The game $L(d, 1)$-labeling problem of graphs

Ma-Lian Chia ${ }^{\text {a }}$, Huei-Ni Hsu ${ }^{\text {a,b,c }}$, David Kuo ${ }^{\text {b,* }}$, Sheng-Chyang Liaw ${ }^{\text {c }}$, Zi-teng Xu ${ }^{\text {a,b,c }}$
${ }^{\text {a }}$ Department of Applied Mathematics, Aletheia University, Tamsui 251, Taiwan
${ }^{\text {b }}$ Department of Applied Mathematics, National Dong Hwa University, Hualien 97401, Taiwan
${ }^{\text {c }}$ Department of Mathematics, National Central University, Jhongli 32001, Taiwan

ARTICLE INFO

Article history:

Received 16 August 2011
Received in revised form 7 June 2012
Accepted 2 July 2012
Available online 24 July 2012

Keywords:

Game $L(d, 1)$-labeling
Complete graphs
Complete bipartite graphs

Abstract

Let G be a graph and let k be a positive integer. Consider the following two-person game which is played on G : Alice and Bob alternate turns. A move consists of selecting an unlabeled vertex v of G and assigning it a number a from $\{0,1,2, \ldots, k\}$ satisfying the condition that, for all $u \in V(G), u$ is labeled by the number b previously, if $d(u, v)=1$, then $|a-b| \geq d$, and if $d(u, v)=2$, then $|a-b| \geq 1$. Alice wins if all the vertices of G are successfully labeled. Bob wins if an impasse is reached before all vertices in the graph are labeled. The game $L(d, 1)$-labeling number of a graph G is the least k for which Alice has a winning strategy. We use $\tilde{\lambda}_{1}^{d}(G)$ to denote the game $L(d, 1)$-labeling number of G in the game Alice plays first, and use $\tilde{\lambda}_{2}^{d}(G)$ to denote the game $L(d, 1)$-labeling number of G in the game Bob plays first. In this paper, we study the game $L(d, 1)$-labeling numbers of graphs. We give formulas for $\tilde{\lambda}_{1}^{d}\left(K_{n}\right)$ and $\tilde{\lambda}_{2}^{d}\left(K_{n}\right)$, and give formulas for $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right)$ for those d with $d \geq \max \{m, n\}$.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph and let X be a set of colors. Consider the following two-person game which is played on G : Alice (player 1) and Bob (player 2) alternate turns. A move consists of selecting a previously uncolored vertex v of G and assigning it a color from the color set X distinct from the color assigned previously (by either player) to neighbors of v. If after $n=|V(G)|$ moves, the graph G is colored, Alice is the winner. Bob wins if an impasse is reached before all nodes in the graph are colored, i.e., for every uncolored vertex v and every color α from X, v is adjacent to a vertex having color α. The game chromatic number of G is the least cardinality of a color set X for which Alice has a wining strategy. We use $\chi_{g}^{1}(G)$ to denote the game chromatic number of G in the game Alice plays first, and use $\chi_{g}^{2}(G)$ to denote the game chromatic number of G in the game Bob plays first. Bodlaender [1] first introduced this problem and studied its computational complexity. Faigle et al. [4] showed that the game chromatic number of the class of forests is 4 . Kierstead and Trotter [10] showed that the game chromatic number of the class of planar graphs is between 7 and 33. This upper bound was improved by Dinski and Zhu in [3] to 30, then reduced to 19 in [13], and further reduced to 18 in [9]. It was shown in [10] that outerplanar graphs have game chromatic number at most 8 , and this upper bound is reduced to 7 in [7].

Given a graph G and nonnegative integers p, q with $p \geq q$, an $L(p, q)$-labeling of G is a function f from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f(u)-f(v)| \geq p$ if $d(u, v)=1$ and $|f(u)-f(v)| \geq q$ if $d(u, v)=2$. For a nonnegative integer k, a $k-L(p, q)$-labeling is an $L(p, q)$-labeling such that no label is greater than k. The $L(p, q)$-labeling number of G, denoted by $\lambda_{p, q}(G)$, is the smallest number k such that G has a $k-L(p, q)$-labeling (when $q=1$, we use $\lambda_{p}(G)$

[^0]0012-365X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2012.07.002
to replace $\lambda_{p, q}(G)$ in short). This problem came from the frequency assignment problem introduced by Hale [8] and was first proposed by Griggs and Yeh [6] and Roberts [11]. Griggs and Yeh [6] showed that the $L(2,1)$-labeling problem is NP-complete for general graphs and proved that $\lambda_{2}(G) \leqslant \Delta^{2}(G)+2 \Delta(G)$. Chang and Kuo [2] gave a polynomial-time algorithm for the $L(2,1)$-labeling problem on trees. Gonçalves [5] proved that $\lambda_{2}(G) \leqslant \Delta^{2}(G)+\Delta(G)-2$ for any graph G with $\Delta(G) \geq 2$. There are also many other results surrounding this topic; for a recent survey see [12] and the references therein.

We consider a new labeling game which comes from the $L(p, q)$-labeling problem and can be viewed as a generalization of the game coloring problem. Given a graph G and integers k, p, q with $k \geq 0$ and $p>q \geq 0$. Consider the following two-person game which is played on G: Alice (player 1) and Bob (player 2) alternate turns. A move consisting of selecting a previously unlabeled vertex v of G and assigning it a number a from $\{0,1,2, \ldots, k\}$ satisfying the condition that, for all $u \in V(G)$, if u is labeled by the number b previously, then $|a-b| \geq p$ if $d(u, v)=1$, and $|a-b| \geq q$ if $d(u, v)=2$. Alice wins if all the vertices of G are successfully labeled. Bob wins if an impasse is reached before all vertices in the graph are labeled. The game $L(p, q)$-labeling number of a graph G is the least k for which Alice has a winning strategy. We use $\tilde{\lambda}_{1}^{p, q}(G)$ to denote the game $L(p, q)$-labeling number of G in the game Alice plays first, and use $\tilde{\lambda}_{2}^{p, q}(G)$ to denote the game $L(p, q)$-labeling number of G in the game Bob plays first. When $q=1$, we use $\tilde{\lambda}_{1}^{p}(G)\left(\operatorname{resp} . \tilde{\lambda}_{2}^{p}(G)\right)$ to replace $\tilde{\lambda}_{1}^{p, q}(G)\left(\right.$ resp. $\left.\tilde{\lambda}_{2}^{p, q}(G)\right)$ for short. Note that from the definition, $\chi_{g}^{1}(G)=\tilde{\lambda}_{1}^{1,0}(G)$ and $\chi_{g}^{2}(G)=\tilde{\lambda}_{2}^{1,0}(G)$.

We study the game $L(d, 1)$-labeling number of graphs in this paper. We give formulas for $\tilde{\lambda}_{1}^{d}\left(K_{n}\right)$ and $\tilde{\lambda}_{2}^{d}\left(K_{n}\right)$, and give formulas for $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right)$ for those d with $d \geq \max \{m, n\}$.

2. Preliminary

In this section, we first fix some notation and terminology, and then derive an upper bound for the game $L(d, 1)$-labeling number of graphs. The following lemma is a direct consequence of the definition.

Lemma 1. For any graph $G, \tilde{\lambda}_{1}^{d}(G) \geq \lambda_{d}(G)$ and $\tilde{\lambda}_{2}^{d}(G) \geq \lambda_{d}(G)$.
From now on, for convenience, we use $\tilde{\lambda}_{i_{(j, S)}}^{d}(G)$ to denote the smallest number needed to complete the ($d, 1$)-game on G with player i plays first under a fixed strategy S made by player j. And, to simplify the notations, for a given graph G, we use $C_{i}^{m}(j)=(v ; l)$ to denote that, under the constraint that the numbers can be used is no more than the number m, player i chooses an unlabeled vertex v and labels it by the number l in the j th move, and use $P C^{m}(j ; v)$ to denote the set of numbers in $\{0,1,2, \ldots, m\}$ that can be chosen to label the unlabeled vertex v after the j th move.

From the definitions above, $\tilde{\lambda}_{i}^{d}(G) \leq m$ for $i=1,2$ if player 1 has a strategy so that $P C^{m}(j ; v) \neq \emptyset$ for all $j, 1 \leq j \leq$ $|V(G)|-1$ and all vertices v that are unlabeled after the j th move. And $\tilde{\lambda}_{i}^{d}(G)>m$ for $i=1,2$ if player 2 has a strategy so that $P C^{m}(j ; v)=\emptyset$ for some $j, 1 \leq j \leq|V(G)|-1$ and some vertex v that is unlabeled after the j th move.

Given a graph G and $v \in V(G), S \subseteq V(G)$, we use $N_{i}(v)$ to denote the set $\left\{u: d_{G}(u, v)=i\right\}$, and we let $N_{i}(S)$ to be the set $\bigcup_{v \in S} N_{i}(v)$. And, for $a \in \mathbb{N} \cup\{0\}$, we use the notation $n_{d}(a)$ to denote the set $\{a-d+1, a-d+2, \ldots, a+d-1\} \cap(\mathbb{N} \cup\{0\})$.

Theorem 2. If G is a graph with maximum degree Δ, then $\tilde{\lambda}_{i}^{d}(G) \leq(\Delta+2 d-2) \Delta$ for $i=1,2$ and $d \geq 2$.
Proof. Let $m=(\Delta+2 d-2) \Delta$. Consider the following strategy S made by Alice. At the i th step, if there is a vertex v that is still unlabeled, and $P C^{m}(i-1 ; v) \neq \emptyset$, then Alice chooses a number a in $P C^{m}(i-1 ; v)$ and labels v by a at the i th step. We claim that Alice can complete the ($d, 1$)-game played on G under this strategy.

Let w be an unlabeled vertex after the j th step. Define $A_{k}=\left\{l: C_{i}^{m}\left(j^{\prime}\right)=(v ; l)\right.$ for some $j^{\prime} \leq j$ and $\left.v \in N_{k}(w)\right\}$ for $k=1$, 2 . Then, since $P C^{m}(j ; w)=\{0,1,2, \ldots, m\}-\left(\left(\cup_{l \in A_{1}} n_{d}(l)\right) \cup A_{2}\right),\left|P C^{m}(j ; w)\right| \geq m+1-((2 d-1) \Delta+\Delta(\Delta-1)) \geq 1$. Hence $P C^{m}(j ; w) \neq \emptyset$. Since $P C^{m}(j ; v) \neq \emptyset$ for all $j, 1 \leq j \leq|V(G)|-1$ and all vertices v that are unlabeled after the j th move, $\tilde{\lambda}_{i_{(1, S)}}^{d}(G) \leq m=(\Delta+2 d-2) \Delta$. Thus $\tilde{\lambda}_{i}^{d}(G) \leq \overline{\tilde{\lambda}}_{i_{(1, S)}}^{d}(G) \leq(\Delta+2 d-2) \Delta$ for $i=1,2$ and $d \geq 2$.

3. Game $L(d, 1)$-labeling number of complete graphs

We study the game $L(d, 1)$-labeling number of complete graphs in this section.
Theorem 3. For all $n \geq 1, r \geq 0, \tilde{\lambda}_{1}^{d}\left(K_{n} \cup r K_{1}\right)=(4 d-1)\left\lceil\frac{n-3}{3}\right\rceil+[(n-1) \bmod 3] d$ and $\tilde{\lambda}_{2}^{d}\left(K_{n} \cup r K_{1}\right)=(4 d-1)\left\lceil\frac{n-1}{3}\right\rceil-$ $2 d+[(n-2) \bmod 3] d$.

Proof. Let m be the largest number that can be used in the ($d, 1$)-game on $K_{n} \cup r K_{1}$. Consider the following strategy made by Alice. At the i th step, if there is a vertex v of K_{n} that is still unlabeled, and there exists a number $l, d \leq l \leq m$, such that $\{l-d, l-d+1, \ldots, l\} \subseteq P C^{m}(i-1 ; v)$, then Alice labels v with the number j, where $j=\min \{l: d \leq l \leq$ $\left.m,\{l-d, l-d+1, \ldots, l\} \subseteq P C^{m}(i-1 ; v)\right\}$. If no such number exists, and $P C^{m}(i-1 ; v) \neq \emptyset$, then Alice chooses an arbitrary number j in $P C^{m}(i-1 ; v)$ and labels v with the number j. And if all the vertices of K_{n} are labeled, choose an
unlabeled vertex of $r K_{1}$ and label it with 0 . We use S_{1} to denote this strategy. For Bob, consider the following strategy made by Bob. At the i th step, if there is a vertex v of K_{n} that is still unlabeled, and there exists a number $l, d-1 \leq l \leq m$, such that $\{l-d+1, l-d+2, \ldots, l\} \subseteq P C^{m}(i-1 ; v)$, then Bob labels v with the number j, where $j=\min \{l: d-1 \leq l \leq$ $\left.m,\{l-d+1, l-d+2, \ldots, l\} \subseteq P C^{m}(i-1 ; v)\right\}$. If no such number exists, and $P C^{m}(i-1 ; v) \neq \emptyset$, then Bob chooses an arbitrary number j in $P C^{m}(i-1 ; v)$ and labels v with the number j. And if all the vertices of K_{n} are labeled, choose an unlabeled vertex of $r K_{1}$ and label it with 0 . We use S_{2} to denote this strategy.

We prove this theorem by proving a stronger statement. For the strategies S_{1} and $S_{2}, \tilde{\lambda}_{1_{\left(1, S_{1}\right)}}\left(K_{n} \cup r K_{1}\right) \leq(4 d-1)\left\lceil\frac{n-3}{3}\right\rceil+$ $[(n-1) \bmod 3] d \leq \tilde{\lambda}_{1_{\left(2, S_{2}\right)}}^{d}\left(K_{n} \cup r K_{1}\right)$ and $\tilde{\lambda}_{2_{\left(1, S_{1}\right)}}^{d}\left(K_{n} \cup r K_{1}\right) \leq(4 d-1)\left\lceil\frac{n-1}{3}\right\rceil-2 d+[(n-2) \bmod 3] d \leq \tilde{\lambda}_{2\left(2, S_{2}\right)}^{d}\left(K_{n} \cup r K_{1}\right)$. To prove this, we use induction on n. The conclusion clearly holds for $n=1,2$. Suppose it holds for all $n, 2 \leq n<t$.

Claim 1. $\tilde{\lambda}_{1_{\left(1, S_{1}\right)}^{d}}^{d}\left(K_{t} \cup r K_{1}\right) \leq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d$.
Proof of Claim 1. Let $p=\tilde{\lambda}_{1_{\left(1, S_{1}\right)}}^{d}\left(K_{t} \cup r K_{1}\right)$. By the definition of S_{1}, Alice first chooses a vertex of K_{t} and labels it by d. After the first step, we can imagine that this is just the ($d, 1$)-game played on $K_{t-2} \cup(r+1) K_{1}$, with Bob plays first. More precisely, if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 2, l \geq 2 d$, and some unlabeled vertex v of K_{t}, then we can imagine that on the ($d, 1$)-game played on $K_{t-2} \cup(r+1) K_{1}$, player i chooses a vertex v of K_{t-2} and labels it by $l-2 d$ at the $(j-1)$ th step. And if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 2$, where v is an unlabeled vertex of K_{t} and $l=0$, or v is an unlabeled vertex of $r K_{1}$, then we can imagine that on the ($d, 1$)-game played on $K_{t-2} \cup(r+1) K_{1}$, player i chooses an isolated vertex v of $(r+1) K_{1}$ and labels it by 0 at the $(j-1)$ th step. Since

$$
\begin{aligned}
\tilde{\lambda}_{\left(1, S_{1}\right)}^{d}\left(K_{t-2} \cup(r+1) K_{1}\right) & \leq(4 d-1)\left\lceil\frac{(t-2)-1}{3}\right\rceil-2 d+[(t-4) \bmod 3] d \\
& =(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil-2 d+[(t-1) \bmod 3] d
\end{aligned}
$$

we have

$$
\tilde{\lambda}_{1_{\left(1, S_{1}\right)}}^{d}\left(K_{t} \cup r K_{1}\right) \leq \tilde{\lambda}_{2_{\left(1, S_{1}\right)}}^{d}\left(K_{t-2} \cup(r+1) K_{1}\right)+2 d=(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d .
$$

Claim 2. $\tilde{\lambda}_{2_{\left(2, S_{2}\right)}}^{d}\left(K_{t} \cup r K_{1}\right) \geq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d$.
Proof of Claim 2. Let $p=\tilde{\lambda}_{2_{\left(2, S_{2}\right)}}^{d}\left(K_{t} \cup r K_{1}\right)$. By the definition of S_{2}, Bob first selects a vertex of K_{t} and labels it by $d-1$. After the first step, we can imagine that this is just the ($d, 1$)-game played on $K_{t-1} \cup r K_{1}$, with Alice plays first. More precisely, if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 2, l \geq 2 d-1$, and some unlabeled vertex v of K_{t}, then we can imagine that on the ($d, 1$)-game played on $K_{t-1} \cup r K_{1}$, player i chooses a vertex v of K_{t-1} and labels it by $l-2 d+1$ at the $(j-1)$ th step. And if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 2$ and some unlabeled vertex v of $r K_{1}$, then we can imagine that on the ($d, 1$)-game played on $K_{t-1} \cup r K_{1}$, player i chooses an isolated vertex v of $r K_{1}$ and labels it by 0 at the $(j-1)$ th step. Since

$$
\begin{aligned}
\tilde{\lambda}_{1_{\left(2, S_{2}\right)}}^{d}\left(K_{t-1} \cup r K_{1}\right) & \geq(4 d-1)\left\lceil\frac{(t-1)-3}{3}\right\rceil+[(t-2) \bmod 3] d \\
& =(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-4 d+1+[(t-2) \bmod 3] d,
\end{aligned}
$$

we have

$$
\tilde{\lambda}_{2_{\left(2, S_{2}\right)}}^{d}\left(K_{t} \cup r K_{1}\right) \geq \tilde{\lambda}_{1_{\left(2, S_{2}\right)}}^{d}\left(K_{t-1} \cup r K_{1}\right)+2 d-1 \geq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d .
$$

Claim 3. $\tilde{\lambda}_{1_{\left(2, S_{2}\right)}}^{d}\left(K_{t} \cup r K_{1}\right) \geq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d$.
Proof of Claim 3. Let $p=\tilde{\lambda}_{1_{\left(2, S_{2}\right)}}^{d}\left(K_{t} \cup r K_{1}\right)$. If at the first step, Alice chooses an isolated vertex of $r K_{1}$ and labels it by q, then we can imagine that this is just the $(d, 1)$-game played on $K_{t} \cup(r-1) K_{1}$, with Bob plays first. Thus by Claim 2 and its proof, the smallest number needed to complete this game in this case is at least $(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1)$ mod 3$] d$ and we are done. So, assume that at the first step, Alice chooses a vertex of K_{t} and labels it by q. Consider the following cases:
Case 1. $q \leq d-1$.
In this case, by the definition of S_{2}, Bob selects a vertex of K_{t} and labels it by $q+2 d-1$ at the second step. After this step, we can imagine that this is just the ($d, 1$)-game played on $K_{t-2} \cup r K_{1}$, with Alice plays first. More precisely, if
$C_{i}^{p}(j)=(v ; l)$ for some $j \geq 3, l \geq q+3 d-1$, and some unlabeled vertex v of K_{t}, then we can imagine that on the ($d, 1$)-game played on $K_{t-2} \cup r K_{1}$, player i chooses a vertex v of K_{t-2} and labels it by $l-q-3 d+1$ at the ($j-2$)th step. And if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 3$ and some unlabeled vertex v of $r K_{1}$, then we can imagine that on the ($d, 1$)-game played on $K_{t-2} \cup r K_{1}$, player i chooses an isolated vertex v of $r K_{1}$ and labels it by 0 at the $(j-2)$ th step. Since $\tilde{\lambda}_{1_{\left(2, S_{2}\right)}^{d}}^{d}\left(K_{t-2} \cup\right.$ $\left.r K_{1}\right) \geq(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil-4 d+1+[t \bmod 3] d$, we have

$$
\begin{aligned}
\tilde{\lambda}_{\left(2, S_{2}\right)}^{d}\left(K_{t-2} \cup r K_{1}\right)+(q+3 d-1) & \geq(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil-4 d+1+[t \bmod 3] d+(q+3 d-1) \\
& =(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil-d+[t \bmod 3] d+q \\
& \geq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d,
\end{aligned}
$$

thus the smallest number needed to complete this game in this case is at least ($4 d-1$) $\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d$.
Case 2. $d \leq q \leq 2 d-2$.
In this case, after the first step, we can imagine that this is just the ($d, 1$)-game played on $K_{t-2} \cup(r+1) K_{1}$, with Bob plays first. More precisely, if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 2, l \geq q+d$, and some unlabeled vertex v in K_{t}, then we can imagine that on the $(d, 1)$-game played on $K_{t-2} \cup(r+1) K_{1}$, player i chooses a vertex v of K_{t-2} and labels it by $l-q-d$ at the $(j-1)$ th step. If $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 2$, where v is an unlabeled vertex of $r K_{1}$, or v is an unlabeled vertex of K_{t} and $l \leq q-d$, then we can imagine that on the (d, 1)-game played on $K_{t-2} \cup(r+1) K_{1}$, player i chooses an isolated vertex v of $(r+1) K_{1}$ and labels it by 0 at the $(j-1)$ th step. Since $\tilde{\lambda}_{2_{\left(2, S_{2}\right)}}^{d}\left(K_{t-2} \cup(r+1) K_{1}\right) \geq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil-2 d+[(t-1)$ mod 3]d, we have

$$
\begin{aligned}
\tilde{\lambda}_{2_{\left(2, S_{2}\right)}}^{d}\left(K_{t-2} \cup(r+1) K_{1}\right)+(q+d) & \geq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil-2 d+[(t-1) \bmod 3] d+(q+d) \\
& =(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d+q-d \\
& \geq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d,
\end{aligned}
$$

thus the smallest number needed to complete this game in this case is at least $(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d$.
Case 3 . $2 d-1 \leq q \leq 3 d-2$.
In this case, by the definition of S_{2}, Bob selects a vertex of K_{t} and labels it by $d-1$ at the second step. Since after the second step, two vertices of K_{t} are labeled and all the numbers in $\{0,1, \ldots, q+d-1\}$ cannot be used to label the other vertices of K_{t}, and $q+d-1 \leq 4 d-3$, this case is the same as Case 1 , since we may imagine that at the first step, Alice chooses a vertex of K_{t} and labels it with a number $q^{\prime}=q-2 d+1$. Hence, by Case 1, the smallest number needed to complete this game in this case is at least $(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d$.
Case 4. $q \geq 3 d-1$.
In this case, let $\beta=\max \left\{k: C_{2}^{p}(2 k)=(v ;(k-1)(2 d-1)+d-1), v\right.$ is a vertex of $\left.K_{t}\right\}$. Clearly, $\beta<t$. By the definition of S_{2}, there exists $a \leq \beta+1$, such that $C_{1}^{p}(2 a-1)=(v ; \alpha)$, where v is a vertex of K_{t} and $\beta(2 d-1) \leq \alpha \leq(\beta+1)(2 d-1)-1$. Let $c=\max \{2 a-1,2 \beta\}$:

$$
\begin{aligned}
& \theta= \begin{cases}0, & \text { if } \beta(2 d-1) \leq \alpha \leq \beta(2 d-1)+d-1, \\
1, & \text { if } \beta(2 d-1)+d \leq \alpha \leq(\beta+1)(2 d-1)-1,\end{cases} \\
& b= \begin{cases}a, & \text { if } a \leq \beta \\
a-1, & \text { if } a=\beta+1,\end{cases}
\end{aligned}
$$

and let

$$
j^{*}= \begin{cases}j, & \text { if } 1 \leq j \leq \min \{2 a-1,2 b\}-1 \\ j-2, & \text { if } j \geq \max \{2 a-1,2 b\}+1\end{cases}
$$

for all $j \geq 1, j \notin\{2 a-1,2 b\}$. Note that by the definition of θ, no numbers less than α can be used to label the unlabeled vertices of K_{t} after the c th step when $\theta=0$, and when $\theta=1$, the numbers less than α that can be used to label the unlabeled vertices of K_{t} after the c th step belong to $\{\beta(2 d-1), \beta(2 d-1)+1, \ldots, \alpha-d\}$. Also note that by the definition of b, Bob chooses a vertex of K_{t} and labels it by $(b-1)(2 d-1)+d-1$ at the $(2 b)$ th step, where $2 b=2 a$ if $a \leq \beta$, and $2 b=2 a-2$ if $a=\beta+1$. Hence in this case, after the c th step, we can imagine that this is just the $(d, 1)$-game played on $K_{t-2-\theta} \cup(r+\theta) K_{1}$, with Alice plays first (by ignoring the $(2 a-1)$ th step made by Alice and the ($2 b$) th step made by Bob). More precisely, if $C_{i}^{p}(j)=(v ; l)$ for some unlabeled vertex v of K_{t} and some $l, l \leq(b-2)(2 d-1)+d-1$, then we can imagine that on the
(d, 1)-game played on $K_{t-2-\theta} \cup(r+\theta) K_{1}$, player i chooses a vertex v of $K_{t-2-\theta}$ and labels it by l at the j^{*} th step. If $C_{i}^{p}(j)=(v ; l)$ for some unlabeled vertex v of K_{t} and some $l, b(2 d-1)+d-1 \leq l \leq(\beta-1)(2 d-1)+d-1$, then we can imagine that on the $(d, 1)$-game played on $K_{t-2-\theta} \cup(r+\theta) K_{1}$, player i chooses a vertex v of $K_{t-2-\theta}$ and labels it by $l-2 d+1$ at the j^{*} th step. If $C_{i}^{p}(j)=(v ; l)$ for some unlabeled vertex v of K_{t} and some $l, l \geq \alpha+d$, then we can imagine that on the ($d, 1$)-game played on $K_{t-2-\theta} \cup(r+\theta) K_{1}$, player i chooses a vertex v of $K_{t-2-\theta}$ and labels it by $l-[\alpha-(\beta-1)(2 d-1)+d]$ at the j^{*} th step. And if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 3$, where v is an unlabeled vertex of K_{t} and $\beta(2 d-1) \leq l \leq \alpha-d$ (when $\theta=1$), or v is a vertex of $r K_{1}$, then we can imagine that on the ($d, 1$)-game played on $K_{t-2-\theta} \cup(r+\theta) K_{1}$, player i chooses an isolated vertex v of $(r+\theta) K_{1}$ and labels it by 0 at the j^{*} th step. Since $\tilde{\lambda}_{1_{\left(2, S_{2}\right)}^{d}}\left(K_{t-2} \cup r K_{1}\right) \geq(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil-4 d+1+[t \bmod 3] d$ and $\tilde{\lambda}_{1_{\left(2, S_{2}\right)}}^{d}\left(K_{t-3} \cup(r+1) K_{1}\right) \geq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil-4 d+1+[(t-1) \bmod 3] d$, when $\theta=0$, we have

$$
\begin{aligned}
& \tilde{\lambda}_{1_{\left(2, S_{2}\right)}}^{d}\left(K_{t-2} \cup r K_{1}\right)+[\alpha-(\beta-1)(2 d-1)+d] \\
& \quad \geq(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil-4 d+1+[t \bmod 3] d+[\alpha-(\beta-1)(2 d-1)+d] \\
& \quad=(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil+[t \bmod 3] d+[\alpha-(\beta-1)(2 d-1)-3 d+1] \\
& \quad \geq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d,
\end{aligned}
$$

and when $\theta=1$, we have

$$
\begin{aligned}
& \tilde{\lambda}_{1_{\left(2, S_{2}\right)}^{d}}^{d}\left(K_{t-3} \cup(r+1) K_{1}\right)+[\alpha-(\beta-1)(2 d-1)+d] \\
& \quad \geq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil-4 d+1+[(t-1) \bmod 3] d+[\alpha-(\beta-1)(2 d-1)+d] \\
& \quad=(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d+[\alpha-(\beta-1)(2 d-1)-3 d+1] \\
& \quad \geq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d .
\end{aligned}
$$

Thus the smallest number needed to complete this game in this case is at least $(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d$.
Since for all cases, the smallest number needed to complete this game is at least $(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d$, $\tilde{\lambda}_{1_{\left(2, S_{2}\right)}^{d}}^{d}\left(K_{t} \cup r K_{1}\right) \geq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d$.

Claim 4. $\tilde{\lambda}_{2_{\left(1, S_{1}\right)}}^{d}\left[K_{t} \cup r K_{1}\right] \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d$.
Proof of Claim 4. Let $p=\tilde{\lambda}_{2\left(1, S_{1}\right)}^{d}\left(K_{t} \cup r K_{1}\right)$. If at the first step, Bob chooses an isolated vertex of $r K_{1}$ and labels it by q, then we can imagine that this is just the $(d, 1)$-game played on $K_{t} \cup(r-1) K_{1}$, with Alice plays first. Thus by Claim 1 and its proof, the smallest number needed to complete this game in this case is no more than $(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d$ and we are done. So, assume that at the first step, Bob chooses a vertex of K_{t} and labels it by q. Consider the following cases:
Case 1. $q \leq d-1$.
In this case, after the first step, we can imagine that this is just the (d, 1)-game played on $K_{t-1} \cup r K_{1}$, with Alice plays first. More precisely, if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 2, l \geq q+d$, and some unlabeled vertex v in K_{t}, then we can imagine that on the $(d, 1)$-game played on $K_{t-1} \cup r K_{1}$, player i chooses a vertex v of K_{t-1} and labels it by $l-q-d$ at the $(j-1)$ th step. And if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 2$ and some unlabeled vertex v in $r K_{1}$, then we can imagine that on the ($d, 1$)-game played on $K_{t-1} \cup r K_{1}$, player i chooses an isolated vertex v of $r K_{1}$ and labels it by 0 at the $(j-1)$ th step. Since $\tilde{\lambda}_{1_{\left(1, S_{1}\right)}^{d}}\left(K_{t-1} \cup\right.$ $\left.r K_{1}\right) \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-4 d+1+[(t-2) \bmod 3] d$, we have

$$
\begin{aligned}
\tilde{\lambda}_{\left(1, S_{1}\right)}^{d}\left(K_{t-1} \cup r K_{1}\right)+(q+d) & \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-4 d+1+[(t-2) \bmod 3] d+(q+d) \\
& =(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d+q-d+1 \\
& \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d,
\end{aligned}
$$

thus the smallest number needed to complete this game in this case is no more than $(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d$.

Case $2 . d \leq q \leq 2 d-1$.
In this case, after the first step, we can imagine that this is just the $(d, 1)$-game played on $K_{t-2} \cup(r+1) K_{1}$, with Alice plays first. More precisely, if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 2, l \geq q+d$, and some unlabeled vertex v in K_{t}, then we can imagine that on the $(d, 1)$-game played on $K_{t-2} \cup(r+1) K_{1}$, player i chooses a vertex v of K_{t-2} and labels it by $l-q-d$ at the $(j-1)$ th step. If $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 2$, where v is an unlabeled vertex in $r K_{1}$, or v is an unlabeled vertex in K_{t} and $l \leq q-d$, then we can imagine that on the $(d, 1)$-game played on $K_{t-2} \cup(r+1) K_{1}$, player i chooses an isolated vertex v of $(r+1) K_{1}$ and labels it by 0 at the $(j-1)$ th step. Since $\tilde{\lambda}_{1_{\left(1, S_{1}\right)}^{d}}^{d}\left(K_{t-2} \cup(r+1) K_{1}\right) \leq(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil-4 d+1+[t$ mod 3$] d$, we have

$$
\begin{aligned}
\tilde{\lambda}_{\left(1, S_{1}\right)}^{d}\left(K_{t-2} \cup(r+1) K_{1}\right)+(q+d) & \leq(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil-4 d+1+[t \bmod 3] d+(q+d) \\
& =(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil-2 d+[t \bmod 3] d+q-d+1 \\
& \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d,
\end{aligned}
$$

thus the smallest number needed to complete this game in this case is no more than $(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d$. Case 3 . $2 d \leq q \leq 3 d-1$.

In this case, by the definition of S_{1}, Alice selects a vertex of K_{t} and labels it by d at the second step. After this step, we can imagine that this is just the ($d, 1$)-game played on $K_{t-3} \cup(r+1) K_{1}$, with Bob plays first. More precisely, if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 3, l \geq q+d$, and some unlabeled vertex v in K_{t}, then we can imagine that on the ($d, 1$)-game played on $K_{t-3} \cup(r+1) K_{1}$, player i chooses a vertex v of K_{t-3} and labels it by $l-q-d$ at the $(j-2)$ th step. And if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 3$, where v is an unlabeled vertex of K_{t} and $l=0$, or v is an unlabeled vertex of $r K_{1}$, then we can imagine that on the $(d, 1)$-game played on $K_{t-3} \cup(r+1) K_{1}$, player i chooses an isolated vertex v of $(r+1) K_{1}$ and labels it by 0 at the $(j-2)$ th step. Since $\tilde{\lambda}_{2_{\left(1, S_{1}\right)}}^{d}\left(K_{t-3} \cup(r+1) K_{1}\right) \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-6 d+1+[(t-2) \bmod 3] d$, we have

$$
\begin{aligned}
\tilde{\lambda}_{2_{\left(1, S_{1}\right)}}^{d}\left(K_{t-3} \cup(r+1) K_{1}\right)+(q+d) & \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-6 d+1+[(t-2) \bmod 3] d+(q+d) \\
& =(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d+q-3 d+1 \\
& \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d
\end{aligned}
$$

thus the smallest number needed to complete this game in this case is no more than $(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d$. Case 4. $q \geq 3 d$.

In this case, let $\beta=\max \left\{k: C_{1}^{p}(2 k)=(v ;(2 k-1) d), v\right.$ is a vertex of $\left.K_{t}\right\}$. Clearly, $\beta<t$. By the definition of S_{1}, there exists $b \leq \beta+1$, such that $C_{2}^{p}(2 b-1)=(v ; \alpha)$, where v is a vertex of K_{t} and $2 \beta d \leq \alpha \leq(2 \beta+2) d-1$. Let $c=\max \{2 b-1,2 \beta\}$,

$$
\begin{aligned}
& \theta= \begin{cases}0, & \text { if } 2 \beta d \leq \alpha \leq(2 \beta+1) d-1 \\
1, & \text { if }(2 \beta+1) d \leq \alpha \leq(2 \beta+2) d-1,\end{cases} \\
& a= \begin{cases}b, & \text { if } b \leq \beta \\
b-1, & \text { if } b=\beta+1\end{cases}
\end{aligned}
$$

And let

$$
j^{*}= \begin{cases}j, & \text { if } 1 \leq j \leq \min \{2 a, 2 b-1\}-1 \\ j-2, & \text { if } j \geq \max \{2 a, 2 b-1\}+1\end{cases}
$$

for all $j \geq 1, j \notin\{2 a, 2 b-1\}$. Note that by the definition of θ, no numbers between $(2 \beta-1) d$ and α can be used to label the unlabeled vertices of K_{t} after the c th step when $\theta=0$, and when $\theta=1$, the numbers between $(2 \beta-1) d$ and α that can be used to label the unlabeled vertices of K_{t} after the c th step belong to $\{2 \beta d, 2 \beta d+1, \ldots, \alpha-d\}$. Also note that by the definition of a, Alice chooses a vertex of K_{t} and labels it by $(2 a-1) d$ at the $(2 a)$ th step, where $2 a=2 b$ if $a \leq \beta$, and $2 a=2 b-2$ if $b=\beta+1$. Hence in this case, after the c th step, we can imagine that this is just the ($d, 1$)-game played on $K_{t-3-\theta} \cup(r+1+\theta) K_{1}$, with Bob plays first (by ignoring the $(2 b-1)$ th step made by Bob and the (2a)th step made by Alice, and if $C_{i}^{p}(j)=(v ;(2 a-2) d)$ for some unlabeled vertex v of K_{t}, imagine that on the ($d, 1$)-game played on $K_{t-3-\theta} \cup(r+1+\theta) K_{1}$, player i chooses an isolated vertex v of $(r+1+\theta) K_{1}$ and labels it by 0 at the j^{*} th step $)$. More precisely, if $C_{i}^{p}(j)=(v ; l)$ for some unlabeled vertex v of K_{t} and some $l, l \leq(2 a-3) d$, then we can imagine that on the $(d, 1)$-game played on $K_{t-3-\theta} \cup(r+1+\theta) K_{1}$, player i chooses a vertex v of $K_{t-3-\theta}$ and labels it by l at the j^{*} th step. If $C_{i}^{p}(j)=(v$; $l)$ for some unlabeled vertex v of K_{t} and some $l, 2 a d \leq l \leq(2 \beta-1) d$, then we can imagine that on the ($d, 1$)-game played on
$K_{t-3-\theta} \cup(r+1+\theta) K_{1}$, player i choose a vertex v of $K_{t-3-\theta}$ and labels it by $l-2 d$ at the j^{*} th step. If $C_{i}^{p}(j)=(v ; l)$ for some unlabeled vertex v of K_{t} and some $l, l \geq \alpha+d$, then we can imagine that on the ($d, 1$)-game played on $K_{t-3-\theta} \cup(r+1+\theta) K_{1}$, player i chooses a vertex v of $K_{t-3-\theta}$ and labels it by $l-[\alpha-(2 \beta-3) d]$ at the j^{*} th step. And if $C_{i}^{p}(j)=(v ; l)$ for some $j \geq 3$, where v is an unlabeled vertex of K_{t} and $l=(2 a-2) d$, or $2 \beta d \leq l \leq \alpha-d$ (when $\theta=1$), or v is a vertex of $r K_{1}$, then we can imagine that on the ($d, 1$)-game played on $K_{t-3-\theta} \cup(r+1+\theta) K_{1}$, player i chooses an isolated vertex v of $(r+1+\theta) K_{1}$ and labels it by 0 at the j^{*} th step. Since $\tilde{\lambda}_{2_{\left(1, S_{1}\right)}}^{d}\left(K_{t-3} \cup(r+1) K_{1}\right) \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-6 d+1+[(t-2) \bmod 3] d$ and $\tilde{\lambda}_{2_{\left(1, S_{1}\right)}}^{d}\left(K_{t-4} \cup(r+2) K_{1}\right) \leq(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil-6 d+1+[t \bmod 3] d$, when $\theta=0$, we have

$$
\begin{aligned}
\tilde{\lambda}_{2_{\left(1, S_{1}\right)}}^{d}\left(K_{t-3} \cup(r+1) K_{1}\right)+[\alpha-(2 \beta-3) d] \leq & (4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-6 d+1 \\
& +[(t-2) \bmod 3] d+[\alpha-(2 \beta-3) d] \\
\leq & (4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d,
\end{aligned}
$$

and when $\theta=1$, we have

$$
\begin{aligned}
\tilde{\lambda}_{2_{\left(1, S_{1}\right)}}^{d}\left(K_{t-4} \cup(r+2) K_{1}\right)+[\alpha-(2 \beta-3) d] & \leq(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil-6 d+1+[t \bmod 3] d+[\alpha-(2 \beta-3) d] \\
& \leq(4 d-1)\left\lceil\frac{t-2}{3}\right\rceil+[t \bmod 3] d-d \\
& \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d .
\end{aligned}
$$

Thus the smallest number needed to complete this game in this case is no more than (4d-1) $\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d$.
Since for all cases, the smallest number needed to complete this game is no more than (4d-1) $\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-$
2) $\bmod 3] d, \tilde{\lambda}_{2_{\left(1, S_{1}\right)}}^{d}\left(K_{t} \cup r K_{1}\right) \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d$.

By Claims 1 and 3, we have $\tilde{\lambda}_{1_{\left(1, S_{1}\right)}^{d}}\left(K_{t} \cup r K_{1}\right) \leq(4 d-1)\left\lceil\frac{t-3}{3}\right\rceil+[(t-1) \bmod 3] d \leq \tilde{\lambda}_{1_{\left(2, S_{2}\right)}^{d}}\left(K_{t} \cup r K_{1}\right)$. Similarly, by Claims 2 and 4, we have $\tilde{\lambda}_{2_{\left(1, S_{1}\right)}^{d}}^{d}\left(K_{t} \cup r K_{1}\right) \leq(4 d-1)\left\lceil\frac{t-1}{3}\right\rceil-2 d+[(t-2) \bmod 3] d \leq \tilde{\lambda}_{2_{\left(2, S_{2}\right)}}^{d}\left(K_{t} \cup r K_{1}\right)$. Thus the conclusion also holds for $n=t$. By the principle of mathematical induction, $\tilde{\lambda}_{1_{\left(1, S_{1}\right)}}^{d}\left(K_{n} \cup r K_{1}\right) \leq(4 d-1)\left\lceil\frac{n-3}{3}\right\rceil+[(n-1) \bmod 3] d \leq$ $\tilde{\lambda}_{1_{\left(2, S_{2}\right)}^{d}}^{d}\left(K_{n} \cup r K_{1}\right)$ and $\tilde{\lambda}_{2_{\left(1, S_{1}\right)}^{d}}^{d}\left(K_{n} \cup r K_{1}\right) \leq(4 d-1)\left\lceil\frac{n-1}{3}\right\rceil-2 d+[(n-2) \bmod 3] d \leq \tilde{\lambda}_{2_{\left(2, S_{2}\right)}^{d}}^{d}\left(K_{n} \cup r K_{1}\right)$ for all $n \geq 1, r \geq 0$. Therefore, $\tilde{\lambda}_{1}^{d}\left(K_{n} \cup r K_{1}\right)=(4 d-1)\left\lceil\frac{n-3}{3}\right\rceil+[(n-1) \bmod 3] d$ and $\tilde{\lambda}_{2}^{d}\left(K_{n} \cup r K_{1}\right)=(4 d-1)\left\lceil\frac{n-1}{3}\right\rceil-2 d+[(n-2) \bmod 3] d$ for all $n \geq 1, r \geq 0$.

By setting $d=2$ in Theorem 3, we have
Corollary 4. For all $n \geq 1, \tilde{\lambda}_{1}^{2}\left(K_{n}\right)=\left\lceil\frac{7 n-9}{3}\right\rceil$ and $\tilde{\lambda}_{2}^{2}\left(K_{n}\right)=\left\lceil\frac{7 n-7}{3}\right\rceil$.

4. Game $L(d, 1)$-labeling number of complete bipartite graphs

We study the game $L(d, 1)$-labeling number of complete bipartite graphs in this section. For convenience, when consider the graph $K_{m, n}$, we always assume that the partite sets are X_{0} and X_{1}, where $X_{0}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, X_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and $E\left(K_{m, n}\right)=\left\{u_{i} v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. And for two integers m, n, we use $\delta_{m, n}$ to denote the number $((m+n) \bmod 2)$.
Lemma 5. $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right) \leq 2 d+m+n-2-\delta_{m, n}$ for all $d, m, n, d \geq m \geq n \geq 2$.
Proof. Let $p=2 d+m+n-2-\delta_{m, n}$. For an integer l in $A_{0} \cup A_{1} \cup B_{0} \cup B_{1}$, where $A_{0}=\{d, d+1, \ldots, d+n-2\}, A_{1}=$ $\{p-n+2, p-n+3, \ldots, p\}, B_{0}=\{p-d-n+2, p-d-n+3, \ldots, p-d\}, B_{1}=\{0,1, \ldots, n-2\}$, let

$$
l^{*}= \begin{cases}l+d+m-\delta_{m, n}, & \text { if } l \in A_{0} \cup B_{1} \\ l-d-m+\delta_{m, n}, & \text { if } l \in A_{1} \cup B_{0}\end{cases}
$$

Consider the following strategy S made by Alice. At the first step, set $\alpha=\beta=0$, and label u_{1} with the number $d+\left\lfloor\frac{m+n-2}{2}\right\rfloor$. For all $j \geq 1$, if $C_{2}^{p}(2 j)=(v ; l)$, and there is still some vertices unlabeled, then Alice decides how to move at the $(2 j+1)$ th step according to the following rules:
Rule 1. If $\alpha=0, v \in X_{0}$, and $d+n-1 \leq l \leq p-d-n+1$, then choose an unlabeled vertex in X_{0} and label it by $p-l$.
Rule 2. If $\alpha=0, v \in X_{0}$, and $l \leq d-1$ or $l \geq p-d+1$, then choose an unlabeled vertex in X_{1} and label it by l^{\prime}, where $l^{\prime}=p-n+1$ if $l \leq d-1$ and $l^{\prime}=n-1$ if $l \geq p-d+1$, and set $\alpha=1$.

Rule 3. If $\alpha=0, v \in X_{1}$, and $n-1 \leq l \leq\left\lfloor\frac{m+n-2}{2}\right\rfloor$ or $2 d+\left\lfloor\frac{m+n-2}{2}\right\rfloor \leq l \leq p-n+1$, then choose an unlabeled vertex in X_{0} and label it by l^{\prime}, where $l^{\prime}=p-d+1$ if $n-1 \leq l \leq\left\lfloor\frac{m+n-2}{2}\right\rfloor$ and $l^{\prime}=d-1$ if $2 d+\left\lfloor\frac{m+n-2}{2}\right\rfloor \leq l \leq p-n+1$, and set $\alpha=1$.
Rule 4. If $\alpha=0, v \in X_{i}, l \in A_{i} \cup B_{i}$, then choose an unlabeled vertex in X_{1-i} and label it by l^{*}, and increases β by 1 . After this, set $\alpha=1$ if $\beta=n$.
Rule 5. If $\alpha=1$, choose an unlabeled vertex w in $X_{0} \cup X_{1}$ and label it with an arbitrary number l^{\prime} in $P C^{p}(2 j ; w)$ if $P C^{p}(2 j ; w) \neq \emptyset$.

To prove this lemma, we only need to show that Alice can complete the (d, 1)-game played on $K_{m, n}$ with the number p by using the strategy S given above. By the definition of S, if $\alpha=0$ after the j th step, then at least one of the numbers $n-1, p-n+1$ is in $P C^{p}(j ; v)$ for each unlabeled vertex v in X_{1}, and at least one of the numbers $d-1, p-d+1$ is in $P C^{p}(j ; v)$ for each unlabeled vertex v in X_{0}. Thus $P C^{p}(j ; v) \neq \emptyset$ for all unlabeled vertices if $\alpha=0$ after the j th step. Hence we only need to show that if $\alpha=0$ at the j^{*} th step, and $\alpha=1$ after the $\left(j^{*}+1\right)$ th step, then $P C^{p}(j ; v) \neq \emptyset$ for all unlabeled vertices and all $j, j \geq j^{*}+1$. Consider the following cases:
Case 1. $C_{2}^{p}\left(j^{*}\right)=(v ; l)$, where $v \in X_{0}$, and $l \leq d-1$ or $l \geq p-d+1$.
We only consider that $l \leq d-1$, the case that $l \geq p-d+1$ is similar. Note that in this case, if $C_{i}^{p}\left(j_{1}\right)=\left(w_{1} ; l_{1}\right)$ for some $w_{1} \in X_{0}$ and $j_{1}<j^{*}$, then $l_{1} \leq p-d-n+1$. And if $C_{i}^{p}\left(j_{2}\right)=\left(w_{2} ; l_{2}\right)$ for some $w_{2} \in X_{1}$ and $j_{2}<j^{*}$, then $l_{2} \geq 2 d+\left\lfloor\frac{m+n-2}{2}\right\rfloor$. Since at the $\left(j^{*}+1\right)$ th step, Alice chooses an unlabeled vertex in X_{1} and labels it by $p-n+1$, after this step, all the numbers in $D_{1}=\{p-n+1, p-n+2, \ldots, p\}$ that are not used can be used to label the unlabeled vertices in X_{1}, and all the numbers in $D_{2}=\left\{0,1, \ldots, d+\left\lfloor\frac{m+n-2}{2}\right\rfloor\right\}$ that are not used can be used to label the unlabeled vertices in X_{0}. Therefore, since $\left|D_{1}\right| \geq n$ and $\left|D_{2}\right| \geq m$, Alice can complete the ($d, 1$)-game played on $K_{m, n}$ with the number p in this case.
Case 2. $C_{2}^{p}\left(j^{*}\right)=(v ; l)$, where $v \in X_{1}$, and $n-1 \leq l \leq\left\lfloor\frac{m+n-2}{2}\right\rfloor$ or $2 d+\left\lfloor\frac{m+n-2}{2}\right\rfloor \leq l \leq p-n+1$.
We only consider that $n-1 \leq l \leq\left\lfloor\frac{m+n-2}{2}\right\rfloor$, the case that $2 d+\left\lfloor\frac{m+n-2}{2}\right\rfloor \leq l \leq p-n+1$ is similar. Note that in this case, if $C_{i}^{p}\left(j_{1}\right)=\left(w_{1} ; l_{1}\right)$ for some $w_{1} \in X_{0}$ and $j_{1}<j^{*}$, then $l_{1} \geq d+l$. Hence if $C_{i}^{p}\left(j_{2}\right)=\left(w_{2} ; l_{2}\right)$ for some $w_{2} \in X_{1}$ and $j_{2}<j^{*}$, then $l_{2} \leq n-2$. Since at the $\left(j^{*}+1\right)$ th step, Alice chooses an unlabeled vertex in X_{0} and labels it by $p-d+1$, after this step, all the numbers in $D_{1}=\{0,1, \ldots, l\}$ that are not used can be used to label the unlabeled vertices in X_{1}, and all the numbers in $D_{2}=\left\{d+\left\lfloor\frac{m+n-2}{2}\right\rfloor, d+\left\lfloor\frac{m+n-2}{2}\right\rfloor+1, \ldots, p\right\}$ that are not used can be used to label the unlabeled vertices in X_{0}. Therefore, since $\left|D_{1}\right| \geq n$ and $\left|D_{2}\right| \geq m$, Alice can complete the ($d, 1$)-game played on $K_{m, n}$ with the number p in this case.
Case 3. $\beta=n-1$ at the j^{*} th step and $C_{2}^{p}\left(j^{*}\right)=(v ; l)$, where $v \in X_{i}, l \in A_{i} \cup B_{i}$.
In this case, by the definition of S, at the $\left(j^{*}+1\right)$ th step, Alice chooses an unlabeled vertex in X_{1-i} and labels it by l^{*}. Note that after this step, all the vertices in X_{1} are labeled properly (since β increase by 1 after the j th step only if one of the vertices in X_{1} is labeled at the j th step or at the $(j-1)$ th step). Let

$$
a=\min \left\{l: C_{i}^{p}(j)=(v ; l), v \in X_{0} \text { and } j \leq j^{*}+1\right\}
$$

Since $\left|B_{0}\right| \leq n-1, d \leq a \leq d+n-2$. By the definition of S and a, all the numbers in $\left\{2 d+\left\lfloor\frac{m+n-2}{2}\right\rfloor, 2 d+\left\lfloor\frac{m+n-2}{2}\right\rfloor+1, \ldots, p\right\}$ that are used to label some vertex in X_{1} are greater than or equal to $a+d+$ $m-\delta_{m, n}$, and all the numbers in $\left\{0,1, \ldots,\left\lfloor\frac{m+n-2}{2}\right\rfloor\right\}$ that are used to label some vertex in X_{1} are less than or equal to $a-d$. Hence after the $\left(j^{*}+1\right)$ th step, all the numbers in $D=\left\{a, a+1, \ldots, a+m-\delta_{m, n}\right\}$ that are not used can be used to label the unlabeled vertices in X_{0}. Therefore, since $|D| \geq m$, Alice can complete the ($d, 1$)-game played on $K_{m, n}$ with the number p in this case.

From the cases above, $\tilde{\lambda}_{1_{(1, S)}}^{d}\left(K_{m, n}\right)=p \leq 2 d+m+n-2-\delta_{m, n}$, hence $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right) \leq \tilde{\lambda}_{1_{(1, S)}}^{d}\left(K_{m, n}\right)=2 d+m+n-2-\delta_{m, n}$ for all $d, m, n, d \geq m \geq n \geq 2$.

Lemma 6. $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right) \geq 2 d+m-1-\delta_{m, n}$ for all $d, m, n, d \geq m \geq n \geq 2$.
Proof. Suppose, to the contrary, $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right) \leq 2 d+m-2-\delta_{m, n}$. Let $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right)=p$. Since $\lambda_{d}\left(K_{m, n}\right)=d+m+n-1$, by Lemma 1, we have $p \geq d+m+n-1$. Let $D=\{0,1, \ldots, p\}$. If $C_{1}^{p}(1)=\left(v\right.$; l, where $v \in X_{1}$, then Bob chooses an unlabeled vertex in X_{1} and labels it by l^{\prime}, where $l^{\prime}=d$ if $l \leq d-1$, and $l^{\prime}=d-1$ if $l \geq d$. In this case, after the second step, at least $2 d$ numbers in D cannot be used to label the vertices in X_{0}. Since $|D|-2 d \leq m-1<\left|X_{0}\right|$, the ($d, 1$)-game played on $K_{m, n}$ cannot be completed in this case.

If $C_{1}^{p}(1)=(v ; l)$, where $v \in X_{0}$, then Bob chooses an unlabeled vertex in X_{0} and labels it by l^{\prime}, where $l^{\prime}=d+m-1$ if $l \leq d+n-2$, and $l^{\prime}=d-1$ if $l \geq d+n-1$. It is easy to verify that in this case, after the second step, at most $n-1$ numbers can be used to label the vertices in X_{1}. Thus the ($d, 1$)-game played on $K_{m, n}$ also cannot be completed in this case.

From the argument above, $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right)=p \geq 2 d+m-1-\delta_{m, n}$ for all $d, m, n, d \geq m \geq n \geq 2$.
Theorem 7. $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right)=2 d+m+n-2-\delta_{m, n}$ for all $d, m, n, d \geq m \geq n \geq 2$.

Proof. $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right) \leq 2 d+m+n-2-\delta_{m, n}$ follows from Lemma 5, hence we only need to show that for any positive integer $p \leq 2 d+m+n-3-\delta_{m, n}$, Bob has a strategy to force the ($d, 1$)-game played on $K_{m, n}$ cannot be completed by using numbers in $\{0,1, \ldots, p\}$. By Lemma 6 , we may assume that $p \geq 2 d+m-1-\delta_{m, n}$. Consider the following strategy S made by Bob. Set $\alpha=0$. For all $j \geq 1$, if $C_{1}^{p}(2 j-1)=(v ; l)$, and there is still some vertices unlabeled, then Bob decides how to move at the (2j)th step according to the following rules:
Rule 1. If $\alpha=0, v \in X_{0}$, and $l \in A=\left\{d+n-1, d+n, \ldots, d+m-2-\delta_{m, n}\right\}$, then choose an unlabeled vertex in X_{0} and label it by $2 d+m+n-3-\delta_{m, n}-l$.
Rule 2. If $\alpha=0, v \in X_{0}$, and $l \leq d+n-2$ or $l \geq d+m-1-\delta_{m, n}$, then choose an unlabeled vertex in X_{0} and label it by l^{\prime}, where $l^{\prime}=d+m+n-2$ if $l \leq d+n-2$ and $l^{\prime}=d-1$ if $l \geq d+m-1-\delta_{m, n}$, and set $\alpha=1$.
Rule 3. If $\alpha=0, v \in X_{1}$, then choose an unlabeled vertex in X_{1} and label it by l^{\prime}, where $l^{\prime}=2 d+m-2-\delta_{m, n}$ if $l \leq\left\lfloor\frac{p}{2}\right\rfloor$ and $l^{\prime}=n-1$ if $l \geq\left\lfloor\frac{p}{2}\right\rfloor+1$, and set $\alpha=1$.
Rule 4. If $\alpha=1$, choose an unlabeled vertex w in $X_{0} \cup X_{1}$ and label it with an arbitrary number l^{\prime} in $P C^{p}(2 j-1 ; w)$ if $P C^{p}(2 j-1 ; w) \neq \emptyset$.

By the definition of S, if $\alpha=0$ after the j th step, then at least one of the numbers $d-1, d+m+n-2$ is in $P C^{p}(j ; v)$ for each unlabeled vertex v in X_{0}, and at least one of the numbers $0, p$ is in $P C^{p}(j ; v)$ for each unlabeled vertex v in X_{1}. Thus $P C^{p}(j ; v) \neq \emptyset$ for all unlabeled vertices if $\alpha=0$ after the j th step. Since $|A|=m-n-\delta_{m, n}<m$, there exists j^{*}, such that $\alpha=0$ at the j^{*} th step, and $\alpha=1$ after the $\left(j^{*}+1\right)$ th step. Consider the following cases:
Case 1. $C_{1}^{p}\left(j^{*}\right)=(v ; l)$, where $v \in X_{0}$, and $l \leq d+n-2$ or $l \geq d+m-1-\delta_{m, n}$.
In this case, if $l \leq d+n-2$, then Bob chooses an unlabeled vertex in X_{0} and labels it by $d+m+n-2$ at the $\left(j^{*}+1\right)$ th step. And if $l \geq d+m-1-\delta_{m, n}$, then Bob chooses an unlabeled vertex in X_{0} and labels it by $d-1$ at the $\left(j^{*}+1\right)$ th step. Since $p \leq 2 d+m+n-3-\delta_{m, n}$, after the $\left(j^{*}+1\right)$ th step, at most $n-1$ numbers can be used to label the vertices in X_{1}. Thus the ($d, 1$)-game played on $K_{m, n}$ cannot be completed in this case.
Case 2. $C_{1}^{p}\left(j^{*}\right)=(v ; l)$, where $v \in X_{1}$.
In this case, if $l \leq\left\lfloor\frac{p}{2}\right\rfloor$, then Bob chooses an unlabeled vertex in X_{1} and labels it by $2 d+m-2-\delta_{m, n}$ at the $\left(j^{*}+1\right)$ th step. And if $l \geq\left\lfloor\frac{p}{2}\right\rfloor+1$, then Bob chooses an unlabeled vertex in X_{1} and labels it by $n-1$ at the $\left(j^{*}+1\right)$ th step. Since $p \leq 2 d+m+n-3-\delta_{m, n}$, after the $\left(j^{*}+1\right)$ th step, at most $m-1$ numbers can be used to label the vertices in X_{0}. Thus the ($d, 1$)-game played on $K_{m, n}$ also cannot be completed in this case.

From the argument above, when $p \leq 2 d+m+n-3-\delta_{m, n}$, Bob has a strategy to force the ($d, 1$)-game played on $K_{m, n}$ cannot be completed by using numbers in $\{0,1, \ldots, p\}$. Hence $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right) \geq 2 d+m+n-2-\delta_{m, n}$, and so $\tilde{\lambda}_{1}^{d}\left(K_{m, n}\right)=2 d+m+n-2-\delta_{m, n}$ for all $d, m, n, d \geq m \geq n \geq 2$.

Acknowledgments

The authors thank the referees for helpful comments which resulted in an improvement in the clarity of exposition of the paper.

The first author was supported in part by the National Science Council under grants NSC. The third author was supported in part by the National Science Council under grants NSC97-2115-M-259-002-MY3.

References

[1] H.L. Bodlaender, On the complexity of some coloring games, in: Proceeding of the WG 1990 Workshop on Graph Theoretical Concepts in Computer Science, 1990, pp. 30-40.
[2] G.J. Chang, D. Kuo, The $L(2,1)$-labeling on graphs, SIAM J. Discrete Math. 9 (1996) 309-316.
[3] T. Dinski, X. Zhu, A bound for the game chromatic number of graphs, Discrete Math. 196 (1999) 109-115.
[4] U. Faigle, U. Kern, H. Kierstead, W.T. Trotter, On the game chromatic number of some classes of graphs, Ars Combin. 35 (1993) 143-150.
[5] D. Gonçalves, On the $L(p, 1)$-labelling of graphs, Discrete Math. Theor. Comput. Sci. (2005) 81-86. AE.
[6] J.R. Griggs, R.K. Yeh, Labeling graphs with a condition at distance two, SIAM J. Discrete Math. 5 (1992) 586-595.
[7] D.J. Guan, X. Zhu, Game chromatic number of outerplanar graphs, J. Graph Theory 30 (1) (1999) 67-70.
[8] W.K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980) 1497-1514.
[9] H.A. Kierstead, A simple competitive graph coloring algorithm, J. Combin. Theory Ser. B 78 (2000) 57-68.
[10] H.A. Kierstead, W.T. Trotter, Planar graph coloring with an uncooperative partner, J. Graph Theory 18 (6) (1994) 569-584.
[11] F.S. Roberts, Private communication through J. Griggs, 1988.
[12] R.K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217-1231.
[13] X. Zhu, The game coloring number of planar graphs, J. Combin. Theory Ser. B 75 (1999) 245-258.

[^0]: * Corresponding author.

 E-mail addresses: mlchia@mail.au.edu.tw (M.-L. Chia), davidk@server.am.ndhu.edu.tw, davidk@mail.am.ndhu.edu.tw (D. Kuo), scliaw@math.ncu.edu.tw (S.-C. Liaw), warcraftt3@hotmail.com (Z.-t. Xu).

