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a b s t r a c t

Let G be a graph and let k be a positive integer. Consider the following two-person game
which is played on G: Alice and Bob alternate turns. A move consists of selecting an
unlabeled vertex v of G and assigning it a number a from {0, 1, 2, . . . , k} satisfying the
condition that, for all u ∈ V (G), u is labeled by the number b previously, if d(u, v) = 1,
then |a − b| ≥ d, and if d(u, v) = 2, then |a − b| ≥ 1. Alice wins if all the vertices of G
are successfully labeled. Bob wins if an impasse is reached before all vertices in the graph
are labeled. The game L(d, 1)-labeling number of a graph G is the least k for which Alice has
a winning strategy. We use λ̃d

1(G) to denote the game L(d, 1)-labeling number of G in the
game Alice plays first, and use λ̃d

2(G) to denote the game L(d, 1)-labeling number ofG in the
game Bob plays first. In this paper, we study the game L(d, 1)-labeling numbers of graphs.
We give formulas for λ̃d

1(Kn) and λ̃d
2(Kn), and give formulas for λ̃d

1(Km,n) for those d with
d ≥ max{m, n}.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

LetG be a graph and let X be a set of colors. Consider the following two-person gamewhich is played onG: Alice (player 1)
and Bob (player 2) alternate turns. A move consists of selecting a previously uncolored vertex v of G and assigning it a color
from the color set X distinct from the color assigned previously (by either player) to neighbors of v. If after n = |V (G)|moves,
the graph G is colored, Alice is the winner. Bobwins if an impasse is reached before all nodes in the graph are colored, i.e., for
every uncolored vertex v and every color α from X, v is adjacent to a vertex having color α. The game chromatic number of
G is the least cardinality of a color set X for which Alice has a wining strategy. We use χ1

g (G) to denote the game chromatic
number of G in the game Alice plays first, and use χ2

g (G) to denote the game chromatic number of G in the game Bob plays
first. Bodlaender [1] first introduced this problem and studied its computational complexity. Faigle et al. [4] showed that the
game chromatic number of the class of forests is 4. Kierstead and Trotter [10] showed that the game chromatic number of
the class of planar graphs is between 7 and 33. This upper bound was improved by Dinski and Zhu in [3] to 30, then reduced
to 19 in [13], and further reduced to 18 in [9]. It was shown in [10] that outerplanar graphs have game chromatic number
at most 8, and this upper bound is reduced to 7 in [7].

Given a graph G and nonnegative integers p, qwith p ≥ q, an L(p, q)-labeling of G is a function f from the vertex set V (G)
to the set of all nonnegative integers such that |f (u) − f (v)| ≥ p if d(u, v) = 1 and |f (u) − f (v)| ≥ q if d(u, v) = 2. For
a nonnegative integer k, a k–L(p, q)-labeling is an L(p, q)-labeling such that no label is greater than k. The L(p, q)-labeling
number of G, denoted by λp,q(G), is the smallest number k such that G has a k–L(p, q)-labeling (when q = 1, we use λp(G)
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to replace λp,q(G) in short). This problem came from the frequency assignment problem introduced by Hale [8] and was
first proposed by Griggs and Yeh [6] and Roberts [11]. Griggs and Yeh [6] showed that the L(2, 1)-labeling problem is
NP-complete for general graphs and proved that λ2(G) 6 ∆2(G) + 2∆(G). Chang and Kuo [2] gave a polynomial-time
algorithm for the L(2, 1)-labeling problem on trees. Gonçalves [5] proved that λ2(G) 6 ∆2(G) + ∆(G) − 2 for any graph G
with ∆(G) ≥ 2. There are also many other results surrounding this topic; for a recent survey see [12] and the references
therein.

We consider a new labeling game which comes from the L(p, q)-labeling problem and can be viewed as a generalization
of the game coloring problem. Given a graph G and integers k, p, q with k ≥ 0 and p > q ≥ 0. Consider the following
two-person game which is played on G: Alice (player 1) and Bob (player 2) alternate turns. A move consisting of selecting
a previously unlabeled vertex v of G and assigning it a number a from {0, 1, 2, . . . , k} satisfying the condition that, for all
u ∈ V (G), if u is labeled by the number b previously, then |a−b| ≥ p if d(u, v) = 1, and |a−b| ≥ q if d(u, v) = 2. Alice wins
if all the vertices of G are successfully labeled. Bob wins if an impasse is reached before all vertices in the graph are labeled.
The game L(p, q)-labeling number of a graph G is the least k for which Alice has a winning strategy. We use λ̃

p,q
1 (G) to denote

the game L(p, q)-labeling number of G in the game Alice plays first, and use λ̃
p,q
2 (G) to denote the game L(p, q)-labeling

number of G in the game Bob plays first. When q = 1, we use λ̃
p
1(G) (resp. λ̃p

2(G)) to replace λ̃
p,q
1 (G) (resp. λ̃p,q

2 (G)) for short.
Note that from the definition, χ1

g (G) = λ̃
1,0
1 (G) and χ2

g (G) = λ̃
1,0
2 (G).

We study the game L(d, 1)-labeling number of graphs in this paper. We give formulas for λ̃d
1(Kn) and λ̃d

2(Kn), and give
formulas for λ̃d

1(Km,n) for those d with d ≥ max{m, n}.

2. Preliminary

In this section, we first fix some notation and terminology, and then derive an upper bound for the game L(d, 1)-labeling
number of graphs. The following lemma is a direct consequence of the definition.

Lemma 1. For any graph G, λ̃d
1(G) ≥ λd(G) and λ̃d

2(G) ≥ λd(G).

From now on, for convenience, we use λ̃d
i(j,S)

(G) to denote the smallest number needed to complete the (d, 1)-game on
G with player i plays first under a fixed strategy S made by player j. And, to simplify the notations, for a given graph G, we
use Cm

i (j) = (v; l) to denote that, under the constraint that the numbers can be used is no more than the numberm, player i
chooses an unlabeled vertex v and labels it by the number l in the jth move, and use PCm(j; v) to denote the set of numbers
in {0, 1, 2, . . . ,m} that can be chosen to label the unlabeled vertex v after the jth move.

From the definitions above, λ̃d
i (G) ≤ m for i = 1, 2 if player 1 has a strategy so that PCm(j; v) ≠ ∅ for all j, 1 ≤ j ≤

|V (G)| − 1 and all vertices v that are unlabeled after the jth move. And λ̃d
i (G) > m for i = 1, 2 if player 2 has a strategy so

that PCm(j; v) = ∅ for some j, 1 ≤ j ≤ |V (G)| − 1 and some vertex v that is unlabeled after the jth move.
Given a graph G and v ∈ V (G), S ⊆ V (G), we use Ni(v) to denote the set {u : dG(u, v) = i}, and we let Ni(S) to be the set

v∈S Ni(v). And, for a ∈ N∪{0}, we use the notation nd(a) to denote the set {a−d+1, a−d+2, . . . , a+d−1}∩ (N∪{0}).

Theorem 2. If G is a graph with maximum degree ∆, then λ̃d
i (G) ≤ (∆ + 2d − 2)∆ for i = 1, 2 and d ≥ 2.

Proof. Letm = (∆ + 2d− 2)∆. Consider the following strategy S made by Alice. At the ith step, if there is a vertex v that is
still unlabeled, and PCm(i − 1; v) ≠ ∅, then Alice chooses a number a in PCm(i − 1; v) and labels v by a at the ith step. We
claim that Alice can complete the (d, 1)-game played on G under this strategy.

Letw be an unlabeled vertex after the jth step. Define Ak = {l : Cm
i (j′) = (v; l) for some j′ ≤ j and v ∈ Nk(w)} for k = 1, 2.

Then, since PCm(j; w) = {0, 1, 2, . . . ,m}− ((∪l∈A1 nd(l))∪A2), |PCm(j; w)| ≥ m+1− ((2d−1)∆+∆(∆−1)) ≥ 1. Hence
PCm(j; w) ≠ ∅. Since PCm(j; v) ≠ ∅ for all j, 1 ≤ j ≤ |V (G)| − 1 and all vertices v that are unlabeled after the jth move,
λ̃d
i(1,S)

(G) ≤ m = (∆ + 2d − 2)∆. Thus λ̃d
i (G) ≤ λ̃d

i(1,S)
(G) ≤ (∆ + 2d − 2)∆ for i = 1, 2 and d ≥ 2. �

3. Game L(d, 1)-labeling number of complete graphs

We study the game L(d, 1)-labeling number of complete graphs in this section.

Theorem 3. For all n ≥ 1, r ≥ 0, λ̃d
1(Kn ∪ rK1) = (4d− 1)

 n−3
3


+ [(n− 1) mod 3]d and λ̃d

2(Kn ∪ rK1) = (4d− 1)
 n−1

3


−

2d + [(n − 2) mod 3]d.

Proof. Let m be the largest number that can be used in the (d, 1)-game on Kn ∪ rK1. Consider the following strategy made
by Alice. At the ith step, if there is a vertex v of Kn that is still unlabeled, and there exists a number l, d ≤ l ≤ m, such
that {l − d, l − d + 1, . . . , l} ⊆ PCm(i − 1; v), then Alice labels v with the number j, where j = min{l : d ≤ l ≤

m, {l − d, l − d + 1, . . . , l} ⊆ PCm(i − 1; v)}. If no such number exists, and PCm(i − 1; v) ≠ ∅, then Alice chooses an
arbitrary number j in PCm(i − 1; v) and labels v with the number j. And if all the vertices of Kn are labeled, choose an
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unlabeled vertex of rK1 and label it with 0. We use S1 to denote this strategy. For Bob, consider the following strategy made
by Bob. At the ith step, if there is a vertex v of Kn that is still unlabeled, and there exists a number l, d − 1 ≤ l ≤ m, such
that {l − d + 1, l − d + 2, . . . , l} ⊆ PCm(i − 1; v), then Bob labels v with the number j, where j = min{l : d − 1 ≤ l ≤

m, {l − d + 1, l − d + 2, . . . , l} ⊆ PCm(i − 1; v)}. If no such number exists, and PCm(i − 1; v) ≠ ∅, then Bob chooses
an arbitrary number j in PCm(i − 1; v) and labels v with the number j. And if all the vertices of Kn are labeled, choose an
unlabeled vertex of rK1 and label it with 0. We use S2 to denote this strategy.

We prove this theorem by proving a stronger statement. For the strategies S1 and S2, λ̃d
1(1,S1)

(Kn∪rK1) ≤ (4d−1)
 n−3

3


+

[(n− 1) mod 3]d ≤ λ̃d
1(2,S2)

(Kn ∪ rK1) and λ̃d
2(1,S1)

(Kn ∪ rK1) ≤ (4d− 1)
 n−1

3


− 2d+ [(n− 2) mod 3]d ≤ λ̃d

2(2,S2)
(Kn ∪ rK1).

To prove this, we use induction on n. The conclusion clearly holds for n = 1, 2. Suppose it holds for all n, 2 ≤ n < t.

Claim 1. λ̃d
1(1,S1)

(Kt ∪ rK1) ≤ (4d − 1)
 t−3

3


+ [(t − 1) mod 3]d.

Proof of Claim 1. Let p = λ̃d
1(1,S1)

(Kt ∪ rK1). By the definition of S1, Alice first chooses a vertex of Kt and labels it by d. After
the first step, we can imagine that this is just the (d, 1)-game played on Kt−2∪(r+1)K1, with Bob plays first. More precisely,
if Cp

i (j) = (v; l) for some j ≥ 2, l ≥ 2d, and some unlabeled vertex v of Kt , then we can imagine that on the (d, 1)-game
played on Kt−2 ∪ (r +1)K1, player i chooses a vertex v of Kt−2 and labels it by l−2d at the (j−1)th step. And if Cp

i (j) = (v; l)
for some j ≥ 2, where v is an unlabeled vertex of Kt and l = 0, or v is an unlabeled vertex of rK1, then we can imagine that
on the (d, 1)-game played on Kt−2 ∪ (r + 1)K1, player i chooses an isolated vertex v of (r + 1)K1 and labels it by 0 at the
(j − 1)th step. Since

λ̃d
2(1,S1)

(Kt−2 ∪ (r + 1)K1) ≤ (4d − 1)


(t − 2) − 1
3


− 2d + [(t − 4) mod 3]d

= (4d − 1)

t − 3
3


− 2d + [(t − 1) mod 3]d,

we have

λ̃d
1(1,S1)

(Kt ∪ rK1) ≤ λ̃d
2(1,S1)

(Kt−2 ∪ (r + 1)K1) + 2d = (4d − 1)

t − 3
3


+ [(t − 1) mod 3]d. �

Claim 2. λ̃d
2(2,S2)

(Kt ∪ rK1) ≥ (4d − 1)
 t−1

3


− 2d + [(t − 2) mod 3]d.

Proof of Claim 2. Let p = λ̃d
2(2,S2)

(Kt ∪ rK1). By the definition of S2, Bob first selects a vertex of Kt and labels it by d−1. After
the first step, we can imagine that this is just the (d, 1)-game played on Kt−1 ∪ rK1, with Alice plays first. More precisely, if
Cp
i (j) = (v; l) for some j ≥ 2, l ≥ 2d − 1, and some unlabeled vertex v of Kt , then we can imagine that on the (d, 1)-game

played on Kt−1 ∪ rK1, player i chooses a vertex v of Kt−1 and labels it by l− 2d+ 1 at the (j− 1)th step. And if Cp
i (j) = (v; l)

for some j ≥ 2 and some unlabeled vertex v of rK1, thenwe can imagine that on the (d, 1)-game played on Kt−1 ∪ rK1, player
i chooses an isolated vertex v of rK1 and labels it by 0 at the (j − 1)th step. Since

λ̃d
1(2,S2)

(Kt−1 ∪ rK1) ≥ (4d − 1)


(t − 1) − 3
3


+ [(t − 2) mod 3]d

= (4d − 1)

t − 1
3


− 4d + 1 + [(t − 2) mod 3]d,

we have

λ̃d
2(2,S2)

(Kt ∪ rK1) ≥ λ̃d
1(2,S2)

(Kt−1 ∪ rK1) + 2d − 1 ≥ (4d − 1)

t − 1
3


− 2d + [(t − 2) mod 3]d. �

Claim 3. λ̃d
1(2,S2)

(Kt ∪ rK1) ≥ (4d − 1)
 t−3

3


+ [(t − 1) mod 3]d.

Proof of Claim 3. Let p = λ̃d
1(2,S2)

(Kt ∪ rK1). If at the first step, Alice chooses an isolated vertex of rK1 and labels it by q, then
we can imagine that this is just the (d, 1)-game played on Kt ∪ (r − 1)K1, with Bob plays first. Thus by Claim 2 and its proof,
the smallest number needed to complete this game in this case is at least (4d − 1)

 t−3
3


+ [(t − 1) mod 3]d and we are

done. So, assume that at the first step, Alice chooses a vertex of Kt and labels it by q. Consider the following cases:
Case 1. q ≤ d − 1.

In this case, by the definition of S2, Bob selects a vertex of Kt and labels it by q + 2d − 1 at the second step. After
this step, we can imagine that this is just the (d, 1)-game played on Kt−2 ∪ rK1, with Alice plays first. More precisely, if
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Cp
i (j) = (v; l) for some j ≥ 3, l ≥ q + 3d − 1, and some unlabeled vertex v of Kt , then we can imagine that on the

(d, 1)-game played on Kt−2 ∪ rK1, player i chooses a vertex v of Kt−2 and labels it by l − q − 3d + 1 at the (j − 2)th step.
And if Cp

i (j) = (v; l) for some j ≥ 3 and some unlabeled vertex v of rK1, then we can imagine that on the (d, 1)-game
played on Kt−2 ∪ rK1, player i chooses an isolated vertex v of rK1 and labels it by 0 at the (j − 2)th step. Since λ̃d

1(2,S2)
(Kt−2 ∪

rK1) ≥ (4d − 1)
 t−2

3


− 4d + 1 + [t mod 3]d, we have

λ̃d
1(2,S2)

(Kt−2 ∪ rK1) + (q + 3d − 1) ≥ (4d − 1)

t − 2
3


− 4d + 1 + [t mod 3]d + (q + 3d − 1)

= (4d − 1)

t − 2
3


− d + [t mod 3]d + q

≥ (4d − 1)

t − 3
3


+ [(t − 1) mod 3]d,

thus the smallest number needed to complete this game in this case is at least (4d − 1)
 t−3

3


+ [(t − 1) mod 3]d.

Case 2. d ≤ q ≤ 2d − 2.
In this case, after the first step, we can imagine that this is just the (d, 1)-game played on Kt−2 ∪ (r +1)K1, with Bob plays

first. More precisely, if Cp
i (j) = (v; l) for some j ≥ 2, l ≥ q+ d, and some unlabeled vertex v in Kt , then we can imagine that

on the (d, 1)-game played on Kt−2 ∪ (r + 1)K1, player i chooses a vertex v of Kt−2 and labels it by l − q − d at the (j − 1)th
step. If Cp

i (j) = (v; l) for some j ≥ 2, where v is an unlabeled vertex of rK1, or v is an unlabeled vertex of Kt and l ≤ q − d,
then we can imagine that on the (d, 1)-game played on Kt−2 ∪ (r + 1)K1, player i chooses an isolated vertex v of (r + 1)K1

and labels it by 0 at the (j − 1)th step. Since λ̃d
2(2,S2)

(Kt−2 ∪ (r + 1)K1) ≥ (4d − 1)
 t−3

3


− 2d + [(t − 1) mod 3]d, we have

λ̃d
2(2,S2)

(Kt−2 ∪ (r + 1)K1) + (q + d) ≥ (4d − 1)

t − 3
3


− 2d + [(t − 1) mod 3]d + (q + d)

= (4d − 1)

t − 3
3


+ [(t − 1) mod 3]d + q − d

≥ (4d − 1)

t − 3
3


+ [(t − 1) mod 3]d,

thus the smallest number needed to complete this game in this case is at least (4d − 1)
 t−3

3


+ [(t − 1) mod 3]d.

Case 3. 2d − 1 ≤ q ≤ 3d − 2.
In this case, by the definition of S2, Bob selects a vertex of Kt and labels it by d−1 at the second step. Since after the second

step, two vertices of Kt are labeled and all the numbers in {0, 1, . . . , q + d − 1} cannot be used to label the other vertices
of Kt , and q + d − 1 ≤ 4d − 3, this case is the same as Case 1, since we may imagine that at the first step, Alice chooses a
vertex of Kt and labels it with a number q′

= q − 2d + 1. Hence, by Case 1, the smallest number needed to complete this
game in this case is at least (4d − 1)

 t−3
3


+ [(t − 1) mod 3]d.

Case 4. q ≥ 3d − 1.
In this case, let β = max{k : Cp

2 (2k) = (v; (k−1)(2d−1)+d−1), v is a vertex of Kt}. Clearly, β < t . By the definition of
S2, there exists a ≤ β +1, such that Cp

1 (2a−1) = (v; α),where v is a vertex of Kt and β(2d−1) ≤ α ≤ (β +1)(2d−1)−1.
Let c = max{2a − 1, 2β}:

θ =


0, if β(2d − 1) ≤ α ≤ β(2d − 1) + d − 1,
1, if β(2d − 1) + d ≤ α ≤ (β + 1)(2d − 1) − 1,

b =


a, if a ≤ β,
a − 1, if a = β + 1,

and let

j∗ =


j, if 1 ≤ j ≤ min{2a − 1, 2b} − 1,
j − 2, if j ≥ max{2a − 1, 2b} + 1,

for all j ≥ 1, j ∉ {2a − 1, 2b}. Note that by the definition of θ , no numbers less than α can be used to label the unlabeled
vertices of Kt after the cth stepwhen θ = 0, andwhen θ = 1, the numbers less thanα that can be used to label the unlabeled
vertices of Kt after the cth step belong to {β(2d − 1), β(2d − 1) + 1, . . . , α − d}. Also note that by the definition of b, Bob
chooses a vertex of Kt and labels it by (b− 1)(2d− 1)+ d− 1 at the (2b)th step, where 2b = 2a if a ≤ β , and 2b = 2a− 2 if
a = β+1.Hence in this case, after the cth step, we can imagine that this is just the (d, 1)-game played on Kt−2−θ ∪(r+θ)K1,
with Alice plays first (by ignoring the (2a − 1)th step made by Alice and the (2b)th step made by Bob). More precisely, if
Cp
i (j) = (v; l) for some unlabeled vertex v of Kt and some l, l ≤ (b − 2)(2d − 1) + d − 1, then we can imagine that on the
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(d, 1)-gameplayed onKt−2−θ ∪(r+θ)K1, player i chooses a vertex v ofKt−2−θ and labels it by l at the j∗th step. If Cp
i (j) = (v; l)

for some unlabeled vertex v of Kt and some l, b(2d − 1) + d − 1 ≤ l ≤ (β − 1)(2d − 1) + d − 1, then we can imagine that
on the (d, 1)-game played on Kt−2−θ ∪ (r + θ)K1, player i chooses a vertex v of Kt−2−θ and labels it by l − 2d + 1 at the j∗th
step. If Cp

i (j) = (v; l) for some unlabeled vertex v of Kt and some l, l ≥ α + d, then we can imagine that on the (d, 1)-game
played on Kt−2−θ ∪ (r + θ)K1, player i chooses a vertex v of Kt−2−θ and labels it by l− [α − (β − 1)(2d− 1) + d] at the j∗th
step. And if Cp

i (j) = (v; l) for some j ≥ 3, where v is an unlabeled vertex of Kt and β(2d − 1) ≤ l ≤ α − d (when θ = 1), or
v is a vertex of rK1, then we can imagine that on the (d, 1)-game played on Kt−2−θ ∪ (r + θ)K1, player i chooses an isolated
vertex v of (r + θ)K1 and labels it by 0 at the j∗th step. Since λ̃d

1(2,S2)
(Kt−2 ∪ rK1) ≥ (4d − 1)

 t−2
3


− 4d + 1 + [t mod 3]d

and λ̃d
1(2,S2)

(Kt−3 ∪ (r + 1)K1) ≥ (4d − 1)
 t−3

3


− 4d + 1 + [(t − 1) mod 3]d, when θ = 0, we have

λ̃d
1(2,S2)

(Kt−2 ∪ rK1) + [α − (β − 1)(2d − 1) + d]

≥ (4d − 1)

t − 2
3


− 4d + 1 + [t mod 3]d + [α − (β − 1)(2d − 1) + d]

= (4d − 1)

t − 2
3


+ [t mod 3]d + [α − (β − 1)(2d − 1) − 3d + 1]

≥ (4d − 1)

t − 3
3


+ [(t − 1) mod 3]d,

and when θ = 1, we have

λ̃d
1(2,S2)

(Kt−3 ∪ (r + 1)K1) + [α − (β − 1)(2d − 1) + d]

≥ (4d − 1)

t − 3
3


− 4d + 1 + [(t − 1) mod 3]d + [α − (β − 1)(2d − 1) + d]

= (4d − 1)

t − 3
3


+ [(t − 1) mod 3]d + [α − (β − 1)(2d − 1) − 3d + 1]

≥ (4d − 1)

t − 3
3


+ [(t − 1) mod 3]d.

Thus the smallest number needed to complete this game in this case is at least (4d − 1)
 t−3

3


+ [(t − 1) mod 3]d.

Since for all cases, the smallest number needed to complete this game is at least (4d − 1)
 t−3

3


+ [(t − 1) mod 3]d,

λ̃d
1(2,S2)

(Kt ∪ rK1) ≥ (4d − 1)
 t−3

3


+ [(t − 1) mod 3]d. �

Claim 4. λ̃d
2(1,S1)

[Kt ∪ rK1] ≤ (4d − 1)
 t−1

3


− 2d + [(t − 2) mod 3]d.

Proof of Claim 4. Let p = λ̃d
2(1,S1)

(Kt ∪ rK1). If at the first step, Bob chooses an isolated vertex of rK1 and labels it by q, then
we can imagine that this is just the (d, 1)-game played on Kt ∪ (r −1)K1, with Alice plays first. Thus by Claim 1 and its proof,
the smallest number needed to complete this game in this case is no more than (4d − 1)

 t−1
3


− 2d + [(t − 2) mod 3]d

and we are done. So, assume that at the first step, Bob chooses a vertex of Kt and labels it by q. Consider the following cases:
Case 1. q ≤ d − 1.

In this case, after the first step, we can imagine that this is just the (d, 1)-game played on Kt−1 ∪ rK1, with Alice plays
first. More precisely, if Cp

i (j) = (v; l) for some j ≥ 2, l ≥ q + d, and some unlabeled vertex v in Kt , then we can imagine
that on the (d, 1)-game played on Kt−1 ∪ rK1, player i chooses a vertex v of Kt−1 and labels it by l − q − d at the (j − 1)th
step. And if Cp

i (j) = (v; l) for some j ≥ 2 and some unlabeled vertex v in rK1, then we can imagine that on the (d, 1)-game
played on Kt−1 ∪ rK1, player i chooses an isolated vertex v of rK1 and labels it by 0 at the (j − 1)th step. Since λ̃d

1(1,S1)
(Kt−1 ∪

rK1) ≤ (4d − 1)
 t−1

3


− 4d + 1 + [(t − 2) mod 3]d, we have

λ̃d
1(1,S1)

(Kt−1 ∪ rK1) + (q + d) ≤ (4d − 1)

t − 1
3


− 4d + 1 + [(t − 2) mod 3]d + (q + d)

= (4d − 1)

t − 1
3


− 2d + [(t − 2) mod 3]d + q − d + 1

≤ (4d − 1)

t − 1
3


− 2d + [(t − 2) mod 3]d,

thus the smallest number needed to complete this game in this case is nomore than (4d−1)
 t−1

3


−2d+[(t−2) mod 3]d.
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Case 2. d ≤ q ≤ 2d − 1.
In this case, after the first step, we can imagine that this is just the (d, 1)-game played on Kt−2 ∪ (r + 1)K1, with Alice

plays first. More precisely, if Cp
i (j) = (v; l) for some j ≥ 2, l ≥ q+d, and some unlabeled vertex v in Kt , thenwe can imagine

that on the (d, 1)-game played on Kt−2 ∪(r+1)K1, player i chooses a vertex v of Kt−2 and labels it by l−q−d at the (j−1)th
step. If Cp

i (j) = (v; l) for some j ≥ 2, where v is an unlabeled vertex in rK1, or v is an unlabeled vertex in Kt and l ≤ q − d,
then we can imagine that on the (d, 1)-game played on Kt−2 ∪ (r + 1)K1, player i chooses an isolated vertex v of (r + 1)K1

and labels it by 0 at the (j − 1)th step. Since λ̃d
1(1,S1)

(Kt−2 ∪ (r + 1)K1) ≤ (4d − 1)
 t−2

3


− 4d + 1 + [t mod 3]d, we have

λ̃d
1(1,S1)

(Kt−2 ∪ (r + 1)K1) + (q + d) ≤ (4d − 1)

t − 2
3


− 4d + 1 + [t mod 3]d + (q + d)

= (4d − 1)

t − 2
3


− 2d + [t mod 3]d + q − d + 1

≤ (4d − 1)

t − 1
3


− 2d + [(t − 2) mod 3]d,

thus the smallest number needed to complete this game in this case is nomore than (4d−1)
 t−1

3


−2d+[(t−2) mod 3]d.

Case 3. 2d ≤ q ≤ 3d − 1.
In this case, by the definition of S1, Alice selects a vertex of Kt and labels it by d at the second step. After this step, we can

imagine that this is just the (d, 1)-game played on Kt−3 ∪ (r + 1)K1, with Bob plays first. More precisely, if Cp
i (j) = (v; l)

for some j ≥ 3, l ≥ q + d, and some unlabeled vertex v in Kt , then we can imagine that on the (d, 1)-game played on
Kt−3 ∪ (r + 1)K1, player i chooses a vertex v of Kt−3 and labels it by l − q − d at the (j − 2)th step. And if Cp

i (j) = (v; l)
for some j ≥ 3, where v is an unlabeled vertex of Kt and l = 0, or v is an unlabeled vertex of rK1, then we can imagine that
on the (d, 1)-game played on Kt−3 ∪ (r + 1)K1, player i chooses an isolated vertex v of (r + 1)K1 and labels it by 0 at the
(j − 2)th step. Since λ̃d

2(1,S1)
(Kt−3 ∪ (r + 1)K1) ≤ (4d − 1)

 t−1
3


− 6d + 1 + [(t − 2) mod 3]d, we have

λ̃d
2(1,S1)

(Kt−3 ∪ (r + 1)K1) + (q + d) ≤ (4d − 1)

t − 1
3


− 6d + 1 + [(t − 2) mod 3]d + (q + d)

= (4d − 1)

t − 1
3


− 2d + [(t − 2) mod 3]d + q − 3d + 1

≤ (4d − 1)

t − 1
3


− 2d + [(t − 2) mod 3]d,

thus the smallest number needed to complete this game in this case is nomore than (4d−1)
 t−1

3


−2d+[(t−2) mod 3]d.

Case 4. q ≥ 3d.
In this case, let β = max{k : Cp

1 (2k) = (v; (2k − 1)d), v is a vertex of Kt}. Clearly, β < t . By the definition of S1,
there exists b ≤ β + 1, such that Cp

2 (2b − 1) = (v; α), where v is a vertex of Kt and 2βd ≤ α ≤ (2β + 2)d − 1. Let
c = max{2b − 1, 2β},

θ =


0, if 2βd ≤ α ≤ (2β + 1)d − 1,
1, if (2β + 1)d ≤ α ≤ (2β + 2)d − 1,

a =


b, if b ≤ β,
b − 1, if b = β + 1.

And let

j∗ =


j, if 1 ≤ j ≤ min{2a, 2b − 1} − 1,
j − 2, if j ≥ max{2a, 2b − 1} + 1

for all j ≥ 1, j ∉ {2a, 2b − 1}. Note that by the definition of θ , no numbers between (2β − 1)d and α can be used to label
the unlabeled vertices of Kt after the cth step when θ = 0, and when θ = 1, the numbers between (2β − 1)d and α that
can be used to label the unlabeled vertices of Kt after the cth step belong to {2βd, 2βd + 1, . . . , α − d}. Also note that
by the definition of a, Alice chooses a vertex of Kt and labels it by (2a − 1)d at the (2a)th step, where 2a = 2b if a ≤ β ,
and 2a = 2b − 2 if b = β + 1. Hence in this case, after the cth step, we can imagine that this is just the (d, 1)-game
played on Kt−3−θ ∪ (r + 1 + θ)K1, with Bob plays first (by ignoring the (2b − 1)th step made by Bob and the (2a)th step
made by Alice, and if Cp

i (j) = (v; (2a − 2)d) for some unlabeled vertex v of Kt , imagine that on the (d, 1)-game played on
Kt−3−θ ∪(r+1+θ)K1, player i chooses an isolated vertex v of (r+1+θ)K1 and labels it by 0 at the j∗th step). More precisely,
if Cp

i (j) = (v; l) for some unlabeled vertex v of Kt and some l, l ≤ (2a − 3)d, then we can imagine that on the (d, 1)-game
played on Kt−3−θ ∪ (r + 1 + θ)K1, player i chooses a vertex v of Kt−3−θ and labels it by l at the j∗th step. If Cp

i (j) = (v; l) for
some unlabeled vertex v of Kt and some l, 2ad ≤ l ≤ (2β − 1)d, then we can imagine that on the (d, 1)-game played on
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Kt−3−θ ∪ (r + 1 + θ)K1, player i choose a vertex v of Kt−3−θ and labels it by l − 2d at the j∗th step. If Cp
i (j) = (v; l) for some

unlabeled vertex v of Kt and some l, l ≥ α+d, thenwe can imagine that on the (d, 1)-game played on Kt−3−θ ∪(r+1+θ)K1,
player i chooses a vertex v of Kt−3−θ and labels it by l−[α − (2β − 3)d] at the j∗th step. And if Cp

i (j) = (v; l) for some j ≥ 3,
where v is an unlabeled vertex of Kt and l = (2a − 2)d, or 2βd ≤ l ≤ α − d (when θ = 1), or v is a vertex of rK1, then we
can imagine that on the (d, 1)-game played on Kt−3−θ ∪ (r + 1+ θ)K1, player i chooses an isolated vertex v of (r + 1+ θ)K1

and labels it by 0 at the j∗th step. Since λ̃d
2(1,S1)

(Kt−3 ∪ (r + 1)K1) ≤ (4d − 1)
 t−1

3


− 6d + 1 + [(t − 2) mod 3]d and

λ̃d
2(1,S1)

(Kt−4 ∪ (r + 2)K1) ≤ (4d − 1)
 t−2

3


− 6d + 1 + [t mod 3]d, when θ = 0, we have

λ̃d
2(1,S1)

(Kt−3 ∪ (r + 1)K1) + [α − (2β − 3)d] ≤ (4d − 1)

t − 1
3


− 6d + 1

+ [(t − 2) mod 3]d + [α − (2β − 3)d]

≤ (4d − 1)

t − 1
3


− 2d + [(t − 2) mod 3]d,

and when θ = 1, we have

λ̃d
2(1,S1)

(Kt−4 ∪ (r + 2)K1) + [α − (2β − 3)d] ≤ (4d − 1)

t − 2
3


− 6d + 1 + [t mod 3]d + [α − (2β − 3)d]

≤ (4d − 1)

t − 2
3


+ [t mod 3]d − d

≤ (4d − 1)

t − 1
3


− 2d + [(t − 2) mod 3]d.

Thus the smallest number needed to complete this game in this case is nomore than (4d−1)
 t−1

3


−2d+[(t−2) mod 3]d.

Since for all cases, the smallest number needed to complete this game is no more than (4d − 1)
 t−1

3


− 2d + [(t −

2) mod 3]d, λ̃d
2(1,S1)

(Kt ∪ rK1) ≤ (4d − 1)
 t−1

3


− 2d + [(t − 2) mod 3]d. �

By Claims 1 and 3, we have λ̃d
1(1,S1)

(Kt ∪ rK1) ≤ (4d − 1)
 t−3

3


+ [(t − 1) mod 3]d ≤ λ̃d

1(2,S2)
(Kt ∪ rK1). Similarly, by

Claims 2 and 4, we have λ̃d
2(1,S1)

(Kt ∪ rK1) ≤ (4d−1)
 t−1

3


−2d+[(t −2) mod 3]d ≤ λ̃d

2(2,S2)
(Kt ∪ rK1). Thus the conclusion

also holds for n = t . By the principle of mathematical induction, λ̃d
1(1,S1)

(Kn ∪ rK1) ≤ (4d − 1)
 n−3

3


+ [(n − 1) mod 3]d ≤

λ̃d
1(2,S2)

(Kn ∪ rK1) and λ̃d
2(1,S1)

(Kn ∪ rK1) ≤ (4d − 1)
 n−1

3


− 2d + [(n − 2) mod 3]d ≤ λ̃d

2(2,S2)
(Kn ∪ rK1) for all n ≥ 1, r ≥ 0.

Therefore, λ̃d
1(Kn ∪ rK1) = (4d− 1)

 n−3
3


+[(n− 1) mod 3]d and λ̃d

2(Kn ∪ rK1) = (4d− 1)
 n−1

3


− 2d+[(n− 2) mod 3]d

for all n ≥ 1, r ≥ 0. �

By setting d = 2 in Theorem 3, we have

Corollary 4. For all n ≥ 1, λ̃2
1(Kn) =

 7n−9
3


and λ̃2

2(Kn) =
 7n−7

3


.

4. Game L(d, 1)-labeling number of complete bipartite graphs

We study the game L(d, 1)-labeling number of complete bipartite graphs in this section. For convenience, when consider
the graph Km,n, we always assume that the partite sets are X0 and X1, where X0 = {u1, u2, . . . , um}, X1 = {v1, v2, . . . , vn},
and E(Km,n) = {uivj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. And for two integersm, n, we use δm,n to denote the number ((m+n) mod 2).

Lemma 5. λ̃d
1(Km,n) ≤ 2d + m + n − 2 − δm,n for all d,m, n, d ≥ m ≥ n ≥ 2.

Proof. Let p = 2d + m + n − 2 − δm,n. For an integer l in A0 ∪ A1 ∪ B0 ∪ B1, where A0 = {d, d + 1, . . . , d + n − 2}, A1 =

{p − n + 2, p − n + 3, . . . , p}, B0 = {p − d − n + 2, p − d − n + 3, . . . , p − d}, B1 = {0, 1, . . . , n − 2}, let

l∗ =


l + d + m − δm,n, if l ∈ A0 ∪ B1,
l − d − m + δm,n, if l ∈ A1 ∪ B0.

Consider the following strategy S made by Alice. At the first step, set α = β = 0, and label u1 with the number d+
m+n−2

2


.

For all j ≥ 1, if Cp
2 (2j) = (v; l), and there is still some vertices unlabeled, then Alice decides how to move at the (2j + 1)th

step according to the following rules:
Rule 1. If α = 0, v ∈ X0, and d + n − 1 ≤ l ≤ p − d − n + 1, then choose an unlabeled vertex in X0 and label it by p − l.
Rule 2. If α = 0, v ∈ X0, and l ≤ d − 1 or l ≥ p − d + 1, then choose an unlabeled vertex in X1 and label it by l′, where
l′ = p − n + 1 if l ≤ d − 1 and l′ = n − 1 if l ≥ p − d + 1, and set α = 1.
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Rule 3. If α = 0, v ∈ X1, and n − 1 ≤ l ≤
m+n−2

2


or 2d +

m+n−2
2


≤ l ≤ p − n + 1, then choose an unlabeled vertex in

X0 and label it by l′, where l′ = p − d + 1 if n − 1 ≤ l ≤
m+n−2

2


and l′ = d − 1 if 2d +

m+n−2
2


≤ l ≤ p − n + 1, and set

α = 1.

Rule 4. If α = 0, v ∈ Xi, l ∈ Ai ∪ Bi, then choose an unlabeled vertex in X1−i and label it by l∗, and increases β by 1. After this,
set α = 1 if β = n.

Rule 5. If α = 1, choose an unlabeled vertex w in X0 ∪ X1 and label it with an arbitrary number l′ in PCp(2j; w) if
PCp(2j; w) ≠ ∅.

To prove this lemma, we only need to show that Alice can complete the (d, 1)-game played on Km,n with the number
p by using the strategy S given above. By the definition of S, if α = 0 after the jth step, then at least one of the numbers
n − 1, p − n + 1 is in PCp(j; v) for each unlabeled vertex v in X1, and at least one of the numbers d − 1, p − d + 1 is in
PCp(j; v) for each unlabeled vertex v in X0. Thus PCp(j; v) ≠ ∅ for all unlabeled vertices if α = 0 after the jth step. Hence
we only need to show that if α = 0 at the j∗th step, and α = 1 after the (j∗ + 1)th step, then PCp(j; v) ≠ ∅ for all unlabeled
vertices and all j, j ≥ j∗ + 1. Consider the following cases:

Case 1. Cp
2 (j

∗) = (v; l), where v ∈ X0, and l ≤ d − 1 or l ≥ p − d + 1.
We only consider that l ≤ d− 1, the case that l ≥ p− d+ 1 is similar. Note that in this case, if Cp

i (j1) = (w1; l1) for some
w1 ∈ X0 and j1 < j∗, then l1 ≤ p−d−n+1. And if Cp

i (j2) = (w2; l2) for somew2 ∈ X1 and j2 < j∗, then l2 ≥ 2d+
m+n−2

2


.

Since at the (j∗ + 1)th step, Alice chooses an unlabeled vertex in X1 and labels it by p− n+ 1, after this step, all the numbers
inD1 = {p−n+1, p−n+2, . . . , p} that are not used can be used to label the unlabeled vertices in X1, and all the numbers in
D2 =


0, 1, . . . , d +

m+n−2
2


that are not used can be used to label the unlabeled vertices in X0. Therefore, since |D1| ≥ n

and |D2| ≥ m, Alice can complete the (d, 1)-game played on Km,n with the number p in this case.

Case 2. Cp
2 (j

∗) = (v; l), where v ∈ X1, and n − 1 ≤ l ≤
m+n−2

2


or 2d +

m+n−2
2


≤ l ≤ p − n + 1.

We only consider that n − 1 ≤ l ≤
m+n−2

2


, the case that 2d +

m+n−2
2


≤ l ≤ p − n + 1 is similar. Note that in this

case, if Cp
i (j1) = (w1; l1) for some w1 ∈ X0 and j1 < j∗, then l1 ≥ d + l. Hence if Cp

i (j2) = (w2; l2) for some w2 ∈ X1 and
j2 < j∗, then l2 ≤ n − 2. Since at the (j∗ + 1)th step, Alice chooses an unlabeled vertex in X0 and labels it by p − d + 1, after
this step, all the numbers in D1 = {0, 1, . . . , l} that are not used can be used to label the unlabeled vertices in X1, and all the
numbers in D2 =


d +

m+n−2
2


, d +

m+n−2
2


+ 1, . . . , p


that are not used can be used to label the unlabeled vertices in

X0. Therefore, since |D1| ≥ n and |D2| ≥ m, Alice can complete the (d, 1)-game played on Km,n with the number p in this
case.

Case 3. β = n − 1 at the j∗th step and Cp
2 (j

∗) = (v; l), where v ∈ Xi, l ∈ Ai ∪ Bi.

In this case, by the definition of S, at the (j∗ + 1)th step, Alice chooses an unlabeled vertex in X1−i and labels it by l∗.
Note that after this step, all the vertices in X1 are labeled properly (since β increase by 1 after the jth step only if one of the
vertices in X1 is labeled at the jth step or at the (j − 1)th step). Let

a = min{l : Cp
i (j) = (v; l), v ∈ X0 and j ≤ j∗ + 1}.

Since |B0| ≤ n − 1, d ≤ a ≤ d + n − 2. By the definition of S and a, all the numbers in
2d +

m+n−2
2


, 2d +

m+n−2
2


+ 1, . . . , p


that are used to label some vertex in X1 are greater than or equal to a + d +

m− δm,n, and all the numbers in

0, 1, . . . ,

m+n−2
2


that are used to label some vertex in X1 are less than or equal to a−d.

Hence after the (j∗ + 1)th step, all the numbers in D = {a, a + 1, . . . , a + m − δm,n} that are not used can be used to label
the unlabeled vertices in X0. Therefore, since |D| ≥ m, Alice can complete the (d, 1)-game played on Km,n with the number
p in this case.

From the cases above, λ̃d
1(1,S)

(Km,n) = p ≤ 2d+m+n−2− δm,n, hence λ̃d
1(Km,n) ≤ λ̃d

1(1,S)
(Km,n) = 2d+m+n−2− δm,n

for all d,m, n, d ≥ m ≥ n ≥ 2. �

Lemma 6. λ̃d
1(Km,n) ≥ 2d + m − 1 − δm,n for all d,m, n, d ≥ m ≥ n ≥ 2.

Proof. Suppose, to the contrary, λ̃d
1(Km,n) ≤ 2d + m − 2 − δm,n. Let λ̃d

1(Km,n) = p. Since λd(Km,n) = d + m + n − 1, by
Lemma 1, we have p ≥ d+m+ n− 1. Let D = {0, 1, . . . , p}. If Cp

1 (1) = (v; l), where v ∈ X1, then Bob chooses an unlabeled
vertex in X1 and labels it by l′, where l′ = d if l ≤ d − 1, and l′ = d − 1 if l ≥ d. In this case, after the second step, at least
2d numbers in D cannot be used to label the vertices in X0. Since |D| − 2d ≤ m − 1 < |X0|, the (d, 1)-game played on Km,n
cannot be completed in this case.

If Cp
1 (1) = (v; l), where v ∈ X0, then Bob chooses an unlabeled vertex in X0 and labels it by l′, where l′ = d + m − 1 if

l ≤ d+n−2, and l′ = d−1 if l ≥ d+n−1. It is easy to verify that in this case, after the second step, at most n−1 numbers
can be used to label the vertices in X1. Thus the (d, 1)-game played on Km,n also cannot be completed in this case.

From the argument above, λ̃d
1(Km,n) = p ≥ 2d + m − 1 − δm,n for all d,m, n, d ≥ m ≥ n ≥ 2. �

Theorem 7. λ̃d
1(Km,n) = 2d + m + n − 2 − δm,n for all d,m, n, d ≥ m ≥ n ≥ 2.
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Proof. λ̃d
1(Km,n) ≤ 2d + m + n − 2 − δm,n follows from Lemma 5, hence we only need to show that for any positive integer

p ≤ 2d+m+n−3−δm,n, Bob has a strategy to force the (d, 1)-game played on Km,n cannot be completed by using numbers
in {0, 1, . . . , p}. By Lemma 6, we may assume that p ≥ 2d + m − 1 − δm,n. Consider the following strategy S made by Bob.
Set α = 0. For all j ≥ 1, if Cp

1 (2j − 1) = (v; l), and there is still some vertices unlabeled, then Bob decides how to move at
the (2j)th step according to the following rules:
Rule 1. If α = 0, v ∈ X0, and l ∈ A = {d + n − 1, d + n, . . . , d + m − 2 − δm,n}, then choose an unlabeled vertex in X0 and
label it by 2d + m + n − 3 − δm,n − l.
Rule 2. If α = 0, v ∈ X0, and l ≤ d + n − 2 or l ≥ d + m − 1 − δm,n, then choose an unlabeled vertex in X0 and label it by l′,
where l′ = d + m + n − 2 if l ≤ d + n − 2 and l′ = d − 1 if l ≥ d + m − 1 − δm,n, and set α = 1.

Rule 3. If α = 0, v ∈ X1, then choose an unlabeled vertex in X1 and label it by l′, where l′ = 2d + m − 2 − δm,n if l ≤
 p

2


and l′ = n − 1 if l ≥

 p
2


+ 1, and set α = 1.

Rule 4. If α = 1, choose an unlabeled vertex w in X0 ∪ X1 and label it with an arbitrary number l′ in PCp(2j − 1; w) if
PCp(2j − 1; w) ≠ ∅.

By the definition of S, if α = 0 after the jth step, then at least one of the numbers d − 1, d + m + n − 2 is in PCp(j; v)
for each unlabeled vertex v in X0, and at least one of the numbers 0, p is in PCp(j; v) for each unlabeled vertex v in X1. Thus
PCp(j; v) ≠ ∅ for all unlabeled vertices if α = 0 after the jth step. Since |A| = m − n − δm,n < m, there exists j∗, such that
α = 0 at the j∗th step, and α = 1 after the (j∗ + 1)th step. Consider the following cases:
Case 1. Cp

1 (j
∗) = (v; l), where v ∈ X0, and l ≤ d + n − 2 or l ≥ d + m − 1 − δm,n.

In this case, if l ≤ d + n − 2, then Bob chooses an unlabeled vertex in X0 and labels it by d + m + n − 2 at the (j∗ + 1)th
step. And if l ≥ d + m − 1 − δm,n, then Bob chooses an unlabeled vertex in X0 and labels it by d − 1 at the (j∗ + 1)th step.
Since p ≤ 2d + m + n − 3 − δm,n, after the (j∗ + 1)th step, at most n − 1 numbers can be used to label the vertices in X1.
Thus the (d, 1)-game played on Km,n cannot be completed in this case.
Case 2. Cp

1 (j
∗) = (v; l), where v ∈ X1.

In this case, if l ≤
 p

2


, then Bob chooses an unlabeled vertex in X1 and labels it by 2d + m − 2 − δm,n at the (j∗ + 1)th

step. And if l ≥
 p

2


+ 1, then Bob chooses an unlabeled vertex in X1 and labels it by n − 1 at the (j∗ + 1)th step. Since

p ≤ 2d + m + n − 3 − δm,n, after the (j∗ + 1)th step, at most m − 1 numbers can be used to label the vertices in X0. Thus
the (d, 1)-game played on Km,n also cannot be completed in this case.

From the argument above, when p ≤ 2d + m + n − 3 − δm,n, Bob has a strategy to force the (d, 1)-game played
on Km,n cannot be completed by using numbers in {0, 1, . . . , p}. Hence λ̃d

1(Km,n) ≥ 2d + m + n − 2 − δm,n, and so
λ̃d
1(Km,n) = 2d + m + n − 2 − δm,n for all d,m, n, d ≥ m ≥ n ≥ 2. �
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