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SUMMARY

The Hippo signaling pathway is responsible for
regulating the function of TEAD family transcription
factors inmetazoans. TEADs, with their co-activators
YAP/TAZ, are critical for controlling cell differentia-
tion and organ size through their transcriptional acti-
vation of genes involved in cell growth and prolifera-
tion. Dysregulation of the Hippo pathway has been
implicated inmultiple forms of cancer. Here, we iden-
tify a novel form of regulation of TEAD family pro-
teins. We show that human TEADs are palmitoylated
at a universally conserved cysteine, and report the
crystal structures of the human TEAD2 and TEAD3
YAP-binding domains in their palmitoylated forms.
These structures show a palmitate bound within a
highly conserved hydrophobic cavity at each pro-
tein’s core. Our findings also demonstrate that this
modification is required for proper TEAD folding
and stability, indicating a potential new avenue for
pharmacologically regulating the Hippo pathway
through the modulation of TEAD palmitoylation.

INTRODUCTION

The Hippo signaling pathway is a highly conserved kinase

cascade that controls organ size and tissue homeostasis (Halder

and Johnson, 2011; Zhao et al., 2011). The key downstream ef-

fectors include yes-associated protein (YAP) and its paralog,

transcriptional co-activator with PDZ-binding motif (TAZ). These

proteins interact with transcription factors in the nucleus to

induce gene expression (Cao et al., 2008; Ota and Sasaki,

2008; Zhao et al., 2008). Upon Hippo pathway activation,

Lats1/2 phosphorylates YAP, promoting its sequestration and

inactivation in the cytoplasm by interaction with 14-3-3 proteins.

Conversely, when this pathway is inactivated YAP is not phos-

phorylated and translocates into the nucleus, where it forms a
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complex with TEA domain (TEAD) transcription factors and co-

activates the expression of multiple genes involved in cell fate

determination, polarity, proliferation, and survival (Tian et al.,

2010).

Defects in Hippo pathway regulation have been linked to un-

controlled cell proliferation and tumorigenesis (Harvey et al.,

2013;Moroishi et al., 2015; Santucci et al., 2015).Multiple human

cancers, including breast, liver, and pharyngeal cancers, show

amplification or overexpression of the YAP gene (Liu et al.,

2010; Overholtzer et al., 2006; Steinhardt et al., 2008; Zender

et al., 2006). In addition, induced expression of YAP has been re-

ported to trigger transformation of normal epithelial cells into

metastatic cells (Overholtzer et al., 2006), and recent data have

revealed that YAP is essential for the progression of pancreatic

ductal adenocarcinoma in Kras-mutant mice (Kapoor et al.,

2014). Since inhibition of the Hippo pathway leads to an activa-

tion of downstream genes, kinase components upstream of YAP

phosphorylation are tumor suppressors, while YAP and TEAD,

which together form a transcription co-activation complex, can

promote cellular transformation. Understanding the regulation

and interactions of these two proteins is therefore of critical

importance to our understanding of tumorigenesis.

Crystal structures of the C-terminal YAP-binding domain

(YBD) of TEAD1, TEAD2, and TEAD4 in the apo or co-activator

bound states (Chen et al., 2010; Jiao et al., 2014; Li et al.,

2010; Pobbati et al., 2012; Tian et al., 2010; Zhou et al., 2014)

show that this domain adopts an immunoglobulin G-like fold,

with two b sheets packing against each other to form a b sand-

wich capped with a pair of a helices (Figure 1A). The co-activator

bound complex structures with YAP or vestigial-like proteins

(Vgll) reveal that these proteins interact with TEAD via three

distinct binding interfaces, with the majority of YAP-binding

energy being driven by a short stretch of amino acids (YAP 86–

100) that form a twisted-coil conformation, and bind onto a

deep pocket centered around residue K289 in TEAD1.

Many proteins have been found to be regulated through S-pal-

mitoylation, a highly conserved process occurring in all eukary-

otic organisms that involves the attachment of 16-carbon fatty

acids onto cysteine residues via a reversible thioester linkage

(Chamberlain and Shipston, 2015; Hannoush, 2015). Palmitate
9–186, January 5, 2016 ª2016 Elsevier Ltd All rights reserved 179
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Figure 1. Structure of TEAD2 and TEAD3 Show S-Palmitoylation at a Conserved Cysteine

(A) Structural alignment of the YBDs of the four human TEAD paralogs. TEAD1-YBD (PDB: 4RE1) is shown in green. TEAD2-YBD is shown in salmon. TEAD3-YBD

is shown in blue. TEAD4-YBD (PDB: 4EAZ) is shown in yellow.

(B) Crystal structure of the TEAD3-YBD with unassigned Fo – Fc electron density (green mesh) contoured to 3.0s.

(C) Crystal structure of the TEAD2-YBD with unassigned Fo – Fc electron density (green mesh) contoured to 3.0s.

(D) MS/MS spectra of the TEAD2 palmitoylated tryptic peptide (top) and a synthetic standard (bottom).

(E) Close-up view of palmitate bound within the hydrophobic TEAD3 (top) and TEAD2 (bottom) lipid-binding pockets. 2Fo – Fc electron density (gray mesh) is

contoured to 1.0s. Protein is shown as a surface representation with hydrophobic residues colored in orange.

See also Figure S1.
can either be added to proteins spontaneously or enzymatically

by a family of DHHC motif-containing palmitoyltransferases, of

which there are 23 in humans (Fukata and Fukata, 2010; Linder

and Deschenes, 2007). Although there is no known consensus

sequence for palmitoylation, palmitoylated cysteines share com-

mon characteristics including neighboring amino acids that are

basic, a proximity to other lipidation sites, and an adjacent hy-

drophobic patch or core to stabilize the lipid modification (Ai-

cart-Ramos et al., 2011; Salaun et al., 2010). Several functional

consequences of protein palmitoylation have been identified,

such as altered signaling or enzymatic activity, modified traf-
180 Structure 24, 179–186, January 5, 2016 ª2016 Elsevier Ltd All rig
ficking, increased affinity for cellular membranes, and differential

stability (Linder and Deschenes, 2007).

Here we use a combination of structural, biophysical, and cell

biological techniques to show that all four human TEAD homo-

logs are S-palmitoylated in mammalian cells. Mutation of the

acylated cysteine to alanine results in a complete loss of TEAD

in cells, and depalmitoylation of TEAD is destabilizing, high-

lighting the critical nature of this adduct. Immunofluorescence

microscopy in multiple mammalian cell types reveals that

TEAD does not stably associate with the nuclear envelope, sug-

gesting that the function of this modification may solely be
hts reserved



Table 1. Crystallographic Data Collection and Refinement

Statistics

TEAD2 (PDB: 5EMV) TEAD3 (PDB: 5EMW)

Data Collection

Wavelength (Å) 0.9787 0.9795

Space group I121 P212121

Cell dimensions

a, b, c (Å) 79.83, 61.25, 112.67 65.31, 123.53, 150.73

a, b, g (�) 90, 101.89, 90 90, 90, 90

Resolution (Å) 58.32–2.00 (2.05–2.00) 95.54–2.55 (2.66–2.55)

Rmerge 0.063 (0.549) 0.109 (0.631)

Mean I/sI 9.9 (2.0) 9.5 (2.5)

Completeness (%) 100 (100) 94.9 (96.8)

Redundancy 3.8 (3.8) 5.0 (4.9)

Refinement

Resolution (Å) 53.54–2.00 95.54–2.55

No. of reflections 36,163 (2,696) 38,149 (4,695)

Rwork/Rfree 0.2053/0.2295 0.1887/0.2241

No. of atoms

Protein 3236 6597

Ligand/ion 34 70

Water 168 167

B factors (Å2)

Protein 47.15 42.10

Ligand/ion 57.7 47.48

Water 48.359 43.99

Root-mean-square deviations

Bond lengths (Å) 0.0153 0.0046

Bond angles (�) 1.294 0.845

Ramachandran plot

Favored (%) 98.4 98.4

Allowed (%) 1.6 1.6

Outliers (%) 0 0
restricted to overall structural stability of TEAD. Together, these

data reveal a novel mode of regulation for TEAD transcription

factors, and ultimately Hippo signaling, suggesting a potential

new approach for pharmacological intervention in diseases

associated with the dysregulation of this pathway.

RESULTS

TEAD Paralogs Are Palmitoylated at a Conserved
Cysteine
The four human TEAD protein YBDs (TEAD-YBDs) share an

average of 73% sequence identity. TEAD2-YBD is the most

divergent among these transcription factors, containing a short

insertion and sharing an average pairwise identity with the

YBDs of other human TEAD paralogs of 67%. Several crystal

structures have been reported characterizing the YBDs of hu-

man TEAD1, TEAD2, and TEAD4 proteins in either the apo state

or in complex with YAP or Vgll proteins (see below). We sought to

structurally characterize TEAD3-YBD and, to this end, crystal-

lized the protein and solved the structure to 2.55 Å resolution (Ta-
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ble 1, Figure 1B). As expected, TEAD3-YBD shares the same

overall fold as other TEAD-YBD paralogs. An alignment of the

TEAD3-YBD Ca carbons to TEAD1-YBD (PDB: 4RE1), TEAD2-

YBD (discussed below), and TEAD4-YBD (PDB: 4EAZ) struc-

tures gave root-mean-square deviations of 0.509, 0.445, and

0.535 Å, respectively (Figure 1A). The overall TEAD3-YBD fold

is composed primarily of two adjacent b sheets that are splayed

at one end to create a hydrophobic cavity capped by two a he-

lices. At the entrance to this cavity lies a universally conserved

cysteine residue (C371). To our surprise, we found significant

Fo – Fc electron density resembling that of an aliphatic chain in

this hydrophobic pocket that was connected directly to C371

(Figure 1B). Interestingly, upon solving the structure of the

TEAD2-YBD to 2.00 Å resolution, a similar Fo – Fc electron den-

sity was present and connected to C380 (Table 1, Figure 1C).

Given the shape of the density, its location in a hydrophobic

pocket, and its proximity to a conserved surface cysteine, we

surmised that TEAD3 and TEAD2 are likely lipidated. Since these

proteins were obtained by expression in Escherichia coli, which

lacks palmitoyltransferases, we hypothesize that these pro-

teins undergo a spontaneous, non-catalytic lipidation when ex-

pressed in bacterial cells.

To confirm the identity of the additional electron density in

our structures, we used intact and tandem mass spectrometry

(MS/MS) analysis of the bacterially expressed TEAD2-YBD.

The deconvoluted mass spectrum of intact TEAD2-YBD shows

two predominant masses of 30,402.20 Da and 30,640.31 Da

(Figure S1A). The 238-Da difference is consistent with a palmi-

tate modification. The presence of a non-palmitoylated mass is

likely due to reducing reagent in our purification; however, we

believe that palmitate is likely still non-covalently present in the

TEAD2-YBD hydrophobic pocket in this species based on

experiments described below. Peptide mapping experiments

were performed to identify the site of palmitoylation in TEAD2-

YBD, and three cysteine-containing tryptic peptides were

identified using a C18 column (DTQELLLCTAYVFEVSTSER;

VCSFGK; SPMCEYLVNFLHK). Selected ion-monitoring experi-

ments were subsequently performed using direct infusion of

the TEAD2-YBD digest to look for S-palmitolyated versions of

the three detected cysteine-containing peptides. A singly pro-

tonated tryptic peptide atm/z 1818.9721 consistent with the pal-

mitolyated peptide SPMCpEYLVNFLHK (3 ppmmass error) was

observed (Figure S1B). To further reinforce that the 238-Damass

addition is due to a palmitoylation event, we synthesized a palmi-

toyl peptide standard by performing a palmitoylation reaction on

the synthetic peptide SPMCEYLVNFLHK (see Supplemental

Experimental Procedures). The MS/MS spectra of the tryptic

peptide from the TEAD2-YBD digest (Figure 1D, top) and the

synthetic standard (Figure 1D, bottom) are superimposable,

providing unequivocal evidence that TEAD2-YBD is S-palmitoy-

lated at C380.

Based on these findings, we modeled an S-palmitoylated

cysteine into the unexpected electron densities in our crystal

structures at C380 of TEAD2-YBD and C371 of TEAD3-YBD (Fig-

ure 1E). The B factors for these ligands are similar to those of the

proteins as awhole (Table 1), albeit slightly higher, potentially due

to the presence of reducing reagent in our protein purifications

and thermal motion of the palmitate within the lipid-binding

site. The hydrophobic residues forming the TEAD lipid-binding
9–186, January 5, 2016 ª2016 Elsevier Ltd All rights reserved 181
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Figure 2. Mammalian Expressed TEADs Are Palmitoylated

(A) Metabolic labeling of TEAD paralogs with Alk-C16 chemical probes in

HEK293T cells. a-FLAG-680 and SA-800 are antibodies directed against the

FLAG tag of TEAD or biotinylated fatty acid, respectively.

(B) Alkyne modified fatty acids of varying length were incubated on HEK293T

cells transfected with each of the four TEAD paralogs. Alk-C# denotes the

number of carbons on each fatty acid.

IP, immunoprecipitation. See also Figure S2.
site are highly conserved among all TEAD paralogs, with only

five residues diverging in one of the four family members (Fig-

ure S1C). However, despite this conservation, lipidation of the

YBD of TEAD proteins has not previously been reported. This

finding led us to reexamine the electron density maps for every

publicly available TEAD-YBD crystal structure to look for possible

lipid electron density (Figure S1D). This analysis revealed that a

similar electron density is present to varying degrees in every

TEAD-YBD crystal structure deposited to date. Differing levels

and types of reducing agents used to purify TEAD-YBD proteins,

as well as potentially varying levels of lipid flexibility within the

binding pocket, likely account for differences in palmitate site oc-

cupancy between each study and within our own experiments. In

sum,our structural andMSstudiesof TEADproteinYBDs indicate

that these proteins are palmitoylated at C344 of TEAD1, C380 of

TEAD2, C371 of TEAD3, and C360 of TEAD4.
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TEAD Paralogs Are Palmitoylated in Mammalian Cells
As our structural work used bacterially expressed proteins, we

sought to confirm that the TEAD paralogs are also palmitoylated

in mammalian cells. Using previously established methods (Gao

and Hannoush, 2014; Hannoush, 2012; Hannoush and Arenas-

Ramirez, 2009) we metabolically labeled transiently expressed

C-terminally FLAG-tagged full-length TEAD paralogs or GFP (as

a control) in HEK293T cells with a clickable u-alkynyl palmitate

analog (Alk-C16) (Figure S2A). A FLAG immunoprecipitation

was performed, and the alkyne-labeled palmitoylated proteins

were chemoselectively ligated to biotin by a Cu(1)-catalyzed

alkyne-azide [3 + 2] Huisgen cycloaddition reaction. Anti-FLAG

AlexaFluor 680 antibody and streptavidin-IRDye 800 were used

to monitor TEAD and palmitoylation status, respectively, using

western blot analysis. In corroboration of our structural charac-

terization, we found that all four TEAD paralogs are palmitoylated

inmammalian cells (Figure 2A).Using alkynyl fatty acid analogs of

various chain lengths in a similar assay, we observed that C16

fatty acid chains were the most preferred across all four TEAD

proteins, but that C14 (myristoyl) fatty acids were also incorpo-

rated, with C13 and C18 lipid lengths observed to a much lesser

and variable extent (Figure 2B).

TEAD Palmitoylation Is Not Dynamic and Is Required for
Protein Stability
Recent studies focused on understanding the dynamics of

palmitoylation show that addition and removal of this modifica-

tion is important for the regulation of protein localization, protein

stability, and fine-tuning the activity of proteins, analogous to

phosphorylation or ubiquitination (Salaun et al., 2010). For

example, the Ras cycling pathway uses cycles of palmitoylation

and depalmitoylation to regulate its localization in the cell and,

subsequently, its signaling function (Rocks et al., 2005). To deter-

mine the rate of turnover of TEAD2 palmitoylation in mammalian

cells, we used a pulse-chase approach with Alk-C16. HEK293T

cells transiently transfected with full-length TEAD2-FLAG were

pulse labeled with Alk-C16 overnight and then chased with com-

plete medium lacking Alk-C16 over the course of 48 hr. The

depalmitoylation rate of TEAD was very slow during the time

course, with a 40% reduction of palmitoylation observed after

the 48-hr chase period (Figures 3A and 3B). These data suggest

that TEAD palmitoylation is not dynamic but rather most likely

co-exists with the protein throughout its lifetime until its ultimate

degradation. The irreversible nature of TEAD S-palmitoylation

is rather uncharacteristic for S-palmitoylated proteins due to

the reversible and dynamic nature of the thioester bond, and is

more analogous to that of Wnt proteins, which are O-palmitoy-

lated (Gao and Hannoush, 2014), and Hedgehog proteins, which

are N-palmitoylated (Buglino and Resh, 2012).

To investigate the functional role of TEAD palmitoylation,

we mutated either the palmitoylated cysteine or an adjacent

conserved lysine residue located 6.6 Å away from the cysteine

(as measured from the sulfur atom of the cysteine to the lysine

ε-amino group), and analyzed protein steady-state levels (Fig-

ures S3A and S3B). We reasoned that this lysine residue might

lower the pKa of the cysteine and thereby enable spontaneous

palmitoylation. Full-length wild-type, C380A, or K357A TEAD2-

FLAG were transiently transfected into HEK293T cells. Cells

were lysed and separated into soluble and insoluble fractions,
hts reserved
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(A) Palmitoylation turnover measurements for full-

length TEAD2 using an overnight Alk-C16 pulse

followed by a chase with unmodified complete

medium over five time points.

(B) Quantification of fraction of palmitoylated

TEAD2 from (A). Each point represents the ratio of

a single experiment with SA-800 band intensity

(palm-TEAD) measured versus a-FLAG-680

(TEAD) band intensity at each time point. Error

bars represent SD of n = 4 experiments with sig-

nificance reported (**p < 0.01 by two-way ANOVA

and Dunnett’s multiple comparison test).

(C) Western blot protein-level analysis of full-

length TEAD2 wild-type, C380A, and K357A

constructs in HEK293T cells. Cells were fraction-

ated into soluble and insoluble fractions and

blotted against FLAG and GAPDH.

(D) Thermal denaturation curves for TEAD2-YBD

(blue) and TEAD2-YBD that has been treated with

hydroxylamine (red). Data represent the averages

of three separate measurements. Error bars

represent SD of n = 3.

See also Figure S3.
and subjected to SDS-PAGE and western blot analysis using

antibodies against the FLAG tag or GAPDH as a loading control

(Figure 3C). Interestingly, both the C380A and K357A mutant

TEAD2 proteins displayed a substantial loss of overall protein

levels when compared with the wild-type protein. We believe

the enriched amount of wild-type protein found in the insoluble

fraction may be attributed to overexpressed TEAD2 that is pre-

sent in the nucleus, since the lysis procedure does not break

up the nuclear membrane.

The loss of TEAD2 when either C380 or K357 are mutated to

alanine suggested that palmitoylation is required for protein stabil-

ity. To test this directly we treated TEAD2 with hydroxylamine, a

strong reducing agent known to specifically cleave thioester

bonds at neutral pH. We then measured the thermal stabilities of

the treated and non-treated forms of TEAD2 by differential scan-

ning fluorimetry. Despite the possibility that the palmitate may

still be non-covalently bound in the lipid-binding pocket of the hy-

droxylamine-treated protein, this analysis showed a dramatic

decrease in Tm from 61.1 ± 0.2�C for the palmitoylated protein,

to 48.8 ± 0.8�C for the hydroxylamine-treated protein (Figure 3D),

demonstrating that TEAD palmitoylation stabilizes the protein.

TEAD Is Not Stably Associated with the Nuclear
Envelope
Since palmitoylation increases the hydrophobicity of cyto-

plasmic proteins, this post-translational modification has been

shown to promote their association, permanently or temporarily,

with cholesterol- and sphingolipid-rich lipid rafts (Brown, 2006;

Yang et al., 2010). Because TEAD is a transcription factor, we

hypothesized that its palmitoylation may function to localize it

onto the nuclear envelope. We used immunofluorescence and

confocal microscopy to assess the subcellular localization of

native TEAD in four mammalian tumor cell lines: a model cervi-

cal cancer cell line, HeLa; a YAP overexpressing colon cancer

cell line, OUMS-23; and two pancreatic tumor-derived cell lines

with either YAP overexpression or TEAD4 amplification, SW-
Structure 24, 17
1990 and PATU-8902, respectively. All cell lines were grown in

chamber slides for 24 hr before fixing, permeabilizing, and incu-

bating with antibodies against pan-TEAD and a nuclear pore

component protein, NUP98, to serve as a nuclear envelope

marker (see Experimental Procedures). In all four cell lines we

observe a diffuse TEAD staining located exclusively throughout

the nucleoplasm, with little to no staining detected in the cyto-

plasm (Figures 4 and S4). In contrast, NUP98 displays a diffuse

staining pattern throughout the nucleus, with the highest signal

intensity observed in a ring around the nucleus, corresponding

to the nuclear envelope of the cell. When the fluorescence pat-

terns of NUP98 and TEAD are compared with one another no

appreciable co-localization is observed, leading us to conclude

that TEAD is not stably associated with the nuclear envelope

under these equilibrium-based conditions.

DISCUSSION

As the furthest downstream regulators in the Hippo signaling

pathway, TEAD transcription factor stability is of critical impor-

tance to cell growth and proliferation. We have solved the first

structure of the TEAD3-YBD, demonstrating its high level of

structural similarity to the analogous domains of other human

TEAD-YBDs. More importantly, our structural studies of the

TEAD2- and TEAD3-YBDs have identified an S-palmitoylation

site on TEAD proteins. To date, the importance of protein S-pal-

mitoylation has centered on the fact that it is a reversible hy-

drophobic modification, the presence or absence of which can

affect the localization, function, and regulation of proteins

dynamically throughout the cell cycle. Surprisingly, S-palmitoyla-

tion of TEADdoes not seem to alter protein localization and/or as-

sociation to a membrane surface, leading us to conclude that

TEAD either does not interact with the nuclear envelope or any

other membrane-bound organelle or, if it does, the association

rate is too fast to measure under equilibrium conditions. Instead,

our thermal stability data indicate that TEAD palmitoylation is
9–186, January 5, 2016 ª2016 Elsevier Ltd All rights reserved 183
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directly responsible for the overall stability of the protein.

There are a handful of studies showing that, at least in part, pal-

mitoylation contributes to overall protein stability. For example,

palmitoylation of the A1 adenosine G-protein-coupled receptor

protects newly synthesized proteins from being proteolytically

cleaved and subsequently degraded, with an apparent 9-fold

reduction in half-life of the non-palmitoylated receptor (Gao

et al., 1999).

Most current drug discovery efforts have focused on trying to

antagonize the TEAD-YAP interaction through their protein-pro-

tein interface (Liu-Chittenden et al., 2012; Santucci et al., 2015;

Zhou et al., 2014). It remains to be seen whether the interplay be-

tween the palmitoylation of TEAD and the various degradation

pathways of cells may prove to be an attractive strategy for ther-

apeutic intervention in the Hippo pathway. Intriguingly, it has

been demonstrated recently that the TEAD central pocket is

targetable with small molecules such as flufenamic acid and its

analogs. These molecules inhibit the transcription of genes nor-

mally upregulated during YAP overexpression without affecting

the TEAD-YAP interaction (Pobbati et al., 2015). Although the

exact mechanism of TEAD inhibition by flufenamic acid has not

been determined, in light of the present findings it seems likely

that these molecules displace the palmitate from the hydropho-

bic core, which may lead to destabilization of TEAD proteins

in vivo.

Fully understanding how TEAD is palmitoylated in mammalian

systems will be essential for understanding the regulation and

dynamics of this essential signaling pathway. With proteomic ef-

forts and technological advances rapidly uncovering the com-

plete human palmitoylated proteome (Chamberlain and Ship-

ston, 2015; Hannoush, 2015), it is becoming increasingly

evident that being able to modulate the lipidation state of many

proteins will be fundamental to understanding their function

and regulation in a vast assortment of cellular processes. Impor-

tantly, these efforts will, in many cases, have direct relevance to

the development and success of new therapeutic strategies.
EXPERIMENTAL PROCEDURES

Protein Expression and Purification

TEAD2-YBD (A217-D447) and TEAD3-YBD (Q216-D435) constructs contain-

ing tobacco etch virus protease-cleavable N-terminal His tags were expressed

in E. coli BL21 (DE3) cells by autoinduction and purified by standard purifica-

tion techniques for His-tagged proteins (see Supplemental Experimental Pro-

cedures for details).
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Crystallization

TEAD2-YBD crystals of the body-centered mono-

clinic space group I121 were grown at 19�C by

hanging-drop vapor diffusion using a drop ratio
of 2:1 protein/reservoir solution. Reservoir solution contained 100 mM Tris

(pH 7.3) and 1.7–2.1 M sodium formate. Crystals were cryoprotected in reser-

voir solution supplemented with 25% glycerol.

TEAD3-YBD crystals of the primitive orthorhombic space group P212121
were also grown at 19�C by hanging-drop vapor diffusion using a drop ratio

of 2:1 protein/reservoir solution. Reservoir solution contained 100 mM sodium

acetate (pH 4.5), 100 mM calcium acetate, and 12% polyethylene glycol 4000.

Crystals were cryoprotected in reservoir solution supplemented with 30%

glycerol.

Data Collection and Structure Determination

X-Ray diffraction data were collected for TEAD2-YBD and TEAD3-YBD crys-

tals at beamlines 21-ID-F at the Advanced Photon Source and 5.0.2 at the

Advanced Light Source, respectively. Data were processed using iMosflm

(Battye et al., 2011). The TEAD2-YBD structure was solved by molecular

replacement using Phaser (McCoy et al., 2007), with the previously published

TEAD2-YBD structure (Tian et al., 2010) as a search model and two mole-

cules in the asymmetric unit. The structure was then rebuilt in Coot (Emsley

and Cowtan, 2004), and subjected to iterative rounds of refinement and

rebuilding using Phenix (Adams et al., 2010) and Coot. Data processing

and refinement statistics are summarized in Table 1. Clear extra density

at C380 was modeled as an S-palmitoyl cysteine for each molecule in the

asymmetric unit.

The structure of TEAD3-YBD was also solved by molecular replacement us-

ing Phaser, with an unpalmitoylated version of our TEAD2-YBD structure as

the search model and four molecules in the asymmetric unit. The structure

was then rebuilt manually in Coot using the TEAD3-YBD sequence as a guide,

and subjected to iterative rounds of refinement and rebuilding using Phenix

and Coot. Data processing and refinement statistics are summarized in Table

1. Clear extra density at C371wasmodeled as an S-palmitoyl cysteine for each

molecule in the asymmetric unit.

Metabolic Lipid Labeling, ClickChemistry, andVisualization of TEAD

Alkyne fatty acid labeling was performed as described previously (Gao and

Hannoush, 2014; Hannoush, 2012; Hannoush and Arenas-Ramirez, 2009). A

detailed description of this and our western blotting analysis protocols are

described in Supplemental Experimental Procedures.

Immunofluorescence Imaging

HeLa, PaTu-8902, OUMS-23, or SW-1990 cells were plated on poly-lysine-

coated eight-well chamber cells at 20,000 cells/well. Following 24 hr of growth,

cells were fixedwith 4%paraformaldehyde in PBS at pH 7.4. Following perme-

abilization (0.1% Triton X-100 in PBS), blocking (2% BSA in PBS), and primary

antibody incubation (1:100 dilution), antibodies were visualized using Alexa

dye-conjugated secondary antibodies (1:1,000 dilution). Images were

collected on a Nikon A1R confocal microscope with a 100 3 1.45 Plan Apo

oil-immersion objective. Alexa 488 and Alexa 647 were imaged with the 488

and 640 laser lines, respectively. The differential interference contrast (DIC)

image was collected simultaneously with the 488 laser. DIC images presented

in Figures 4 and S4 were processed with shading correction (background

flexibility, 30; signal, average) and unsharp mask (power, 0.5; area, 5), using



NIS-Elements Imaging Software (Nikon) to correct for light variation across im-

ages and enhanced contrast to better visualize cell outlines.
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