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of the Drazin inverse and analyze a number of special cases.
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1. Introduction

Let X be a complex Banach space. Denote by B(X) the Banach algebra of all bounded linear operators on X . For an
operator T ∈ B(X), the symbols N (T ), R(T ) and σ(T ) will denote the null space, the range and the spectrum of T ,
respectively. For T ∈ B(X), if there exists an operator T D ∈ B(X) satisfying the following three operator equations [17]

T T D = T D T , T D T T D = T D , T k+1T D = T k, (1)

then T D is called a Drazin inverse of T . The smallest k such that (1) holds, is called the index of T , denoted by ind(T ). Notice
also that ind(T ) (if it is finite) is the smallest non-negative integer k such that R(T k+1) = R(T k) and N (T k+1) = N (T k)

hold. The conditions (1) are equivalent to

T T D = T D T , T D T T D = T D , T − T 2T D is nilpotent. (2)

The concept of the generalized Drazin inverse (GD-inverse) on an infinite-dimensional Banach space was introduced by
Koliha [23], which is the element T d ∈ B(X) such that

T T d = T d T , T d T T d = T d, T − T 2T d is quasi-nilpotent. (3)

If T is GD-invertible, then the spectral idempotent P of T corresponding to {0} is given by P = I − T T d . The operator matrix
form of T with respect to the space decomposition X = N (P ) ⊕ R(P ) is given by

T = T1 ⊕ T2,

where T1 is invertible and T2 is quasi-nilpotent [1,2].
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In recent years, the characterizations of the Drazin inverses of matrices or operators on an infinite-dimensional space
have been considered by many authors (cf. [4–38]). Castro-González et al. [4–10], Djordjević and Wei [15], Hartwig et al.
[20,21] and Koliha [23–26] have studied the generalized Drazin inverse on a Banach space. Some additive properties and
the explicit expressions for the GD-inverse of the sum are obtained in [4,8,11,15,21,37].

In this paper, using the technique of block operator matrices, we will investigate explicit representations of the general-
ized Drazin inverse (P + Q )d in term of P , P d , Q and Q d under the condition of P Q = Q P . Our results are improvement
over the main results of [11,15]. Indeed, a totally new approach is provided to express the GD-inverse.

This paper is organized as follows. An explicit formula for (P + Q )d is presented in Section 2. This is a key step of the
paper. In Section 3, special cases are given to indicate the various applications of our main results.

2. Main results

In the first part of this section, we give a new expression for the GD-inverse of P + Q in term of P , P d , Q and Q d . It is
interesting to note that our result is quite different from the expression for (P + Q )d in [15].

Theorem 1. Let P , Q ∈ B(X) be GD-invertible and P Q = Q P . Then P + Q is GD-invertible if and only if I + P d Q is GD-invertible.
In this case we have

(P + Q )d = P d(I + P d Q
)d

Q Q d + (
I − Q Q d)[ ∞∑

n=0

(−Q )n(P d)n

]
P d + Q d

[ ∞∑
n=0

(
Q d)n

(−P )n

](
I − P P d)

and

(P + Q )(P + Q )d = (
P P d + Q P d)(I + P d Q

)d
Q Q d + (

I − Q Q d)P P d + Q Q d(I − P P d).
Proof. Since P is GD-invertible, we can write

P = P0 ⊕ P00, (4)

where P0 is invertible, P00 is quasi-nilpotent. Since P Q = Q P we can decompose

Q = Q 0 ⊕ Q 00, (5)

where Q 0 and Q 00 are GD-invertible such that P0 Q 0 = Q 0 P0 and P00 Q 00 = Q 00 P00. In a similar way we conclude that

P0 = P1 ⊕ P2, P00 = P3 ⊕ P4

and

Q 0 = Q 1 ⊕ Q 2, Q 00 = Q 3 ⊕ Q 4,

where Pi (i = 1,2), Q j ( j = 1,3) are invertible, Pm (m = 3,4), Q n (n = 2,4) are quasi-nilpotent and Pi Q i = Q i Pi (i =
1,2,3,4). Now we have

P + Q = (P1 + Q 1) ⊕ (P2 + Q 2) ⊕ (P3 + Q 3) ⊕ (P4 + Q 4).

Since P2 is invertible, Q 2 is quasi-nilpotent and P2 Q 2 = Q 2 P2, we have σ(P−1
2 Q 2) ⊂ σ(P−1

2 )σ (Q 2) = {0}. Thus P−1
2 Q 2 is

quasi-nilpotent and I + P−1
2 Q 2 is invertible and

0 ⊕ (P2 + Q 2)
−1 ⊕ 0 ⊕ 0 = 0 ⊕ (

I + P−1
2 Q 2

)−1
P−1

2 ⊕ 0 ⊕ 0

= 0 ⊕
[ ∞∑

n=0

P−n
2 (−Q 2)

n

]
P−1

2 ⊕ 0 ⊕ 0

= (
I − Q Q d)[ ∞∑

n=0

(
P d)n+1

(−Q )n

]
.

Similarly, we see that P3 Q −1
3 is quasi-nilpotent and I + P3 Q −1

3 is invertible with

0 ⊕ 0 ⊕ (P3 + Q 3)
−1 ⊕ 0 = 0 ⊕ 0 ⊕ (

I + Q −1
3 P3

)−1
Q −1

3 ⊕ 0

= 0 ⊕ 0 ⊕ Q −1
3

[ ∞∑
n=0

Q −n
3 (−P3)

n

]
⊕ 0

=
[ ∞∑(

Q d)n+1
(−P )n

](
I − P P d).
n=0
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Since P4 and Q 4 are quasi-nilpotent, and P4 Q 4 = Q 4 P4, we get that P4 + Q 4 is GD-invertible and (P4 + Q 4)
d = 0.

Hence, P + Q is GD-invertible if and only if P1 + Q 1 is GD-invertible. Note that P1, P−1
1 , Q 1, Q −1

1 , P1 + Q 1 and
(P1 + Q 1)

d commute. It is easy to know (P1 + Q 1)
d is GD-invertible if and only if I + P d Q is GD-invertible, thus

(P1 + Q 1)
d ⊕ 0 ⊕ 0 ⊕ 0 = P−1

1

(
I + P−1

1 Q 1
)d ⊕ 0 ⊕ 0 ⊕ 0

= P d(I + P d Q
)d

Q Q d

and

(P1 + Q 1)(P1 + Q 1)
d ⊕ 0 ⊕ 0 ⊕ 0 = (P + Q )P d(I + P d Q

)d
Q Q d

= (
P P d + Q P d)(I + P d Q

)d
Q Q d.

Now, we arrive at

(P + Q )d = (P1 + Q 1)
d ⊕ (P2 + Q 2)

−1 ⊕ (P3 + Q 3)
−1 ⊕ (P4 + Q 4)

d

= P d(I + P d Q
)d

Q Q d + (
I − Q Q d)[ ∞∑

n=0

(−Q )n(P d)n+1

]
+

[ ∞∑
n=0

(
Q d)n+1

(−P )n

](
I − P P d)

and

(P + Q )(P + Q )d = (P1 + Q 1)(P1 + Q 1)
d ⊕ I ⊕ I ⊕ 0

= (
P P d + Q P d)(I + P d Q

)d
Q Q d + (

I − Q Q d)P P d + Q Q d(I − P P d). �
Remark. Djordjević and Wei [15] showed that

(1) If P , Q , P + Q ∈ B(X) are GD-invertible and P Q = Q P , then P + Q is GD-invertible and

(P + Q )d = (C P + C Q )d[I + (C P + C Q )d(Q P + Q Q )
]−1

,

where P = C P + Q P and Q = C Q + Q Q are known as the core-quasi-nilpotent decomposition of P and Q , respec-
tively.

(2) If P and Q are GD-invertible and P Q = 0, then P + Q is GD-invertible and

(P + Q )d = (
I − Q Q d)[ ∞∑

n=0

Q n(P d)n

]
P d + Q d

[ ∞∑
n=0

(
Q d)n

Pn

](
I − P P d).

(3) Remark (1) shows that core-quasi-nilpotent decomposition of P and Q are the key results which allow us to derive
an expression for the GD-inverse of (P + Q )d . Compare Theorem 1 with the results of [15], we can see that our result
gives some analogue to the expression (P + Q )d with the condition P Q = 0 in [15].

From Theorem 1, some special expressions for (P + Q )d can be obtained immediately.

Corollary 2. Let P , Q ∈ B(X) be GD-invertible such that P Q = Q P and I + P d Q is GD-invertible.

(1) If P Q = Q P = 0, then P d Q = Q d P = 0 and (P + Q )d = P d + Q d.
(2) If P and Q are quasi-nilpotent, then (P + Q )d = 0.
(3) If Q is quasi-nilpotent, then

(P + Q )d =
∞∑

n=0

(
P d)n+1

(−Q )n = (
I + P d Q

)−1
P d.

(4) If Q k = 0, then (P + Q )d = ∑k−1
n=0(P d)n+1(−Q )n = (I + P d Q )−1 P d.

(5) If Q 2 = 0, then (P + Q )d = P d − (P d)2 Q = (I + P d Q )−1 P d.
(6) If Q k = Q (k � 3), then Q d = Q k−2 and

(P + Q )d = P d(I + P d Q
)d

Q k−1 + (
I − Q k−1)P d + Q k−2

[ ∞∑
n=0

(
Q d)n

(−P )n

](
I − P P d)

= P d(I + P d Q
)d

Q k−1 + (
I − Q k−1)P d + Q k−2(I + P Q k−2)d(

I − P P d).



316 C.-y. Deng, Y.-m. Wei / J. Math. Anal. Appl. 370 (2010) 313–321
(7) If Q 2 = Q , then Q d = Q and

(P + Q )d = P d(I + P d Q
)d

Q + (I − Q )P d + Q

[ ∞∑
n=0

(−P )n

](
I − P P d)

= P d(I + P d Q
)d

Q + (I − Q )P d + Q (I + P )d(I − P P d).
(8) If P 2 = P and Q 2 = Q , then I + P Q is invertible and P (I + P Q )−1 Q = 1

2 P Q . In this case,

(P + Q )d = P (I + P Q )−1 Q + Q (I − P ) + (I − Q )P

= P + Q − 3

2
P Q .

In the next part, we will be mainly concerned with upper block triangular operator matrices. However, every result
that we obtain will have an analogue for lower block triangular operator matrices, the statement and the proofs are left to
the reader with interest. However, we need following result which is proved in [21] for matrices, has been extended to a
bounded linear operator [16] and for arbitrary elements in a Banach algebra [8].

Theorem 3. If A ∈ B(X) and B ∈ B(Y ) are GD-invertible, C ∈ B(Y , X), then M = ( A C
0 B

)
are GD-invertible and Md = (

Ad X
0 Bd

)
, where

X = (
Ad)2

[ ∞∑
n=0

(
Ad)n

C Bn

](
I − B Bd) + (

I − A Ad)[ ∞∑
n=0

AnC
(

Bd)n

](
Bd)2 − AdC Bd.

In [11] it is presented an expression of (P + Q )d under the condition that Q is quasi-nilpotent such that Pπ P Q = Pπ Q P
and Q = Q Pπ . In fact, if we assume that Pπ Q (I − Pπ ) = 0 instead of Q quasi-nilpotent with Q = Q Pπ , we will get a
general result.

Theorem 4. Let P ∈ B(X) be GD-invertible and Q ∈ B(X) such that ‖Q P d‖ < 1, Pπ Q (I − Pπ ) = 0 and Pπ P Q = Pπ Q P . If Pπ Q
is GD-invertible, then P + Q is GD-invertible. In this case,

(P + Q )d = (
I + P d Q

)−1
P d + (

I + P d Q
)−1(

I − P P d) ∞∑
n=0

(
Q d)n+1

(−P )n

+
[ ∞∑

n=0

((
I + P d Q

)−1
P d)n+2

Q
(

I − P P d)(P + Q )n

](
I − P P d)

×
[

I − (P + Q )
(

I − P P d) ∞∑
n=0

(
Q d)n+1

(−P )n

]
.

Proof. Since P is GD-invertible and Pπ Q (I − Pπ ) = 0, P and Q have the form

P =
(

P1 0
0 P2

)
and Q =

(
Q 1 Q 3
0 Q 2

)
(6)

with respect to the space decomposition X = N (Pπ )⊕ R(Pπ ), where P1 is invertible and P2 is quasi-nilpotent. ‖Q P d‖ < 1
implies that I + P d Q is invertible. Pπ P Q = Pπ Q P implies that P2 Q 2 = Q 2 P2. Since Pπ Q is GD-invertible, Q 2 is GD-
invertible. It follows from Theorem 1 that

(P2 + Q 2)
d =

∞∑
n=0

(
Q d

2

)n+1
(−P2)

n.

By Theorem 3, (P + Q )d has the form

(P + Q )d =
(

(P1 + Q 1)
−1 S

0
∑∞

n=0(Q d
2 )n+1(−P2)

n

)
,

where
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S =
[ ∞∑

n=0

(P1 + Q 1)
−n−2 Q 3(P2 + Q 2)

n

][
I − (P2 + Q 2)

∞∑
n=0

(
Q d

2

)n+1
(−P2)

n

]

− (P1 + Q 1)
−1 Q 3

∞∑
n=0

(
Q d

2

)n+1
(−P2)

n.

Note that the product and the sum of P , Q , P d and Q d are still the upper triangular operator matrices. Thus

(P1 + Q 1)
−1 ⊕ 0 = (

I + P d Q
)−1

P d

and

0 ⊕
∞∑

n=0

(
Q d

2

)n+1
(−P2)

n = Pπ
∞∑

n=0

(
Q d)n+1

(−P )n.

A straightforward computation gives(
0 S
0 0

)
=

[ ∞∑
n=0

((
I + P d Q

)−1
P d)n+2

Q Pπ (P + Q )n

]
Pπ

[
I − (P + Q )Pπ

∞∑
n=0

(
Q d)n+1

(−P )n

]

− (
I + P d Q

)−1
P d Q Pπ

∞∑
n=0

(
Q d)n+1

(−P )n.

Hence

(P + Q )d = (
I + P d Q

)−1
P d + (

I + P d Q
)−1

Pπ
∞∑

n=0

(
Q d)n+1

(−P )n

+
[ ∞∑

n=0

((
I + P d Q

)−1
P d)n+2

Q Pπ (P + Q )n

]
Pπ

[
I − (P + Q )Pπ

∞∑
n=0

(
Q d)n+1

(−P )n

]
.

The proof is complete. �
Now it is a position to discuss some special cases of Theorem 4.

Corollary 5. Let P ∈ B(X) be GD-invertible and Q ∈ B(X) such that ‖Q P d‖ < 1, Pπ Q (I − Pπ ) = 0 and Pπ P Q = Pπ Q P ,

(1) (Theorem 2.3 in [11].) If Q P P d = 0 and Q is quasi-nilpotent, then Theorem 4 is simplified to

(P + Q )d =
∞∑

n=0

(
P d)n+2

Q (P + Q )n + P d.

(2) (Theorem 2.3 in [6].) If Pπ Q = Q Pπ , σ(Pπ Q ) = 0, then Theorem 4 becomes

(P + Q )d = (
I + P d Q

)−1
P d = P d(I + Q P d)−1

.

We can also prove the following result, which is a generalization of Theorem 3 and Theorem 4.

Theorem 6. Let P and Q ∈ B(X) be GD-invertible. Let F be an idempotent such that F P = P F , (I − F )Q F = 0, (P Q − Q P )F = 0
and (I − F )(P Q − Q P ) = 0. If (P + Q )F and (I − F )(P + Q ) are GD-invertible, then (P + Q ) is GD-invertible and

(P + Q )d =
∞∑

n=0

�n+2 F Q (I − F )(P + Q )n(I − F )
[

I − (P + Q )�]

+ [
I − (P + Q )�]

F
∞∑

n=0

(P + Q )n F Q (I − F )�n+2 + (I − �F Q )(I − F )� + �F ,

where

� = P d(I + P d Q
)d

Q Q d + (
I − Q Q d)[ ∞∑

n=0

(−Q )n(P d)n+1

]
+

[ ∞∑
n=0

(
Q d)n+1

(−P )n

](
I − P P d). (7)
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Proof. Since F 2 = F , we have F = I ⊕ 0 with respect to space decomposition X = R(F ) ⊕ N (F ). From F P = P F and
(I − F )Q F = 0, we know that

P =
(

P1 0
0 P2

)
and Q =

(
Q 1 Q 3
0 Q 2

)
. (8)

Since (P + Q )F and (I − F )(P + Q ) are GD-invertible, Pi + Q i (i = 1,2) are GD-invertible. Hence

(P + Q )d =
(

(P1 + Q 1)
d X

0 (P2 + Q 2)
d

)
,

where

X =
[ ∞∑

n=0

(
(P1 + Q 1)

d)n+2
Q 3(P2 + Q 2)

n

]
× [

I − (P2 + Q 2)(P2 + Q 2)
d]

+ [
I − (P1 + Q 1)(P1 + Q 1)

d] ×
[ ∞∑

n=0

(P1 + Q 1)
n Q 3

(
(P2 + Q 2)

d)n+2

]

− (P1 + Q 1)
d Q 3(P2 + Q 2)

d

by Theorem 3.
From (P Q − Q P )F = 0 and (I − F )(P Q − Q P ) = 0 we know that Pi Q i = Q i Pi (i = 1,2). Note that P , Q , P d and Q d

are all the upper triangular operator matrices. By Theorem 1, a straightforward computation shows that

(P1 + Q 1)
d ⊕ 0 = P d

1

(
I + P d

1 Q 1
)d

Q 1 Q d
1 ⊕ 0 + (

I − Q 1 Q d
1

)[ ∞∑
n=0

Q n
1

(−P d
1

)n

]
P d

1 ⊕ 0

+ Q d
1

[ ∞∑
n=0

(−Q d
1

)n
Pn

1

](
I − P1 P d

1

) ⊕ 0

= P d(I + P d Q
)d

Q Q d F + (
I − Q Q d)[ ∞∑

n=0

(−P d)n
Q n

]
P d F

+ Q d

[ ∞∑
n=0

(−Q d)n
Pn

](
I − P P d)F

= �F , (9)

where � is defined as Eq. (7). Similarly, we can prove that

0 ⊕ (P2 + Q 2)
d = (I − F )�. (10)

Observe that(
0 [((P1 + Q 1)

d)n+2 Q 3(P2 + Q 2)
n] × [I − (P2 + Q 2)(P2 + Q 2)

d]
0 0

)
= [

(�F )n+2 F Q (I − F )(P + Q )n] × [
I − (P + Q )(I − F )�]

= �n+2 F Q (I − F )(P + Q )n[I − (P + Q )�]
,

with (
0 [I − (P1 + Q 1)(P1 + Q 1)

d] × [(P1 + Q 1)
n Q 3((P2 + Q 2)

d)n+2]
0 0

)

= [
I − (P + Q )�F

] × [
(P + Q )n F Q (I − F )

(
(I − F )�)n+2]

= [
I − (P + Q )�]

(P + Q )n F Q (I − F )�n+2

and (
0 −(P1 + Q 1)

d Q 3(P2 + Q 2)
d

0 (P2 + Q 2)
d

)
= (I − �F Q )(I − F )�.

Hence
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(P + Q )d =
∞∑

n=0

�n+2 F Q (I − F )(P + Q )n[I − (P + Q )�] + [
I − (P + Q )�] ∞∑

n=0

(P + Q )n F Q (I − F )�n+2

+ (I − �F Q )(I − F )� + �F .

The proof is complete. �
3. Special cases

Let us use Theorem 6 to analyze some interesting special perturbations of linear operators. We thereby extend earlier
work by several authors [6,8,11,17,21] and partially solve a problem posed in 1975 by Campbell and Meyer [3], who consider
it difficult to establish the norm estimates for the perturbation of the Drazin inverse.

Case (1). If Q F = 0, then �F = P d F , Q �F = 0. Thus Theorem 6 reduces to

(P + Q )d =
∞∑

n=0

(
P d)n+2

F Q (P + Q )n[I − (P + Q )�] + (
I − P P d) ∞∑

n=0

(P + Q )n F Q �n+2

− P d F Q � + (I − F )� + P d F .

Case (1.a). If Q F = 0 and F = I − P P d , then P d F = 0, (P + Q )n F = Pn F . Case (1) just is

(P + Q )d =
∞∑

n=0

Pn(I − P P d)Q �n+2 + P P d�.

Case (1.a.1). If Q F = 0, F = I − P P d and Q is quasi-nilpotent, then, by Corollary 2(3),

P P d� = P P d
∞∑

n=0

(
P d)n+1

(−Q )n = P P d(I + P d Q
)−1

P d.

Case (1.a) becomes

(P + Q )d =
∞∑

n=0

Pn(I − P P d)Q
(

I + P d Q
)−(n+2)(

P d)n+2 + P P d(I + P d Q
)−1

P d.

Case (1.a.2). If Q F = F Q = 0, F = I − P P d and Q is quasi-nilpotent, then Case (1.a.1) turns into

(P + Q )d = P d(I + Q P d)−1
.

Case (1.b). If Q F = 0 and F = P P d , then

(P + Q )n F = Pn F = F Pn F = F (P + Q )n F .

So we have

(
I − P P d) ∞∑

n=0

(P + Q )n F Q �n+2 = 0.

Since

−P d F Q � + (I − F )� + P d F = (
I − P d Q

)
(I − F )� + P d F

= (
I + P d Q

)−1
Pπ� + P d F

and Pπ� = Pπ
∑∞

n=0(Q d)n+1(−P )n by Corollary 2(3) and Eq. (10), Case (1) becomes

(P + Q )d =
∞∑

n=0

(
P d)n+2

Q (P + Q )n

[
I − (P + Q )

∞∑
n=0

(
Q d)n+1

(−P )n

]

+ (
I + P d Q

)−1
Pπ

∞∑(
Q d)n+1

(−P )n + P d.
n=0
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Case (1.b.1). (See Theorem 2.3 in [11].) If Q F = 0, F = P P d and Q is quasi-nilpotent, then Case (1.b) can be simplified as

(P + Q )d =
∞∑

n=0

(
P d)n+2

Q (P + Q )n + P d.

Case (1.b.2). If Q F = F Q = 0, F = P P d and Q is quasi-nilpotent, then Case (1.b.1) becomes

(P + Q )d = P d.

Case (2). (See [8].) If Q F = (I − F )Q = 0, then � = P d − P d Q P d , (I − F )(P + Q )n = (I − F )Pn , (P + Q )n F = Pn F ,
(I − F )[I − (P + Q )�] = (I − F )(I − P P d) and (I − F )� = (I − F )P d . Theorem 6 reduces to

(P + Q )d =
∞∑

n=0

(
P d)n+2

Q Pn(I − P P d) + (
I − P P d) ∞∑

n=0

Pn Q
(

P d)n+2 + P d − P d Q P d.

Case (2.a). If Q F = (I − F )Q = P (I − F ) = 0, then Q P = Q P d = 0 and Case (2) is

(P + Q )d = (
P d)2

Q + P d.

Case (2.b). If Q F = (I − F )Q = F P = 0, then P Q = P d Q = 0 and Case (2) turns to be

(P + Q )d = Q
(

P d)2 + P d.

Remark. Case (2) shows that results of this paper are more general than the corresponding results in [8,16,21]. Cases (1.b),
(1.b.1) and (1.b.2) are also the special case of Theorem 4. Analogous results are proved in complex Banach algebras in [11].
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[11] D.S. Cvetković-Ilić, D.S. Djordjević, Y. Wei, Additive results for the generalized Drazin inverse in a Banach algebra, Linear Algebra Appl. 418 (2006)

53–61.
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