WQgenTOL, perc_nsp_WQ_gen_INTOL) and



Fig. 1.Methodological framework and theoretical example (top left) indicating analytical steps to test the significant difference between reference sites (REF, green/boxplot), sites affected
by single stressors (blue circle/boxplot) and by multiple stressors - including interaction effects as additive (ADD, red circle/boxplot), synergistic or antagonistic (SYN and ANT, orange
circles/boxplots). Grey circle (left, “OTH”) identifies sites.
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one related to the total number of species (nsp_all) under double or tri-
ple stress.

The results in MGR showed a quite equal distribution among all
three interaction types, all 22 metrics showed significant responses to
multiple stress effects. Additive and antagonistic interactions were
more often detected under double stress conditions as with triple or
quadruple stress. Morphological stress combined with water quality
Table 3
Number of sites related to no/slight stress and various stressor categories respectively and
across FATs: HWS=headwater streams;MGR=medium gradient rivers; LLR= lowland
rivers; MES = Mediterranean streams.

Stressor category

Fish assemblage types

HWS MGR LLR MES Total

No/slight stress 230 380 137 109 856
Single stress C 51 56 11 17 135

H 89 65 13 35 202
M 9 71 53 10 143
W 120 185 47 104 456

Double stress CH 21 33 7 13 74
CM 1 23 4 4 32
CW 21 82 11 16 130
HM 12 33 5 16 66
HW 51 64 22 48 185
MW 13 136 59 19 227

Triple stress CHM 4 28 2 4 38
CHW 31 70 14 28 143
CMW 10 121 15 2 148
HMW 13 64 28 18 123

Quadruple stress CHMW 7 90 41 9 147
stress mainly showed additive responses (MW), whereas the triple
combination including connectivity stress (CMW) showed mainly an-
tagonistic responses. By contrast, the combined impact of four-fold
stressor (i.e. CHMW) was mainly synergistic.

For LLR, synergistic effects occurred more frequently than additive
effects, whereas antagonistic effects were not detected. Significant in-
teractive effects only could be investigated for morphological stress
coupled with water quality stress, where synergistic effects dominated
(about 59% ofmetrics indicated a response), followedby additive effects
(41%). One metric (perc_dens_WQgen_INTOL) showed significant neg-
ative effects for both single stressors and the combination, i.e. for com-
bined morphological and water quality stressors, which means the
situation in this stressor combination is still worse than the expectation
based on the composing single stressors (Table 6).

For MES, again only additive and synergistic significant effects of
double stress were detected, when hydrological and water quality
stressors co-occurred (HW; Table 7). To this stressor combination, 58%
ofmetrics responded in an additiveway and the remaining 42% in a syn-
ergistic way. These were six water quality metrics, one habitat metric
and one biodiversity metric. For MES, no significant antagonistic effects
were observed.

4. Discussion

This work constitutes the first assessment of multiple human
stressors and their interacting effects and related responses of fishmet-
rics across broad fish assemblage types in Europe based on detailed,
semi-quantitative data. Previous studies often were investigating fish-

Image of Fig. 1


Fig. 2. Spatial distribution of unimpacted sites (top left) and stressor categories separated into single stressors (top right), double stressors (bottom left) and triple & quadruple stressors
(bottom right) across Europe.
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ecological responses to generalized pressure indices (e.g. Pont et al.,
2006; Logez & Pont, 2011) or more generic stressor categories such as
water quality vs. hydromorphological alterations (Schinegger et al.,
2013; Trautwein et al., 2013), thus often facing limitations in terms of
traceability of multi-stressor effects on fish. In contrast, our work is
based on 15 different stressor categories, i.e. 4 single stressors and 11
combinations, where fish metric responses to both single and multiple
stressors can be investigated more thoroughly.

4.1. Distribution and patterns of single and multiple stressors in water bod-
ies and biological implications

Despite the fact thatmodernmanagement ofwater bodies should no
longer target one stressor alone, the historically often critical aspect of
water quality due to organic pollution as well as eutrophication is still
very prevalent andwas found in 8 out of 15multiple stressor categories
across all FATs frequently. This fact could especially be related to chal-
lenges with diffuse sources of eutrophication, which causes widespread
problems of nutrient enrichment in inland and coastal waters across
Europe (EEA, 2012). Eutrophication often comes alongwith oxygen de-
pletion, leading to hypoxia (Teichert et al., 2016) and thus catastrophic
events in fish assemblages, as intolerance to low oxygen concentration
is a widespread species attribute in small coldwater European streams
(Wootton, 1991). As agriculture has substantial impacts on aquatic eco-
systems, ranging from streams and rivers to the estuarine and marine
environment, nutrient reduction measures, e.g. when implemented in
the EU Common Agricultural Policy (CAP) thus should play a key role
in addressing diffuse pollution in the next years (Stoate et al., 2009).

Human stressors have affected fish species unevenly: guilds of spe-
cialized species that are highly adapted to specifically riverine condi-
tions have declined far more than generalist species (Aarts et al.,
2004). It is well known from literature, that fish communities respond
to hydrological and morphological alterations (Schmutz et al., 2015),
as the diversity of habitat conditions supports various crucial biological
functions for marine, freshwater and estuarine resident species
(Teichert et al., 2016). Hydromorphological stressors and altered habi-
tats have been identified as a “significant pressure” in a WFD assess-
ment for 48.2 and 42.7% of the rivers of Europe, respectively (Fehér et

Image of Fig. 2


Table 4
Responsiveness of fish metrics to single and multiple stressors in headwater streams
(HWS). Asterisk in “single stressors” indicates significant response; significant interactive
effects in “multiple stressors” are additive (ADD), synergistic (SYN) or antagonistic (ANT).

Metric

Single
stressors Multiple stressors

C H W CH CW HW CHW

biom_WQgen_INTOL * * ADD ANT
biom_WQgen_TOL * * SYN ANT
biom_WQO2_O2INTOL * * ADD
dens_HabSp_RHPAR * * * ANT ANT ANT ANT
dens_WQgen_INTOL * * * ANT ANT ADD ANT
dens_WQO2_O2INTOL * * * ANT ANT ADD ANT
nsp_WQgen_TOL * * ANT ADD ANT
perc_biom_HTOL_HTOL * * ADD ANT
perc_dens_WQgen_INTOL * * * ANT ADD ADD ADD
perc_dens_WQgen_TOL * * ANT ADD ANT
perc_nsp_Atroph_PISC
perc_nsp_WQgen_INTOL * * ANT ADD SYN ADD
perc_nsp_WQO2_O2INTOL * ADD ADD ADD
perc_nsp_WQO2_O2TOL * * ANT ADD ANT
nsp_all * * * ANT ADD SYN SYN
perc_biom_Atroph_OMNI ADD ADD
perc_nsp_Atroph_OMNI * ADD ADD
nsp_Atroph_INSV ADD ADD
dens_MetHINTOL150 * * * ANT ANT
perc_dens_MetO2INTOL * ANT ADD ADD
dens_MetRHPAR * ANT ADD
dens_MetLITH ANT
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al., 2012). In terms of flow alterations, European river ecosystems are
under significant threat with about two-thirds at medium or high risk
of change (Laizé et al., 2014). In our study, hydrological stress combined
with morphological stress was frequently occurring in all 4 FATs and,
moreover, density of species intolerant to degradation of lotic spawning
habitat and density of juveniles of (b150 mm) of species intolerant to
habitat degradation showed significant responses to single hydrological
ormorphological stressors, aswell as to their combinations. Interactions
between hydrological and morphological stressors were often of addi-
tive nature. As fish respond in a consistent way to hydromorphological
restoration measures by an increase of rheophilic and a decrease of
eurytopic fish (Schmutz et al., 2015), a combination of morphological
restoration measures combined with the implementation of
Table 5
Responsiveness of fishmetrics to single andmultiple stressors inmediumgradient rivers (MGR)
“multiple stressors” is additive (ADD), synergistic (SYN) or antagonistic (ANT).

Metric

Single stressors Multiple stressors

C H M W CH CM CW

biom_WQgen_INTOL ADD
biom_WQgen_TOL * SYN
biom_WQO2_O2INTOL ADD
dens_HabSp_RHPAR *
dens_WQgen_INTOL * * ADD
dens_WQO2_O2INTOL * * ANT
nsp_WQgen_TOL * SYN
perc_biom_HTOL_HTOL * SYN
perc_dens_WQgen_INTOL * SYN SYN
perc_dens_WQgen_TOL * ADD
perc_nsp_Atroph_PISC * SYN ADD
perc_nsp_WQgen_INTOL * SYN
perc_nsp_WQO2_O2INTOL * SYN ADD
perc_nsp_WQO2_O2TOL * ADD ANT
nsp_all * SYN
perc_biom_Atroph_OMNI * ADD ADD
perc_nsp_Atroph_OMNI * SYN
nsp_Atroph_INSV
dens_MetHINTOL150 * * * ADD ANT
perc_dens_MetO2INTOL * ADD ANT
dens_MetRHPAR * SYN ANT
dens_MetLITH * * ADD
environmental flows and the mitigation of hydrological stressors due
to hydropower production (e.g. hydropeaking or impoundments)
should be considered in a holistic way in the future.

Fish feature highlymobile consumers at different levels of the aquat-
ic food chain, making them very susceptible to multi-stressor effects
(Nõges et al., 2016). Understanding the feeding ecology of fishes is crit-
ical to understanding the success of individuals and populations as it in-
fluences survival, growth, and reproductive potential (Wootton, 1998).
As a result of their feeding- and reproductive requirements, fish will
move within and between habitats to improve their opportunities
(Cooke et al., 2016). However, the influence of connectivity disruption
was detected in a wide range of FATs across Europe in our study, also
in combination with hydromorphological- and water quality stress. Al-
though similar in concept to habitat fragmentation in terrestrial ecosys-
tems, disconnections in rivers are particularly damaging because the
structure of stream networks restricts movement pathways, making it
more difficult or even impossible to avoid barriers (Fagan, 2002;
Fullerton et al., 2011). In Europe, most rivers are heavily fragmented,
with major consequences for sediment transport, nutrient delivery,
and the dispersal and migration of organisms including fish (Nilsson
et al., 2005). As a potential solution, optimization models to prioritize
the removal of fish passage barriers and tomaximize habitat availability
for resident fish, coupled with other restoration measures could be ap-
plied (e.g. Schmutz & Trautwein, 2009; O'Hanley et al., 2013).

4.2. Untangling of interactive stressor effects

Along with increasing intensity and number of stressors placed on
riverine ecosystems, both scientists and water resource managers
need greater understanding of relationships between multiple human
stressors and related responses of the aquatic community, to under-
stand the consequences for future management of aquatic ecosystems
and their services (Allan et al., 2013). In this work we found that,
among the 73% of impaired sample sites across Europe, N64% were af-
fected by two or more stressors. This finding highlights the importance
to consider effects resulting from the interplay of multiple stressors
when seeking for responses of biological indicators.

To improve the management of aquatic systems subjected to multi-
ple stressors, it is necessary to understand the effect of stressor interac-
tions on fish metrics (Nõges et al., 2016). In our study, all fish metrics
. Asterisk in “single stressors” indicates significant response; significant interactive effect in

HM HW MW CHM CHW CMW HMW CHMW

ADD
SYN SYN SYN SYN SYN SYN

ADD ADD
ADD ANT ADD ANT ANT
ADD ANT ANT ADD ANT ANT ADD
ADD ANT ANT ADD ANT ANT ANT

ADD ADD SYN SYN SYN SYN
ADD ADD SYN ADD SYN SYN
SYN SYN ADD SYN SYN
ADD ANT ADD ANT ADD SYN

SYN
SYN SYN SYN SYN SYN
ADD ADD SYN SYN SYN

ADD ANT ANT ANT ANT ANT
SYN SYN SYN SYN SYN
ANT ANT ANT ANT ANT ADD
SYN ANT SYN ANT SYN SYN
ADD ADD

ADD ANT ADD ADD ANT ANT ANT
ADD ADD ADD ANT ADD ADD
ADD ANT ADD

ADD ANT ANT ANT ANT ANT



Table 6
Responsiveness of fishmetrics to single andmultiple stressors in lowland rivers (LLR). As-
terisk in “single stressors” indicates significant response; significant interactive effect in
“multiple stressors” is additive (ADD), synergistic (SYN) or antagonistic (ANT).

Metric

Single
stressors Multiple stressors

M W HW MW HMW CHMW

biom_WQgen_INTOL
biom_WQgen_TOL * SYN
biom_WQO2_O2INTOL
dens_HabSp_RHPAR ADD
dens_WQgen_INTOL * ADD
dens_WQO2_O2INTOL ADD
nsp_WQgen_TOL SYN
perc_biom_HTOL_HTOL * SYN
perc_dens_WQgen_INTOL * * SYN
perc_dens_WQgen_TOL * SYN
perc_nsp_Atroph_PISC ADD
perc_nsp_WQgen_INTOL * SYN
perc_nsp_WQO2_O2INTOL SYN
perc_nsp_WQO2_O2TOL SYN
nsp_all
perc_biom_Atroph_OMNI * SYN
perc_nsp_Atroph_OMNI SYN
nsp_Atroph_INSV *
dens_MetHINTOL150
perc_dens_MetO2INTOL * * ADD
dens_MetRHPAR ADD
dens_MetLITH * ADD
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responded to at least one single stressor and showed to be often affected
by interacting multiple stressors. For water quality metrics, species in-
tolerant to water quality degradation in general and to O2 depletion
showed the strongest responses (in N50% of cases). Moreover, signifi-
cant single and interactive stressor effects on two habitatmetrics – den-
sity of juveniles of species intolerant to habitat degradation in general
and density of species intolerant to degradation of lotic spawning habi-
tats - were also shown to occur in N50% of cases. Concerned species for
these two categories are especially salmonids as Salmo trutta fario and
Thymallus thymallus but also Barbus barbus or Cottus gobio, which are
key-indicator species in HWS, MGR and MES. Thymallus thymallus is a
highly threatened species, which has already been eradicated by river
alterations (Persat, 1996; Gum et al., 2009).
Table 7
Responsiveness of fish metrics to single and multiple stressors in Mediterranean streams
(MES). Asterisk in “single stressors” indicates significant response; significant interactive
effect in “multiple stressors” is additive (ADD), synergistic (SYN) or antagonistic (ANT).

Metric

Single stressors Multiple stressors

H W HW CHW

biom_WQgen_INTOL *
biom_WQgen_TOL
biom_WQO2_O2INTOL *
dens_HabSp_RHPAR * ADD
dens_WQgen_INTOL * * SYN
dens_WQO2_O2INTOL * * ADD
nsp_WQgen_TOL * ADD
perc_biom_HTOL_HTOL
perc_dens_WQgen_INTOL * * SYN
perc_dens_WQgen_TOL * ADD
perc_nsp_Atroph_PISC
perc_nsp_WQgen_INTOL * * ADD
perc_nsp_WQO2_O2INTOL * * SYN
perc_nsp_WQO2_O2TOL ADD
nsp_all * ADD
perc_biom_Atroph_OMNI *
perc_nsp_Atroph_OMNI * SYN
nsp_Atroph_INSV
dens_MetHINTOL150 *
perc_dens_MetO2INTOL * * SYN
dens_MetRHPAR
dens_MetLITH
In terms of interaction types, several previously conducted studies
highlight that additive effects are not often prevalent when two
stressors act in combination (e.g. Piggott et al., 2015b; Teichert et al.,
2016). Overall, in our study, different types of combined effects were
observed (i.e. additive, synergistic, antagonistic), but synergism and an-
tagonism were more common than additive interaction, i.e. for 60% of
tested interactions. Of most significance is our finding that 40% of met-
rics showed an additive response under multiple stressor situations,
whereas 30% indicated a synergistic and 30% an antagonistic response
over all river types (Fig. 3). This result is comparable with findings of
Nõges et al. (2016), who found additive interactive effects to be present
on 39% of stressor pairs, synergistic effects on 35% and antagonistic ef-
fects on 26%. However, it contrasts with other studies that found antag-
onistic effects among stressors to be largely dominant for fish
assemblages in estuaries (Teichert et al., 2016).

The observed prevalence of interactive stressor effects reflects a
complex scenario for ecosystem management (Brown et al., 2013; Folt
et al., 1999; Teichert et al., 2016), because the complete recovery for
mitigating one stressor is only expected when other stressors are also
removed. In this context, the identification of dominant stressors in riv-
erine systems should be accomplished by taking into account the direc-
tion and strength of interactions to improve the assessment accuracy of
the stressors impacts (Teichert et al., 2016).

4.3. Uncertainties & limitations

Significant progress in biomonitoring science and earth observation-
al technologies as well as standardization processes (e.g. for sampling
and mapping) are now providing new opportunities to address
Fig. 3. Distribution of interaction effects across fish assemblage types (FATs) indicating
number of observed interactions in fish metric responses. Headwater streams (HWS),
medium gradient rivers (MGR), lowland rivers (LLR) and Mediterranean streams (MES)
after Schinegger et al. (2013). Interaction effects are antagonistic (ANT), additive (ADD)
or synergistic (SYN).

Image of Fig. 3
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problems across large spatial and temporal scales,whichwere previous-
ly impossible (Dafforn et al., 2015). In Europe, the implementation of
the EU Water Framework Directive (European Commission, 2000) has
led to harmonized assessment methods (Birk et al., 2012), resulting in
extensive, publicly available freshwater databases (e.g. theWater Infor-
mation System of Europe WISE, http://water.europa.eu), including bio-
logical information on ecological status and on various human stressors
(e.g. hydromorphological alterations, water quality problems, barriers
etc.) at the waterbody scale.

Even though our study was based on an extensive, pan- European
dataset, the number of sites represented in each stressor category was
restricted (Table 3). A main limitation concerns stressor data, as for
this study, monitoring- and field-mapping data from national databases
compiled for the WFD and expert judgement were only available on a
semi-quantitative basis (Schinegger et al., 2012). Moreover, most
often the samples were not evenly distributed along the whole stressor
gradients, which might explain the often week and vague response of
fish metrics to single and multiple stressors. A central reason for this is
that harmonized data for large-scale investigations were lacking in the
past, especially on national or wider spatial scales. However, there is a
need for quantitative evidence of biotic responses to multiple stressors,
so that it can serve as the basis for risk assessment and appropriateman-
agement actions (Nõges et al., 2016).

As planning and implementation of sustainable conservation and
restoration solutions requires detailed knowledge on complex system
relationships (Hipsey et al., 2015), new attempts are needed to investi-
gate these with a special focus on restoration of river ecosystems and
conservation of fish assemblages in Europe by using emerging sources
of ‘big picture data’, interdisciplinary tools and by the incorporation of
results obtained from previous projects in the future. Although
constrained by the available biomonitoring data, this research repre-
sents a first step into this direction. New and better harmonized stressor
data from most recent works are expected to improve this picture, e.g.
compiled by EUmember states within the 2nd River BasinManagement
Plans (supporting the implementation of the EUWFD). Related assess-
ments will provide the opportunity to directly link drivers, stressors
and ecological state, with much better detection and diagnosis of
human-induced changes for a broad spectrum of scenarios and hetero-
geneous landscapes across Europe (Dafforn et al., 2015). Moreover, the
consideration of spatial ecology in future studies is fundamental to de-
sign, implement, and interpret biological assessment data, as well as
to developmodels (e.g., habitat and environmentalmodels) that inform
and evaluate alternative management and conservation strategies
(Cooke et al., 2016).

5. Conclusions

Our study highlights that only 40% of combined stressors in Europe-
an runningwaters were of additive nature, whereas the other 60%were
synergistic or antagonistic. Thus, future management plans should con-
sider the type and the strength of interactions (Halpern et al., 2008), in
order to improve their outcomes and avoid potential disappointments
(Teichert et al., 2016). Regardless of the successful identification of
fish metrics, which were responsive to interactive effects of multiple
human stressors in some FATs in our study, further work is needed to
provide new scientific perspectives for effective restoration of running
waters affected bymultiple stressors in Europe. In the context of multi-
ple stressor assessment, our results therefore highlight the following re-
search and management needs:

1. Development of river-type-specific restoration strategies is needed,
including the interactive effects of stressors.

2. Consideration of the “full gradient” of quantifiable stressors for future
stressor compilations, i.e. to have a broad range of sites available in-
cluding reference conditions, slight/medium stressors and strong
single stressors.
3. A more robust sample design for future biomonitoring programs,
specifically directed to disentangle single and joint effects, i.e. to se-
lect a priori sets of sample sites representative of the different stress-
or combinations: from single stressors to combinations of two or
more stressors making it possible to assess interactions among a
larger number of stressor combinations.

4. Determination of restoration priorities by focusing on the mitigation
of stressors providing the maximum ecological benefit in a multi-
stress context.

5. Conducting further investigations on how global, regional and local
stressors interact in terms of their impact on fish assemblages in
Europe's running waters.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2016.08.143.
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