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Abstract

In this paper we study U -bounds in relation to L1-type coercive inequalities and isoperimetric prob-
lems for a class of probability measures on a general metric space (RN,d). We prove the equivalence of
an isoperimetric inequality with several other coercive inequalities in this general framework. The useful-
ness of our approach is illustrated by an application to the setting of H-type groups, and an extension to
infinite dimensions.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

An effective technology to study coercive inequalities involving (sub-)gradients and a variety
of probability measures on metric measure spaces was recently introduced in [23]. This approach
was based on so-called U -bounds, that is estimates of the following form
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∫
|f |qU(d)γq dμ � Cq

∫
|∇f |q dμ + Dq

∫
|f |q dμ.

Here q ∈ [1,∞), d is a metric associated to the (sub-)gradient ∇ , γq,Cq,Dq ∈ (0,∞) are con-
stants independent of the function f , and dμ ≡ e−U(d) dλ is a probability measure, where U(d)

is a function that is bounded from below and has suitable growth at infinity, and dλ is a natural
underlying measure. While the consequences of the bounds corresponding to q > 1 were exten-
sively explored there, the limiting case was left open. In this paper we show that there is a natural
direct way from U -bounds with q = 1 to isoperimetric information. In fact we show an essential
equivalence of such a bound with an L1Φ-entropy inequality

EntΦμ (f ) � cμ|∇f |

where

EntΦμ (f ) ≡ μΦ(f ) − Φ(μf )

is defined with a suitable Orlicz function Φ , as well as the equivalence with an isoperimetric
inequality with a suitable profile function. We first recall an interesting result of [26] showing
that in case of the Gaussian measures on Euclidean spaces, the functions f such that μ|f | < ∞
belong to the Orlicz space defined by a function Φ(s) = s(log(1 + s))

1
2 . Also, on the level of

isoperimetry for probability measures, we would like to recall a comprehensive characterisation
of isoperimetric profiles for measures on the real line obtained in [10] (see also [5,12,14,29]
and references therein) as well as the isoperimetric functional inequalities studied in [8] (see
also [2,3,12,33]). These results provided additional motivation to our work. In particular, in [12]
the authors conjecture that for super-Gaussian distributions one should expect an analogue of
the isoperimetric functional inequality (IFI2) introduced in [8], with a suitable non-Gaussian
isoperimetric function and a different than Euclidean length of the gradient. In [2] (an alternative
to [27]) the authors gave a proof of the p = 1 (sub-)gradient bound

|∇Ptf |p � Cp(t)Pt |∇f |p

for the heat kernel on the Heisenberg group, and as a consequence obtained an (IFI2) inequality
in this case. We mention that, for p > 1, gradient bounds were earlier established in [16], while
the logarithmic Sobolev inequality for heat kernels on Heisenberg-type groups was established
in [23].

The other interesting question is what are the optimal equivalent conditions, on the one side
characterising the properties of the semigroup for which the form associated to the generator is
given by the square of a fixed sub-gradient, and on the other side characterising the isoperimetric
properties (e.g. in the form of some isoperimetric functional inequality with a given length of
the sub-gradient). In the particular situation when p = 1 gradient bounds are known, and an
equivalence relation (between (IFI2) and the logarithmic Sobolev inequality) was established
in [19]. It seems that we are still away from fully understanding the peculiarity of this situation
and in particular answering the question what kind of additional conditions are necessary to
establish equivalence between conditions of different orders in the length of the gradient (as well
as finding a more direct proof of this equivalence without going through the semigroup route).
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From the point of view of applications to an infinite dimensional probabilistic set-up involving
an infinite product of non-compact Lie groups, it is important that we are dealing with inequalities
satisfying the tensorisation property. Then one can attack the interesting question of for which
non-product measures one can prove similar properties. This question, when the underlying space
is as we wish, appears to have some new challenging features and so far, besides the results
of [24] where logarithmic Sobolev inequalities (LSq ), q > 1, are shown for some classes of
measures, not much is known. Therefore in the present paper we also contribute to this topic by
proving tight L1Φ-entropy inequalities for suitable infinite dimensional Gibbs measures.

The organisation of our paper is as follows. In Section 2, starting from U -bounds, we prove
the L1Φ-entropy inequality via a route involving “dressing up” the classical Sobolev inequality
and a tightening procedure using a generalised Rothaus type lemma of [28], extended relative
entropy bounds of [20], and the following Cheeger type inequality

μ|f − μf | � c0μ|∇f |.

In fact, this type of the Cheeger inequality is shown (in Theorem 2.7) to be a simple consequence
of a similar inequality in balls together with U -bounds, provided the function U grows to infinity
with the size of the ball.

In Section 3 we discuss some applications to isoperimetric and functional isoperimetric in-
equalities. Section 4 contains some consequences of the L1Φ-entropy inequality. In particular
this includes the (LSq ) inequality and U -bounds. In Theorem 4.5 we summarise all interre-
lations between the properties discussed before. Section 5 is devoted to applications of the
theory developed in the previous sections to the important class of H-type groups, where one
can check the U -bounds for probability measures with density (essentially) dependent on the
Carnot–Carathéodory distance. The interesting outcome, which comes out naturally within the
presented approach, includes a proof of the p = 1 sub-gradient bounds for heat kernels on H-type
groups which could potentially be extended to more complicated non-compact groups. Finally
in Section 6 we prove the L1Φ-entropy inequalities for non-product probability measures on an
infinite product of H-type groups, which allows us in particular to obtain some new isoperimetric
information. Additionally we prove here the (IFI2) inequality in such a setup; in fact even in the
case of the full gradient setup, this provides an interesting extension of results in [33] allowing
us to include the important case of unbounded interactions.

2. L1Φ-entropy inequalities from U -bounds

Throughout this paper we will be working in R
N equipped with a metric d : R

N × R
N →

[0,∞) and Lebesgue measure dλ. For r � 0, we will set

B(r) := {
x: d(x) � r

}
,

where d(x) := d(x,0).
We will also let ∇ be a general sub-gradient in R

N i.e. ∇ is a finite collection {X1, . . . ,Xm} of
possibly non-commuting fields. Assume that the divergence of each of these fields with respect

to the Lebesgue measure λ on R
N is zero. Set � := ∑m

X2 and |∇f | = (
∑m

(Xif )2)
1
2 .
i=1 i i=1
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Theorem 2.1. Let U be a locally Lipschitz function on R
N , which is bounded from below and

is such that Z = ∫
e−U dλ < ∞. Let dμ = e−U

Z
dλ, so that μ is a probability measure on R

N .
Suppose that the following classical Sobolev inequality is satisfied

(∫
|f |1+ε dλ

) 1
1+ε

� a

∫
|∇f |dλ + b

∫
|f |dλ (1)

for some constants a, b ∈ [0,∞), ε > 0 and all locally Lipschitz functions f , and moreover that
for some A,B ∈ [0,∞) we have

μ
(|f |(|U |β + |∇U |)) � Aμ|∇f | + Bμ|f | (2)

for some β ∈ (0,1] and all such f . Then there exist constants C,D ∈ [0,∞) such that

μ

(
|f |

∣∣∣∣log
|f |

μ|f |
∣∣∣∣
β)

� Cμ|∇f | + Dμ|f | (3)

for all locally Lipschitz functions f .

Remark 2.2. Inequality (1) should be interpreted as a condition on the gradient ∇ .

Proof. Without loss of generality, we may suppose that f � 0 and U � 0. Indeed, otherwise we
may apply (3) to the positive and negative parts of f separately. Moreover, if U � −K , with
K � 0, we have that U + K � 0 and then we can replace f by f e−K in (3).

First note that

μ

(
f

∣∣∣∣log
f

μf

∣∣∣∣
β)

= μ

(
f

[
log+

f

μf

]β)
+ μ

(
f

[
log

μf

f

]β

1{f �μf }
)

� μ

(
f

[
log+

f

μf

]β)
+ e−βββμ(f ),

where we have used that supx∈(0,1) x(log 1
x
)β = e−βββ with x = f

μf
. Thus it suffices to prove

that

μ

(
f

[
log+

f

μf

]β)
� Cμ|∇f | + Dμ(f ), (4)

with some constants C,D ∈ (0,∞) independent of f . Suppose that μ(f ) = 1. With F ≡ f e−U

and ε ∈ (0,1) sufficiently small, we have

∫
F

[
log+(F )

]β
dλ =

∫
{F�1}

F

[
1

ε
log

(
Fε

)]β

dλ. (5)

Now, by Jensen’s inequality (since, for β ∈ (0,1], the function (logx)β is concave on x � 1)
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∫
{F�1}

F

[
1

ε
log

(
Fε

)]β

dλ =
∫
{F�1} Fdλ

εβ

∫
{F�1}

F∫
{F�1} F dλ

[
log

(
Fε

)]β
dλ

�
∫
{F�1} Fdλ

εβ

[
log

∫
{F�1} F

1+ε dλ∫
{F�1} F dλ

]β

= (1 + ε)β
∫
{F�1} F dλ

εβ

[
log

(
∫
{F�1} F

1+ε dλ)
1

1+ε

(
∫
{F�1} F dλ)

1
1+ε

]β

�
(1 + ε)β

∫
{F�1} F dλ

εβ

[
log

(
∫
{F�1} F

1+ε dλ)
1

1+ε

(
∫
{F�1} F dλ)

1
1+ε

+ 1

]
,

using the simple fact that xβ � x + 1 for all x � 0. Thus, since logx � x − 1 for all x � 0,

∫
{F�1}

F

[
1

ε
log

(
Fε

)]β

dλ �
(1 + ε)β

∫
{F�1} F dλ

εβ

[
(
∫
{F�1} F

1+ε dλ)
1

1+ε

(
∫
{F�1} F dλ)

1
1+ε

]
.

Since we have assumed that μ(f ) = 1, we have

∫
{f e−U �1}

f e−U dλ/Z ≡
∫

{F�1}
F dλ/Z � 1,

so that

1

(
∫
{F�1} F dλ)

1
1+ε

� Z
ε

1+ε∫
{F�1} F dλ

.

Thus

∫
{F�1}

F

[
1

ε
log

(
Fε

)]β

dλ � (1 + ε)βZ
ε

1+ε

εβ

(∫
F 1+ε dλ

) 1
1+ε

� (1 + ε)βZ
ε

1+ε

εβ

(
a

∫ ∣∣∇(F )
∣∣dλ + bZ

)
,

provided ε > 0 is chosen sufficiently small so that in the last step we can apply the classical
Sobolev inequality (1). Dividing both sides by the normalisation factor Z and recalling F ≡
f e−U , this implies

∫
f

[
log+

(
f e−U

)]β
dμ � c1μ|∇f | + c2μ

(
f |∇U |) + c3, (6)
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with dμ ≡ 1
Z

e−U dλ and c1 = c2 = (1 + ε)βaZ
ε

1+ε /εβ , c3 = (1 + ε)βbZ
ε

1+ε /εβ . Now consider
the left-hand side of (6). Since β ∈ (0,1], (x − y)β � xβ − yβ for x � y � 0. Applying this with
x = logf and y = U � 0, we have∫

f
[
log+

(
f e−U

)]β
dμ =

∫
{f �eU }

f (logf − U)β dμ

�
∫

{f �eU }
f (logf )β dμ −

∫
{f �eU }

f Uβ dμ

= μ
(
f [log+ f ]β) −

∫
{1�f �eU }

f (logf )β dμ

−
∫

{f �eU }
f Uβ dμ

� μ
(
f [log+ f ]β) −

∫
{1�f }

f Uβ dμ.

Combining this with (6) we see that

μ
(
f [log+ f ]β)

� c1μ|∇f | + c2μ
(
f |∇U |) + c3 +

∫
{1�f }

f Uβ dμ

� c1μ|∇f | + max{c2,1}μ(
f

(
Uβ + |∇U |)) + c3

�
(
c1 + max{c2,1}A)

μ|∇f | + c3 + max{c2,1}B,

where we have used (2) in the last step. Finally, for general f � 0, we apply the above inequality
to f/μ(f ) to arrive at (4). �

As a corollary, we can also state the following perturbation result.

Corollary 2.3. Let U and μ be as in Theorem 2.1, and suppose conditions (1) and (2) are
satisfied. Let W be a locally Lipschitz function such that

∫
e−W dμ < ∞ and

|∇W | � δ
(|U |β + |∇U |) + C(δ), |W |β � a0

(|U |β + |∇U |) + a1 (7)

almost everywhere, with some 0 < δ < 1
A

and C(δ), a0, a1 ∈ (0,∞). Then there exist constants

C̃ and D̃ such that, for all locally Lipschitz functions f ,

μ̃

(
|f |

∣∣∣∣log
|f |

μ̃|f |
∣∣∣∣
β)

� C̃μ̃|∇f | + D̃μ̃|f |, (8)

where μ̃ is the probability measure on R
N given by μ̃(dλ) := e−Wμ(dλ)/Zμ̃, with Zμ̃ ≡

μ(e−W).
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Proof. Take f � 0. Since (2) holds by assumption, we can apply it to the function f e−W . This
yields

μ̃
(
f

(|U |β + |∇U |)) � Aμ̃|∇f | + Aμ̃
(
f |∇W |) + Bμ̃(f )

� Aμ̃|∇f | + δAμ̃
(
f

(|U |β + |∇U |)) + (
B + AC(δ)

)
μ̃(f )

using (7). Thus, since δA < 1, we have that

μ̃
(
f

(|U |β + |∇U |)) � Ãμ̃|∇f | + B̃μ̃(f ) (9)

for Ã = A/(1 − δA), B̃ = (B +AC(δ))/(1 − δA). Replacing f by f e−W in (3) of Theorem 2.1,
we get

μ̃

(
f

∣∣∣∣log
f e−W

μ̃(f )Zμ̃

∣∣∣∣
β)

� Cμ̃|∇f | + Cμ̃
(
f |∇W |) + Dμ̃(f ).

Using this together with (9) and the elementary inequality (x +y)β � xβ +yβ which holds when
x, y � 0 and β ∈ (0,1] yields

μ̃

(
f

∣∣∣∣log
f

μ̃(f )

∣∣∣∣
β)

� Cμ̃|∇f | + μ̃
(
f

(|W |β + C|∇W |)) + (
D + | logZμ̃|β)

μ̃(f )

� Cμ̃|∇f | + a0 max{1,C}μ̃(
f

(|U |β + |∇U |)) + (
a1 + D + | logZμ̃|β)

μ̃(f )

� C̃μ̃|∇f | + D̃μ̃(f ),

where C̃ = C + a0 max{1,C}Ã and D̃ = a1 + D + | logZμ̃|β + a0 max{1,C}B̃ . The inequality
for general f follows in similar way by applying the above inequality to the positive and negative
parts of f separately. �

The resulting inequality in Theorem 2.1 is a defective inequality, in the sense that it contains a
term involving μ|f | on the right-hand side. For our purposes this type of inequality is not strong
enough, and therefore we now aim to prove a tightened inequality of the following form

EntΦμ
(|f |) := μ

(
Φ

(|f |)) − Φ
(
μ|f |) � cμ|∇f |, (10)

where Φ(x) = x(log(1 + x))β,β ∈ (0,1], and c ∈ (0,∞) is a constant independent of f . We
accomplish this in the situation (see Theorem 2.5 below) when we have the following Cheeger
type inequality

μ|f − μf | � c0μ|∇f |
with a constant c0 ∈ (0,∞) independent of f .

A bound of the form described in (10) will be called in what follows an L1Φ-entropy inequal-
ity. It is an example of a (non-homogeneous) additive Φ-entropy inequality, as studied in [5]
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and [15]. To arrive at the desired inequality, our strategy will be as follows. We will first use
Theorem 2.1 to prove a defective L1Φ-entropy inequality, that is an inequality of a similar form
but containing additionally on its right-hand side a term proportional to μ|f |. Then we will adapt
some ideas of Rothaus [30], generalised in [12], to show that such a defective inequality can be
tightened. We begin by proving the following lemma.

Lemma 2.4. Let Φ(x) = x(log(1 + x))β,β ∈ (0,1] and let μ be a given probability measure.
Then there exists a constant κ ∈ [0,∞) such that for any functions f and g satisfying 0 � g � f ,
μf < ∞, one has

EntΦμ (g) � μ

(
f

[
log+

(
f

μf

)]β)
+ κμ(f ).

Proof. We have that

EntΦμ (g) = μ
(
g
[(

log(1 + g)
)β − (

log(1 + μg)
)β])

� μ

(
g

[
log

(
1 + g

μg

)]β)

� μ

(
f

[
log

(
1 + g

μg

)]β)
, (11)

since g � f . Set F(x) := (log(1 + x))β for x ∈ [0,∞). Then F is increasing and concave.
Moreover, there exists a constant θ ∈ (0,∞) such that xF ′(x) � θ for all x. Following [20], we
now claim that

xF(y) � xF(x) + θy (12)

for all x, y � 0. Indeed, if y � x this is trivial. If x � y, we have

x
(
F(y) − F(x)

) = x
F(y) − F(x)

y − x
(y − x) � xF ′(x)y

� θy.

Setting x = f
μf

and y = g
μg

in (12) and integrating both sides with respect to the measure μ

yields

μ

(
f

[
log

(
1 + g

μg

)]β)
� μ

(
f

[
log

(
1 + f

μf

)]β)
+ θμ(f ).

Thus, by (11)

EntΦμ (g) � μ

(
f

[
log

(
1 + f

)]β)
+ θμ(f ). (13)
μf
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Now

μ

(
f

[
log

(
1 + f

μf

)]β)
= μ

(
f

[
log

(
1 + f

μf

)]β

1{f �μf }
)

+ μ

(
f

[
log

(
1 + f

μf

)]β

1{f �μf }
)

� (log 2)βμ(f ) + μ

(
f

[
log

(
2f

μf

)]β

1{f �μf }
)

= (log 2)βμ(f )

+ μ

(
f

[
log 2 + log

(
f

μf

)]β

1{f �μf }
)

� 2(log 2)βμ(f ) + μ

(
f

[
log+

(
f

μf

)]β)
,

using once again the inequality (x + y)β � xβ + yβ for x, y � 0 and β ∈ (0,1]. Combining this
with (13), we arrive at

EntΦμ (g) � μ

(
f

[
log+

(
f

μf

)]β)
+ (

2(log 2)β + θ
)
μ(f ),

which completes the proof. �
Theorem 2.5. Suppose U , λ and μ are as in Theorem 2.1. In addition, suppose that the following
Cheeger type inequality holds

μ|f − μf | � c0μ|∇f | (14)

for some c0 > 0 and all locally Lipschitz functions f . Then there exists c ∈ (0,∞) such that (10)
holds, i.e. for any locally Lipschitz function f , we have

EntΦμ
(|f |) � cμ|∇f |,

where Φ(x) = x(log(1 + x))β .

Proof. By Lemma A.1 of the appendix of [28], we have that there exist constants ã and b̃ such
that

EntΦμ
(
f 2) � ãEntΦμ

(
(f − μf )2) + b̃μ(f − μf )2.

Thus, for any t ∈ R, we have that

EntΦμ |f + t | = EntΦμ
[(|f + t | 1

2
)2]

� ãEntΦμ
[(|f + t | 1

2 − μ|f + t | 1
2
)2] + b̃μ

(|f + t | 1
2 − μ|f + t | 1

2
)2

. (15)
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Let G = (|f + t | 1
2 − μ|f + t | 1

2 )2. Note that we can write

G = (|f + t | 1
2 − μ|f + t | 1

2
)2 =

(∫ ∣∣f (ω) + t
∣∣ 1

2 − ∣∣f (ω̃) + t
∣∣ 1

2 dμ(ω̃)

)2

�
∫ (∣∣f (ω) + t

∣∣ 1
2 − ∣∣f (ω̃) + t

∣∣ 1
2
)2

dμ(ω̃)

�
∫ ∣∣f (ω) − f (ω̃)

∣∣dμ(ω̃)

� |f | + μ|f |,

using the elementary inequality ||x + t | 1
2 − |y + t | 1

2 | � |x − y| 1
2 in the last but one step. Hence,

we have by (15) that

EntΦμ |f + t | � ãEntΦμ (G) + 2b̃μ|f |. (16)

Since 0 � G � |f | + μ|f |, by Lemma 2.4 and Theorem 2.1, we have

EntΦμ (G) � μ

((|f | + μ|f |)[log+
|f | + μ|f |

μ(|f | + μ|f |)
]β)

+ 2κμ|f |
� Cμ|∇f | + 2(D + κ)μ|f |. (17)

Combining (16) and (17) yields

sup
t∈R

EntΦμ |f + t | � ãCμ|∇f | + 2
(
ã(D + κ) + b̃

)
μ|f |. (18)

This implies the following bound

EntΦμ |f | � ãCμ|∇f | + 2
(
ã(D + κ) + b̃

)
μ|f − μf |. (19)

Finally we can apply the Cheeger type inequality (14) to the last term on the right-hand side
of (19) to arrive at

EntΦμ
(|f |) � cμ|∇f |,

with c = ãC + 2c0(ã(D + κ) + b̃). �
In the same spirit as Corollary 2.3, this inequality is stable under perturbations of the following

type.

Corollary 2.6. Let U , λ and μ be as in Theorem 2.1. Suppose also that the Cheeger type
inequality (14) holds. As in Corollary 2.3, let W be a real function which is locally Lipschitz
and such that

∫
e−W dμ < ∞ and

|∇W | � δ
(|U |β + |∇U |) + C(δ), |W |β � a0

(|U |β + |∇U |) + a1
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for some δ < 1
A

,C(δ), a0, a1 ∈ (0,∞) and β ∈ (0,1]. Moreover, let V be a measurable function
such that

osc(V ) ≡ supV − infV < ∞.

Then there exists a constant ĉ such that, for all locally Lipschitz functions f ,

EntΦ
μ̂

(|f |) � ĉμ̂|∇f |,

where μ̂ is the probability measure on R
N given by

μ̂(dλ) := e−W−V μ(dλ)/Ẑ,

with a normalisation constant Ẑ ∈ (0,∞) and Φ(x) = x(log(1 + x))β .

Proof. In the case V = 0, the result is obtained by following the proof of Theorem 2.5, using
Corollary 2.3 where necessary. In the case V 	= 0, by Lemma 3.4.2 of [1], we may write

EntΦ
μ̂

(|f |) = inf
t∈[0,∞)

μ̂
(
Φ

(|f |) − Φ ′(t)
(|f | − t

) − Φ(t)
)

� eosc(V )Z0

Ẑ
inf

t∈[0,∞)

∫ (
Φ

(|f |) − Φ ′(t)
(|f | − t

) − Φ(t)
)e−W

Z0
dμ

where Z0 = ∫
e−W dμ. Applying the above case when V = 0 to the measure e−W

Z0
dμ yields

EntΦ
μ̂

(|f |) � eosc(V )Z0

Ẑ
c′

∫
|∇f |e

−W

Z0
dμ

� c′e2 osc(V )μ̂|∇f |,

for some constant c′, so that the result holds. �
In Theorem 2.5 we assume that the Cheeger type inequality (14) holds, together with inequal-

ities (1) and (2). However, we note below that under some conditions it is possible to deduce the
Cheeger type inequality directly from a weaker version of the U -bound (2), using the method
in [23].

Theorem 2.7. Let dμ = e−U

Z
dλ be probability measure on RN , and suppose that the following

inequality is satisfied

μ
(
f |U |β)

� Aμ|∇f | + Bμ|f |, (20)

for some β > 0 and all locally Lipschitz functions f . Suppose also that:
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(a) for any L � 0 there exists r = r(L) ∈ (0,∞) such that

{|U |β � L
} ⊂ B(r) (21)

for some ball B(r) of radius r ;
(b) for r = r(L) there exists mr ∈ (0,∞) such that the following Poincaré inequality in the ball

B(r) is satisfied

∫
B(r)

∣∣∣∣f − 1

λ(B(r))

∫
B(r)

f dλ

∣∣∣∣dλ � 1

mr

∫
B(r)

|∇f |dλ (22)

for all suitable functions f .

Then there exists a constant c0 such that

μ|f − μf | � c0μ|∇f |

for all locally Lipschitz functions f .

Proof. We have that

μ|f − μf | � 2μ|f − m|

for all m ∈ R. Now for L � 0 we have

μ|f − m| � μ
(|f − m|1{|U |β�L}

) + μ
(|f − m|1{|U |β�L}

)
. (23)

We have that {|U |β � L} ⊂ B(r) for some r = r(L) ∈ (0,∞), so that putting m = 1
λ(B(r))

×∫
B(r)f dλ, and noting that on the set {|U |β � R} there exists a constant Ar such that

1

Ar

� dμ

dλ
� Ar,

we can bound the first term using assumption (a). Indeed,

μ
(|f − m|1{|U |β�L}

)
� Ar

∫
B(r)

∣∣∣∣f − 1

λ(B(r))

∫
B(r)

f dλ

∣∣∣∣dλ

� Ar

mr

∫
B(r)

|∇f |dλ � A2
r

mr

μ|∇f | (24)

using (22). On the other hand, using (20), we have
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μ
(|f − m|1{|U |β�L}

)
� 1

L
μ

(|f − m||U |β)
� A

L
μ|∇f | + B

L
μ|f − m|. (25)

Using estimates (24) and (25) in (23), and taking L large enough ends the proof. �
We can now combine all the results of this section into the following theorem.

Theorem 2.8. Let U , λ and μ be as in Theorem 2.1.
Suppose also that conditions (a) and (b) of Theorem 2.7 are satisfied. Then there exists c ∈

(0,∞) such that (10) holds, i.e.

EntΦμ
(|f |) � cμ|∇f |

for all locally Lipschitz functions f , where Φ(x) = x(log(1 + x))β .

To conclude this section, we finally note that the L1Φ-entropy inequality (10) can be ten-
sorised in the following sense.

Lemma 2.9 (Tensorisation). Let I be a finite index set, and νi, i ∈ I be probability measures.
Set νI := ⊗

i∈I νi . Suppose that for each i ∈ I , νi satisfies the L1Φ-entropy inequality (10) with
a constant c(i) ∈ (0,∞). Then so does νI with constant maxi∈I {c(i)}.

Proof. The proof follows by induction. The key observation is as follows: for J ⊂ I and k /∈ J ,
one has

νk ⊗ νJ Φ(f ) − Φ(νk ⊗ νJ f ) = νk

(
νJ Φ(f ) − Φ(νJ f )

)
+ (

νkΦ(νJ f ) − Φ
(
νk(νJ f )

))
� νk

(∑
j∈J

cJ νJ |∇j f |
)

+ ckνk|∇kνJ f |

� max(cJ , ck)
∑

j∈J∪k

νk ⊗ νJ |∇j f |. �

3. Isoperimetric inequalities

In this section our aim is to derive isoperimetric information for the measure μ starting from
L1Φ-entropy inequalities. We assume that μ is non-atomic and that the distance d on R

N is
related to the modulus of the gradient of a function f : R

N → R by

|∇f |(x) = lim sup
d(x,y)↓0

|f (x) − f (y)|
d(x, y)

. (26)

As usual, we define the surface measure of a Borel set A ⊂ R
N by
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μ+(A) = lim inf
ε↓0

μ(Aε \ A)

ε

where Aε = {x ∈ R
n: d(x,A) < ε} is the (open) ε-neighbourhood of A (with respect to d). We

are concerned with a problem of estimating the isoperimetric profile of the measure μ, that is a
function Iμ : [0,1] → R

+ defined by

Iμ(t) = inf
{
μ+(A): A Borel such that μ(A) = t

}
(with Iμ(0) = Iμ(1) = 0). By definition it is the largest function such that the following isoperi-
metric inequality holds

Iμ

(
μ(A)

)
� μ+(A). (27)

For q > 1 and p such that 1
q

+ 1
p

= 1, we define functions Uq = fp ◦ F−1
p where fp is the

density of the measure dνp(x) = e−|x|p
Zp

dx on R and F ′
p = fp (here, |x| denotes the Euclidean

norm of x ∈ R). This is motivated by the fact that Uq is the isoperimetric function of νp in

dimension 1. It is known (see [12]) that Uq(t) is symmetric and behaves like G(t) = t (log( 1
t
))

1
q

near the origin so that for some constant Lq > 0, we have

1

Lq

G
(
min(t,1 − t)

)
� Uq(t) � LqG

(
min(t,1 − t)

)
(28)

for all t ∈ [0,1].

Theorem 3.1. Assume that the L1Φ-entropy inequality

EntΦμ
(|f |) � cμ|∇f |

holds for some constant c ∈ (0,∞) and all locally Lipschitz functions f , where Φ(x) =
x(log(1+x))β and β ∈ (0,1]. Then Iμ � 1

c̃
Uq with some constant c̃ > 0, q = 1

β
and the measure

μ satisfies an isoperimetric inequality of the form

Uq(t) � c̃μ+(A) (29)

for all a Borel sets A of measure t = μ(A).

Proof. When applied to a non-negative function f such that μf = 1, the L1Φ-entropy inequality
becomes

μ
(
f

((
log(1 + f )

)β − (log 2)β
))

� cμ|∇f |,

which implies that for all non-negative f (not identically 0) we have

μ

(
f

((
log

(
1 + f

))β

− (log 2)β
))

� cμ|∇f |. (30)

μf
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Let A be a Borel set with measure t = μ(A). To start with, suppose that t ∈ [0, 1
2 ]. We can

approximate the indicator function of A by a sequence of Lipschitz functions (fn)n∈N satisfying

lim sup
n→∞

μ|∇fn| � μ+(A)

(see [10, Lemma 3.5]). Taking fn in (30) and passing to the limit as n → ∞ yields

t

((
log

(
1 + 1

t

))β

− (log 2)β
)

� cμ+(A). (31)

We now observe that for t ∈ [0, 1
2 ] we have

η

(
log

(
1

t

))β

�
(

log

(
1 + 1

t

))β

− (log 2)β (32)

with η = (
log 3
log 2 )β − 1 > 0. This implies

t

(
log

(
1

t

))β

� c

η
μ+(A), (33)

for all t ∈ [0, 1
2 ]. Thus, by the equivalence relation (28), we have that

Uq(t) � c̃μ+(A) (34)

for all t ∈ [0, 1
2 ], with c̃ = c

η
Lq .

Now suppose that t = μ(A) ∈ ( 1
2 ,1]. For functions f ∈ [0,1], we can apply (30) to 1 − f ,

which yields

μ

(
(1 − f )

((
log

(
1 + 1 − f

1 − μf

))β

− (log 2)β
))

� cμ|∇f |.

If we now take fn in this inequality (where (fn)n∈N is again the Lipschitz approximation of the
characteristic function of A) and pass to the limit as n → ∞, we see that

(1 − t)

((
log

(
1 + 1

1 − t

))β

− (log 2)β
)

� cμ+(A).

Writing s = 1 − t ∈ [0, 1
2 ) and using (32) now gives

s

(
log

(
1

s

))β

� c

η
μ+(A). (35)

Thus by (28) again, we have Uq(1 − t) = Uq(s) � c̃μ+(A) for all t ∈ ( 1
2 ,1] with c̃ = c

η
Lq . By

symmetry of Uq therefore Uq(t) � c̃μ+(A) for t ∈ ( 1
2 ,1], which combined with (34) yields the

result. �
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An important corollary of this result is the following:

Corollary 3.2. Assume that the L1Φ-entropy inequality

EntΦμ
(|f |) � cμ|∇f |

holds for some constant c ∈ (0,∞) and all locally Lipschitz functions f , where Φ(x) =
x(log(1 + x))β and β ∈ (0,1]. Then there exists a constant c0 such that

μ|f − μf | � c0μ|∇f |. (36)

Proof. We note that if β = 1/q,

Uq(t) � 1

Lq

min(t,1 − t) log

(
1

min(t,1 − t)

)1/q

� (log 2)1/q

Lq

min(t,1 − t).

Thus by Theorem 3.1, we have that

min(t,1 − t) � c̃
Lq

(log 2)β
μ+(A),

for t = μ(A), which is Cheeger’s isoperimetric inequality on sets. This is equivalent (up to a
constant) to its functional form

μ|f − μf | � c0μ|∇f |

(see for example [11]). �
Following an argument of [26] we can pass from the isoperimetric statement above to in-

equality (4). We note that in our general setting, the following coarea inequality is available, (for
a proof see e.g. [10, Lemma 3.2]),

μ|∇f | �
∫
R

μ+({f > s})ds (37)

for locally Lipschitz functions f .

Proposition 3.3. If the measure μ satisfies an isoperimetric inequality of the form (29), then
there exist constants K,K ′ > 0 such that

μ
(
f (log+ f )β

)
� Kμ|∇f | + K ′ (38)

for all positive locally Lipschitz functions f such that μ(f ) = 1, where β = 1 .

q
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Proof. Let f be non-negative, with μ(f ) = 1. The coarea inequality (37) together with our
assumption imply

μ|∇f | �
∫
R

μ+({f > s})ds � 1

c̃

∫
R

Uq

(
μ

({f > s}))ds

Now, by Markov’s inequality μ({f > s}) � μ({f > 2}) � 1
2 when s � 2. Therefore, since

Uq(t) � 1
Lq

t (log( 1
t
))

1
q for t � 1

2 by (28),

∞∫
0

Uq

(
μ

({f > s}))ds �
∞∫

2

Uq

(
μ

({f > s}))ds

� 1

Lq

∞∫
2

μ
({f > s})(log

(
1

μ({f > s})
)) 1

q

ds

= 1

Lq

∞∫
0

μ
({f > s})(log

(
1

μ({f > s})
)) 1

q

ds

− 1

Lq

2∫
0

μ
({f > s})(log

(
1

μ({f > s})
)) 1

q

ds

� 1

Lq

∞∫
0

μ
({f > s})(log

(
1

μ({f > s})
)) 1

q

ds − 2

Lq

M,

where M = supt∈[0,1] t (log 1
t
)β . Next, again by Markov’s inequality, μ({f > s}) � 1

s
. Therefore,

when s � 1 we have

log
1

μ({f > s}) � log s

and we always have log 1
μ({f >s}) � 0. Therefore, log 1

μ({f >s}) � log+ s, which implies

μ|∇f | � 1

c̃Lq

∫
R

(log+ s)βμ
({f > s})ds − 2M

c̃Lq

� 1

c̃Lq

μ
(
f (log+ f )β

) − K

with K = 2M
c̃Lq

+1. To see the last inequality, let F(s)= ∫ s

0 (log+ t)β dt and H(s)= s(log+ s)β −s.

Then F(s) � 0 � H(s) on [0, e] and when s � e F ′(s) = (log s)β and H ′(s) = (log s)β +
β(log s)β−1 − 1. Therefore, since log s � 1 and β ∈ (0,1], F ′ � H ′ for s � e from which it
follows that F � H on [0,∞). Therefore,
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∞∫
0

(log+ s)βμ
({f > s})ds =

∞∫
0

F ′(s)μ
({f > s})ds

= μ
(
F(f )

)
� μ

(
H(f )

)
= μ

(
f (log+ f )β

) − μ(f )

= μ
(
f (log+ f )β

) − 1. �
Remark 3.4. With the above results, we have thus shown the equivalence of the L1Φ-entropy in-
equality with the isoperimetric inequality (29) and with inequality (38) together with the Cheeger
inequality (36); see Theorem 4.5 below.

Remark 3.5. When 1
β

= q = 2, the function U2 represents the Gaussian isoperimetric function. In
this case, the isoperimetric inequality (29) is known to be equivalent to the following inequalities
introduced by Bobkov in [8] and [9]:

U2
(
μ(f )

)
� μ

(
U2(f ) + c̃|∇f |), (39)

U2
(
μ(f )

)
� μ

(√
U2(f )2 + c̃2|∇f |2) (40)

for all locally Lipschitz f : R → [0,1]. The equivalence of these inequalities in this case follows
by a transportation argument which uses the fact that the standard Gaussian measure γ on R

satisfies (39) and (40) with c̃ = 1 (see [6, Proposition 5]).

Remark 3.6. Suppose that the measure μ satisfies an L1Φ-entropy inequality on a metric space
(M, d). Suppose that on the product space (Mn, dn,μ

⊗n) we have |∇f | = ∑n
i=1 |∇if |, where

∇i denotes differentiation with respect to the ith coordinate and where the moduli of the gradients
are defined via (26) with the supremum distance. The tensorisation property of the L1Φ-entropy
(Lemma 2.9) then allows us to obtain isoperimetric information on the product space (where the
surface measure is now defined with respect to supremum distance). This problem was consid-
ered in [4].

4. Consequences of L1Φ-entropy inequalities

In this section we look at some consequences of the L1Φ-entropy inequality

EntΦμ
(|f |) � cμ|∇f |, (41)

with Φ(x) = x(log(1 + x))β , β ∈ (0,1], for a general probability measure μ. The first result
shows that this inequality implies a q-logarithmic Sobolev inequality, as studied in [12] and [23].

Theorem 4.1. Let μ be an arbitrary probability measure which satisfies the L1Φ-entropy in-
equality (41) for some β ∈ [ 1

2 ,1] and set q = 1
β

∈ [1,2]. Then there exists a constant cq such that
the following (LSq) inequality holds
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μ

(
|f |q log

|f |q
μ|f |q

)
� cqμ|∇f |q (42)

for all locally Lipschitz functions f .

Proof. Without loss of generality we assume that f � 0. Applying L1Φ-entropy inequality (41)
to the function f/μf , we obtain the following homogeneous version

μ

(
f

[
log

(
1 + f

μf

)]β)
� cμ|∇f | + (log 2)βμ(f ). (43)

We apply this inequality to the function g = f (1 + log(1 + f ))1−β � f � 0, where f is such
that μ(f ) = 1. Note that μ(g) � 1. Then we have

μ

(
g

[
log

(
1 + g

μg

)]β)
= μ

(
f

(
1 + log(1 + f )

)1−β
[

log

(
1 + g

μg

)]β)

� μ

(
f

(
1 + log(1 + f )

)1−β
[

log

(
1 + f

μg

)]β)

� μ

(
f

(
1 + log

(
1 + f

μg

))1−β[
log

(
1 + f

μg

)]β)

� μ

(
f log

(
1 + f

μg

))
= μ

(
f log(μg + f )

) − logμ(g)

� μ
(
f log(1 + f )

) − μ(g).

Thus for all f � 0 with μ(f ) = 1,

μ
(
f log(1 + f )

)
� cμ

∣∣∇(
f

(
1 + log(1 + f )

)1−β)∣∣ + (
(log 2)β + 1

)
μ(g)

� cμ
((

1 + log(1 + f )
)1−β |∇f |)

+ c(1 − β)μ

(
f

(1 + log(1 + f ))β

1

1 + f
|∇f |

)
(44)

+ (
(log 2)β + 1

)
μ(g)

� cμ
((

1 + log(1 + f )
)1−β |∇f |) + c(1 − β)μ|∇f |

+ (
(log 2)β + 1

)
μ(g). (45)

Since we have assumed β � 1
2 , we have 1 − β � β and hence

μ(g) = μ
(
f

(
1 + log(1 + f )

)1−β)
� 1 + μ

(
f

[
log(1 + f )

]1−β)
� μ

(
f

[
log(1 + f )

]β) + 2

� cμ|∇f | + (log 2)β + 2
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by another application of the L1Φ-entropy inequality (43) in the last step. Using this in (44), we
see that for general f � 0,

μ

(
f log

(
1 + f

μf

))
� cμ

((
1 + log

(
1 + f

μf

))1−β

|∇f |
)

+ c
(
2 − β + (log 2)β

)
μ|∇f | + (

(log 2)β + 2
)2

μ(f ). (46)

Replacing f by f q with q = 1
β

in the above yields

μ

(
f q log

(
1 + f q

μf q

))
� qcμ

((
1 + log

(
1 + f q

μf q

))1−β

f q−1|∇f |
)

+ cq
(
2 − β + (log 2)β

)
μ

(
f q−1|∇f |)

+ (
(log 2)β + 2

)2
μ

(
f q

)
� qcεp−1

p
μ

(
f q

(
1 + log

(
1 + f q

μf q

)))

+
(

c

ε
+ c

(
2 − β + (log 2)β

))
μ|∇f |q

+
(

cq

p

(
2 − β + (log 2)β

) + (
(log 2)β + 2

)2
)

μ
(
f q

)

where ε > 0 and we have applied Young’s inequality with indices 1
p

+ 1
q

= 1. Choosing

qcεp−1/p < 1, we can simplify this bound as follows

μ

(
f q log

(
1 + f q

μf q

))
� C′μ|∇f |q + D′μ

(
f q

)

where

C′ =
c
ε

+ c(2 − β + (log 2)β)

1 − qcεp−1

p

, D′ =
cq
p

(2 − β + (log 2)β) + ((log 2)β + 2)2

1 − qcεp−1

p

.

From this one obtains the defective (LSq ), which for all f � 0 such that μ(f q) = 1 can be
equivalently represented as

μ
(
f q logf q

)
� C′μ|∇f |q + D′. (47)

Let us now recall that by Corollary 3.2, our assumption implies that there exists a constant c0
such that

μ|f − μf | � c0μ|∇f |.
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From this inequality we can use the arguments of [12, Chapter 2] to deduce that there exists a
constant cq such that

μ|f − μf |q � cqμ|∇f |q .

Finally, by Rothaus-type arguments ([12, Chapter 3], see also Appendix B), we can then remove
the defective term in (47) to arrive at the result. �

Theorem 4.1 has a number of corollaries, which follow from known results about the q-
logarithmic Sobolev inequality (LSq) contained in [12] and [23]. We mention here the following
one, which is important for our purposes.

Corollary 4.2. Let μ be an arbitrary probability measure which satisfies the L1Φ-entropy in-
equality (41) with β ∈ [ 1

2 ,1]. Suppose f is a locally Lipschitz function such that

|∇f |q � af + b (48)

with q = 1
β

, for some constants a, b ∈ [0,∞). Then for all t > 0 sufficiently small

μ
(
etf

)
< ∞.

Proof. Follows from Theorem 4.5 of [23]. �
In Section 2 we proved that, under some conditions, if dμ = e−U

Z
dλ is a probability measure

which satisfies a Cheeger type inequality of the form (14), and a U -bound of the form

μ
(|f |[|U |β + |∇U |]) � Aμ|∇f | + Bμ|f |, (49)

then the L1Φ-entropy inequality (41) holds.
We now aim to show the converse i.e. that under some weak conditions, the L1Φ-entropy

inequality (41) implies a bound of the form (49). We first prove the following useful lemma.

Lemma 4.3. Let μ be a probability measure. Then

μ(f h) � s−1EntΦμ (f ) + s−1Θ(sh) (50)

for all s > 0 and suitable functions f,h � 0 such that μ(f ) = 1, where Φ(x) = x(log(1 +
x))β,β ≡ 1

q
∈ (0,1] and

Θ(h) ≡ (
θ + (log 2)β + (

logμehq )β)
with θ = supx�0 βx(log(1 + x))β−1/(1 + x).

Moreover, suppose that μ satisfies the L1Φ-entropy inequality (41) for some β ∈ [ 1
2 ,1] with

constant c, and that g � 0 is a locally Lipschitz function such that

|∇g|q � ag + b (51)
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for some constants a, b ∈ (0,∞). Then Θ(sβgβ) < ∞ for sufficiently small s > 0, and

μ
(
fgβ

)
� c

sβ
μ|∇f | + c

sβ
Θ

(
sβgβ

)
μ(f ), (52)

for all locally Lipschitz functions f � 0.

Proof. We remark first that for functions f,h � 0, μf = 1, with s ∈ (0,∞) and β ≡ 1
q

∈ (0,1),
we have

μ(f h) = s−1μ
(
f

(
log esqhq ))β

� s−1μ

[
f

(
log

(
1 + esqhq

μesqhq

))β

χ
(
esqhq � μesqhq )]

+ s−1(logμesqhq )β
μ(f ).

By the generalised relative entropy inequality of [20], we have

μ

[
f

(
log

(
1 + esqhq

μesqhq

))β]
� μf

(
log

(
1 + f

μf

))β

+ θμf

� EntΦμ (f ) + (
θ + (log 2)β

)
μf,

since μf = 1. We therefore get the following bound

μ(f h) � s−1EntΦμ (f ) + s−1(θ + (log 2)β + (
logμesqhq )β)

. (53)

This ends the proof of the first part of the lemma.

Replacing h by gβ ≡ g
1
q and s by sβ in (53), we see that the second part is a consequence of

Corollary 4.2. �
Theorem 4.4. Let dμ = e−U

Z
dλ be a probability measure on R

N , with U a locally Lipschitz
function bounded from below. Suppose μ satisfies the L1Φ-entropy inequality (41) for some
β ∈ [ 1

2 ,1].
Suppose also that

|∇U | � a|U |β + b (54)

for some constants a, b ∈ (0,∞). Then there exist constants A,B ∈ [0,∞) such that

μ
(|f |(|U |β + |∇U |)) � Aμ|∇f | + Bμ|f |, (55)

for all locally Lipschitz f .
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Proof. Let f � 0. We may also suppose that U � 0 (otherwise we can shift it by a constant).
Note that from (54), it follows that

|∇U |q � ãU + b̃

with q = 1
β

. Hence we may apply Lemma 4.3, to see that

μ
(
f Uβ

)
� c

sβ
μ|∇f | + c

sβ
Θ

(
sβUβ

)
μ(f )

with Θ(sβUβ) < ∞ for sufficiently small s. �
The following theorem summarises the results of the paper so far.

Theorem 4.5. Let μ be a non-atomic probability measure on (RN,d), |∇f | be given by (26)
and q � 1. Then the following statements are equivalent:

(i)

EntΦμ
(|f |) � cμ|∇f |,

where Φ(x) = x(log(1 + x))
1
q , for some constant c ∈ (0,∞) and all locally Lipschitz f ;

(ii)

μ

(
f

(
log+

f

μf

)1/q)
� Kμ|∇f | + K ′μf,

for some K > 0 and

μ|f − μf | � c0μ|∇f |
with some c0 ∈ (0,∞) and all locally Lipschitz f � 0;

(iii)

Uq(t) � c̃μ+(A),

for some c̃ > 0 and all Borel sets A of measure t = μ(A).

Moreover, for q ∈ (1,2] statements (i)–(iii) imply

(iv)

μ

(
|f |q log

|f |q
μ|f |q

)
� C′μ|∇f |q (LSq )

for some C′ ∈ (0,∞) and all locally Lipschitz functions f ,
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and

(v)

U2(μf ) � μ

√
U 2

2 (f ) + C′′|∇f |2 (IFI2)

for some C′′ ∈ (0,∞) and all locally Lipschitz functions 0 � f � 1.

Finally, suppose that the probability measure μ is given by μ(dx) = e−U

Z
dλ for some locally

Lipschitz function U on R
N which is bounded from below. Suppose that the measure dλ satisfies

the classical Sobolev inequality (1) together with the Poincaré inequality in balls (22), and that
∀L � 0 there exists r = r(L) such that {U � L} ⊂ B(r). In this situation the following U -bound

μ
(|f |(|U |β + |∇U |)) � Aμ|∇f | + Bμ|f | (56)

for all locally Lipschitz functions and constants A,B ∈ [0,∞), β ∈ (0,1], implies that statements
(i)–(iii) hold with q = 1

β
. If in addition we have that (54) holds i.e. there exist constants a, b such

that

|∇U | � aUβ + b

then (56) is actually equivalent to the statements (i)–(iii).

Proof. (ii) ⇒ (i) was shown in Section 2. (i) ⇒ (iii) is proved in Theorem 3.1. Finally, Proposi-
tion 3.3 together with Corollary 3.2 show that (iii) ⇒ (ii). The rest of the theorem, except (v), is
a restatement of the results of Section 2 and the current one.

To see (v) we notice that using (28) for small t > 0 (as well as small 1 − t > 0) we have

U2(t) � C̄0 Uq(t)

with some C̄0 ∈ (0,∞), and thus there is a constant C̄ ∈ (0,∞) such that for all t ∈ (0,1)

U2(t) � C̄Uq(t).

Hence, by (iii), we have the following isoperimetric relation

U2(t) � C̃μ+(A)

for any set A with μ(A) = t . This isoperimetric inequality was shown in [6, Proposition 5] to
be equivalent to (IFI2) in the setting of Riemannian manifolds. The proof remains valid in our
setting once we note that the co-area inequality (37) is available. �
Remark 4.6. We remark that generally perturbation of (IFI2) is a difficult matter if the un-
bounded log of the density is involved. Our route via U -bounds allows us to achieve that very
effectively.
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Secondly, as conjectured in [12] for q ∈ (1,2] it would be natural to expect the following
functional isoperimetric inequality with optimal isoperimetric function

Uq(μf ) � μ
q

√
U q

q (f ) + Cq |∇f |qq (IFIq )

with some Cq ∈ (0,∞) for all locally Lipschitz functions 0 � f � 1. One of the motivations
for such a relation is that (as shown in [12]) it implies (LSq ). Using (IFI2) and the relation of lq
norms, in finite dimension one can see that

U2(μf ) � μ
q

√
U q

2 (f ) + C′
2|∇f |qq .

In the right-hand side, using the asymptotic relation between isoperimetric functions, one could
also replace U2 with Uq . The question remains if adjusting the left-hand side in a similar way
would still preserve the inequality in the desired sharp form.

5. Application of results

In order to see where these results can be applied, suppose we are still working in the general
situation described at the start of this paper, and define a probability measure

dμp := e−αdp

Z
dλ (57)

on R
N , with α > 0, p ∈ (1,∞) and normalisation constant Z. Recall that here d : R

N × R
N →

[0,∞) is a metric on R
N . We have the following result which can be found in [23].

Proposition 5.1. Let μp be given by (57). Suppose that we have

(i) 1
σ

� |∇d| � 1 almost everywhere for some σ ∈ [1,∞);
(ii) �d � K + αpεdp−1 on {x: d(x) � 1}, for some K ∈ [0,∞), ε ∈ [0, 1

σ 2 ).

Then there exist constants A,B ∈ [0,∞) such that

μp

(|f |dp−1) � Aμp|∇f | + Bμp|f |

for all locally Lipschitz functions f .

This proposition gives conditions under which the bound (56) in Theorem 4.5 holds for a
particular choice of U and β . Indeed, we thus have the following corollary:

Corollary 5.2. Let μp be given by (57). Suppose that conditions (i) and (ii) of Proposition 5.1 are
satisfied. Suppose also that the measure dλ satisfies the classical Sobolev inequality (1) together
with the Poincaré inequality in balls (22). Then inequalities (i)–(iii) of Theorem 4.5 are satisfied,
with q such that 1

p
+ 1

q
= 1.

Moreover, if p � 2 (iv)–(v) are also true.
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Proof. For U = αdp and β = 1
q

we have

μp

(|f |(Uβ + |∇U |)) � μp

(|f |(αβdβp + αpdp−1))
�

(
αβ + αp

)
μp

(|f |dp−1).
Therefore by Proposition 5.1, we have

μ
(|f |(Uβ + |∇U |)) � Ãμ|∇f | + B̃μ|f |

where Ã = (αβ + αp)A and B̃ = (αβ + αp)B . Thus we can apply Theorem 4.5. �
We can perturb the measure in this result and all the inequalities will hold for the perturbed

measure, as follows.

Corollary 5.3. Let dμ̂ = e−W−V /Ẑ dμp be the probability measure described in Corollary 2.6
with unbounded locally Lipschitz W and bounded measurable V . Then μ̂ enjoys all properties
as μp in Corollary 5.2.

Remark 5.4. The conditions of Corollary 5.2 are easily seen to be satisfied in the Euclidean
case, when we are dealing with the standard gradient and Laplacian in R

N , and d(x) = |x|. In
this situation, with p = 2, the inequalities we prove are already known (see [26]), though the
proof we give here is new.

The value of our results is that they can be used in more general situations than the Euclidean
one. In particular it can be applied in the following setting.

Example 5.5. [H-type groups] Let g be a (finite dimensional real) Lie algebra and let z denote
its centre (i.e. [g, z] = 0). We say that g is of H-type if it admits a vector space decomposition

g = v ⊕ z

where [v,v] ⊆ z, such that there exists an inner product 〈·,·〉 on g such that z is an orthogonal
complement to v, and the map JZ : v �→ v given by

〈JZX,Y 〉 = 〈[X,Y ],Z〉
for X,Y ∈ v and Z ∈ z satisfies J 2

Z = −|Z|2I for each Z ∈ z. An H-type group is a simply
connected Lie group G whose Lie algebra is of H-type.

Such a group is a Carnot group of step 2 (see [13] for details). In particular the Heisenberg
group is an H-type group with a one-dimensional centre. However, there also exist H-type groups
with centre of any dimension.

On an H-type group G we consider vector fields X1, . . . ,Xm which form an orthonormal
basis of v. The sub-Laplacian (or Kohn operator) is given by �G := ∑m

i=1 X2
i and sub-gradient

by ∇G := (X1, . . . ,Xm). The associated Carnot–Carathéodory distance is defined by

d(x, y) := sup
{
f (x) − f (y): f such that |∇Gf | � 1

}
.
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It is shown in [23] that conditions (i) and (ii) of Proposition 5.1 are satisfied in this setting.
Moreover, the Lebesgue measure dλ satisfies the classical Sobolev inequality (1) and Poincaré
inequality in balls (22) with the sub-gradient ∇G (see [32]). Thus, by Corollary 5.2 we arrive at
the following:

Theorem 5.6. Let G be an H-type group, equipped with Carnot–Carathéodory distance d and
canonical sub-gradient ∇G as described above. Let

dμp := e−αdp

Z
dλ

with p > 1 and α > 0 be a probability measure on G and

dμ̂ = e−W−V /Ẑ dμp

with W ≡ W(d) satisfying conditions as in Corollary 5.2 with horizontal gradient and V a
bounded measurable function. Then inequalities (i)–(iii) of Theorem 4.5 are satisfied with q such
that 1

p
+ 1

q
= 1. Moreover for p � 2, the measure μ̂ satisfies (LSq ) and (IFI2).

See [23, Theorem 2.2] for details of the perturbation technique necessary to achieve the rele-
vant U -bounds.

5.1. U -bounds versus gradient bounds for heat kernel

As a conclusion to this section we mention that our setup is naturally inclusive for the
following gradient bounds for the heat kernel on H-type groups which has recently attracted
considerable attention (see e.g. [2,16–18,27] and references therein).

Indeed, in the following let G be an H-type group.

Corollary 5.7. The semigroup Pt ≡ et�G satisfies the following

|∇GPtf | � C1(t)Pt |∇Gf |

for all suitable functions, with C1(t) ∈ (0,∞) independent of f .

Proof. Due to the group covariance, it is sufficient to show the bound at the identity element
and thanks to the action of the dilations, one only needs to establish it at t = 1. Denoting the
corresponding heat kernel by h, we see that

∣∣∣∣
∫

f ∇Ghdλ

∣∣∣∣ =
∣∣∣∣
∫ (

f − 〈f 〉)∇Ghdλ

∣∣∣∣ �
∫ ∣∣f − 〈f 〉∣∣|∇G logh|hdλ (58)

with 〈f 〉 ≡ ∫
f hdλ. To bound the right-hand side of this expression, suppose that we have a

function V growing to infinity such that

|∇G logh| � k1V (d) + k2 (59)
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for some k1, k2 > 0, and for which the following U -bound is satisfied

∫ ∣∣f − 〈f 〉∣∣V (d)hdλ � C

∫
|∇Gf |hdλ + D

∫ ∣∣f − 〈f 〉∣∣hdλ (60)

with some C,D ∈ [0,∞) independent of f . Combining this with (58), we would then be able to
conclude that

∣∣∣∣
∫

f ∇Ghdλ

∣∣∣∣ � Ck1

∫
|∇Gf |hdλ + (Dk1 + k2)

∫ ∣∣f − 〈f 〉∣∣hdλ.

Moreover, under the assumptions of Theorem 2.7, (60) implies that

∫ ∣∣f − 〈f 〉∣∣hdλ � α

∫
|∇Gf |hdλ,

for some α > 0, allowing us to conclude that

∣∣∣∣
∫

f ∇Ghdλ

∣∣∣∣ �
(
Ck1 + (Dk1 + k2)α

)∫
|∇Gf |hdλ.

Therefore, to complete the proof we must check that, in the setting of H-type groups, there exists
a V such that (59) and (60) hold, and that the assumptions of Theorem 2.7 are satisfied, namely
that for r > 0, {V < r} is contained in some ball and inequality (22) holds.

In an H-type group with dim z = m and dim z⊥ = 2n we have the following heat kernel
bounds of [17] (see also [27] and [7]): there exists R > 0 such that for all points (x, z) =
(x1, . . . , x2n, z1, . . . , zm) with d(0, (x, z)) > R,

h(x, z) � d(0, (x, z))2n−m−1

1 + (|x|d(0, (x, z)))n−1/2
e− 1

4 d(0,(x,z))2
, (61)

∣∣∇G logh(x, z)
∣∣ � K

(
1 + d

(
0, (x, z)

))
. (62)

Here f � g means that c1f � g � c2f for some constants c1, c2 > 0. In this case we may write
f = eψg with a function ψ of bounded oscillation. We can therefore take V (d) = d , so that (59)
holds, with k1 = K and k2 = sup{|∇G logh|(x, z): d(0, (x, z)) � R} + K , as do the assumptions
of Theorem 2.7 (see for example [25,31,32]).

Finally, to show that (60) holds we use similar perturbative arguments as in Theorem 7.1
of [23] (where the corresponding U -bound with V (d) = d was established for the first Heisen-
berg group, where n = m = 1).

More precisely, letting W = log(
d(0,(x,z))2n−m−1

[1+ε|x|d(0,(x,z))]n−1/2 ) with some ε ∈ (0,1) to be determined
later, we show that we may write

h(x, z) = e−ψ−We− 1
4 d2

where osc(ψ) < ∞. This follows from the fact that
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C1
(
1 + [|x|d(

0, (x, z)
)]n−1/2) �

[
1 + |x|d(

0, (x, z)
)]n−1/2

� C2
(
1 + [|x|d(

0, (x, z)
)]n−1/2)

,

for some constants C1,C2 > 0, together with the estimate

εn−1/2[1 + |x|d(
0, (x, z)

)]n−1/2 �
[
1 + ε|x|d(

0, (x, z)
)]n− 1

2

�
[
1 + |x|d(

0, (x, z)
)]n−1/2

and (61).
Moreover, using the triangle inequality we compute

|∇GW | � (2n − m − 1)
|∇Gd(0, (x, z))|

d(0, (x, z))

+ ε

(
n − 1

2

) |∇G|x||d(0, (x, z)) + |x||∇Gd(0, (x, z))|
1 + ε|x|d(0, (x, z))

� 2n − m − 1

R
+ ε(2n − 1)d

(
0, (x, z)

)
where we have used that |∇G|x|| = |∇Gd| = 1 and |x| � d(0, (x, z)).

Choosing ε small enough, Theorem 2.2 of [23] gives the following U -bound for positive
functions f ∫

f (x)d(x)h(x) dx � C

∫
|∇Gf |(x)h(x) dx + D

∫
f (x)h(x) dx.

Applying this to |f − 〈f 〉| we arrive at (60) with V (d) = d . �
While the gradient bounds still remain a challenge for more complicated groups, it may be

useful to keep this observation in mind, as in principle it allows for a heat kernel bound (61)
with far less precise description of the slowly varying factor (provided the corresponding control
distance d satisfies a sufficiently good Laplacian bound outside some compact set).

5.2. U -bounds versus integrated Gaussian bounds for heat kernel

Assuming a bound of the following form

μ(f d) � Cμ|∇f | + Dμ(f ), (63)

for a function f = eλmin(d,L)2
with L a positive number, we get

μ
(
eλmin(d,L)2

min(d,L)
)
� 2λCμ

(
eλmin(d,L)2

min(d,L)
∣∣∇ min(d,L)

∣∣)
+ Dμ

(
eλmin(d,L)2)

� 2λCμ
(
eλmin(d,L)2

min(d,L)
)

+ Dμ
(
eλmin(d,L)2)

.
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If 2λC < 1, this implies

μ
(
eλmin(d,L)2

min(d,L)
)
� D′μ

(
eλmin(d,L)2)

(64)

with D′ ≡ D(1 − 2λC)−1. Next, choosing f = eλmin(d,L)2
min(d,L) instead in (63), we obtain

μ
(
eλmin(d,L)2

min(d,L)2) � Cμ
∣∣∇(

eλmin(d,L)2
min(d,L)

)∣∣ + Dμ
(
eλmin(d,L)2

min(d,L)
)

� 2λCμ
(
eλmin(d,L)2

min(d,L)2) + Dμ
(
eλmin(d,L)2

min(d,L)
)

+ Cμ
(
eλmin(d,L)2)

.

Thus using (64), we obtain

μ
(
eλmin(d,L)2

min(d,L)2) � 2λCμ
(
eλmin(d,L)2

min(d,L)2)
+ (

D′ + C
)
μ

(
eλmin(d,L)2)

.

Rearranging this, for 2λC � 2λ0C < 1,

d

dλ
μ

(
eλmin(d,L)2) = μ

(
eλmin(d,L)2

min(d,L)2) � D′′μ
(
eλmin(d,L)2)

with D′′ ≡ (D′ +C)(1−2λ0C)−1. Solving this differential inequality and passing with L → ∞,
we arrive at the following:

Theorem 5.8 (Integrated Gaussian bound). Suppose the following is true

μ(f d) � Cμ|∇f | + Dμ(f )

for all locally Lipschitz functions f , with some constants C,D ∈ (0,∞). Then

μ
(
eλd2) � eλD′′

for 2λC � 2λ0C < 1 with some constant D′′ ∈ (0,∞).

See Appendix A for a generalisation of this idea.

Remark 5.9. We point out that using this result and idea of [21] one can obtain Gaussian-type
upper bounds on the heat kernel.

Remark 5.10. From the point of view of the computations of [23] we start with

h∇f = ∇(f h) − f ∇h

and, with a unitary linear functional α, we get
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∫
α(∇f )hdλ =

∫
α
(∇(f h)

)
dλ +

∫
f α

(
∇ log

1

h

)
hdλ.

Hence, one gets

∫
f

(
α

(
∇ log

1

h

)
− divα

)
hdλ �

∫
|∇f | · |α|hdλ.

If the expression in the bracket on the left-hand side can be shown to have a treatable bound from
below, such a bound can be a useful source of analysis (though the implementation of this idea
in case of other than H-type groups remains open).

6. Extension to infinite dimensions

In this section we aim to extend the L1Φ-entropy inequality to the infinite dimensional setting,
where we include some bounded interactions. The setup will be as follows.

The spin space: Let M = (RN,d) be a metric space equipped with Lebesgue measure dλ,
general sub-gradient ∇ = (X1, . . . ,Xm) consisting of divergence free (possibly non-commuting)
vector fields and sub-Laplacian � := ∑m

i=1 X2
i , as above.

The lattice: Let Z
D be the D-dimensional lattice for some fixed D ∈ N, equipped with the

lattice metric dist(·,·) defined by

dist(i, j) :=
D∑

l=1

|il − jl |

for i = (i1, . . . , iD), j = (j1, . . . , jD) ∈ Z
D . For i, j ∈ Z

D we will also write

i ∼ j ⇔ dist(i, j) = 1

i.e. i ∼ j when i and j are nearest neighbours in the lattice. For Λ ⊂ Z
D , we will write Λc ≡

Z
D \ Λ, |Λ| for the cardinality of Λ, and Λ ⊂⊂ Z

D when |Λ| < ∞.
The configuration space: Let Ω := (M)ZD

be the configuration space. Given Λ ⊂ Z
D and

ω = (ωi)i∈ZD ∈ Ω , let ωΛ := (ωi)i∈Λ ∈ (M)Λ (so that ω �→ ωΛ is the natural projection of Ω

onto MΛ).
Given ω ∈ Ω we introduce the injection: MΛ → Ω , defined by η ∈ MΛ �→ η •Λ ω where

(η •Λ ω)i = ηi when i ∈ Λ and (η •Λ ω)i = ωi when i ∈ Λc.
Let f :Ω → R. Then for i ∈ Z

D and ω ∈ Ω define fi(·|ω) : M → R by

fi(x|ω) := f (x •{i} ω).

Let C(n)(Ω), n ∈ N denote the set of all functions f for which we have fi(·|ω) ∈ C(n)(M) for
all i ∈ Z

D . For i ∈ Z
D , k ∈ {1, . . . ,m} and f ∈ C(1)(Ω), define

Xi,kf (ω) := Xkfi(x|ω)|x=ωi ,

where X1, . . . ,Xm are the vector fields on M.
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Define similarly ∇if (ω) := ∇fi(x|ω)|x=ωi and �if (ω) := �fi(x|ω)|x=ωi for suitable f ,
where ∇ and � are the sub-gradient and the sub-Laplacian on M respectively. For Λ ⊂ Z

D ,
set ∇Λf = (∇if )i∈Λ and

|∇Λf | :=
∑
i∈Λ

|∇if |.

Finally, a function f on Ω is said to be localised in a set Λ ⊂ Z
D if f is only a function of

those coordinates in Λ.
Local specification and Gibbs measure: Let Ψ = (ψX)X⊂⊂ZD be a family of C2 functions

such that ψX is localised in X ⊂⊂ Z
D . Assume that ψX ≡ 0 whenever the diameter of X is

greater than positive constant R. We will also assume that there exists a constant M ∈ (0,∞)

such that ‖ψX‖∞ � M and ‖∇iψX‖∞ � M for all i ∈ Z
D . We say Ψ is a bounded potential of

range R. For ω ∈ Ω , define

Hω
Λ(xΛ) =

∑
Λ∩X 	=∅

ψX(xΛ •Λ ω),

for xΛ = (xi)i∈Λ ∈ MΛ.
Let U be a locally Lipschitz function on M which is bounded from below and such that∫

M e−U dλ < ∞. Suppose also that ∀L � 0 there exists r = r(L) such that

{U � L} ⊂ B(r).

Let dμ = e−U

Z
dλ, so that μ is a probability measure on M, and let

μΛ(dxΛ) :=
⊗
i∈Λ

μ(dxi)

be the product measure on MΛ. Now define

E
ω
Λ(dxΛ) = eJHω

Λ(xΛ)∫
eJHω

Λ(xΛ)μΛ(dxΛ)
μΛ(dxΛ) ≡ eJHω

Λ(xΛ)

Zω
Λ

μΛ(dxΛ) (65)

for J ∈ R. We will write μ{i} = μi and E
ω
{i} = E

ω
i for i ∈ Z

D . We finally define an infinite volume
Gibbs measure ν on Ω to be a solution of the (DLR) equation:

νE
·
Λf = νf (66)

for all bounded measurable functions f on Ω . ν is a measure on Ω which has E
ω
Λ as its finite

volume conditional measures.
Following for example [22,24], the extension of Theorem 2.8 to this infinite dimensional

setting will take the following form.
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Theorem 6.1. Suppose that the classical Sobolev inequality (1) and that the Poincaré inequal-
ity in balls (22) are both satisfied. Suppose also that inequality (2) is satisfied, i.e. there exist
constants A,B ∈ (0,∞) such that

μ
(|f |(|U |β + |∇U |)) � Aμ|∇f | + Bμ|f |

for some β ∈ (0,1] and locally Lipschitz functions f : M → R. Then there exists J0 > 0 such
that for |J | < J0, the Gibbs measure ν is unique and there exists a constant C such that

EntΦν
(|f |) � Cν

( ∑
i∈ZD

|∇if |
)

, (67)

where Φ(x) = x(log(1 + x))β , for all f for which the right-hand side is well defined.

For notational simplicity, we will only prove Theorem 6.1 in the case R = 1 and D = 2, but
the method can easily be extended to general R and D, (see e.g. [22] for the idea of the general
scheme).

Define the sets

Γ0 = (0,0) ∪ {
j ∈ Z

2: dist
(
j, (0,0)

) = 2n for some n ∈ N
}
,

Γ1 = Z
2

� Γ0.

Note that dist(i, j) > 1 for all i, j ∈ Γk , k = 0,1 and Γ0 ∩ Γ1 = ∅. Moreover Z
2 = Γ0 ∪ Γ1. For

the sake of notation, we will write EΓk
= E

ω
Γk

for k = 0,1. We will also define

P := EΓ1EΓ0 .

The proof will rely on the following few lemmata.

Lemma 6.2. Under the conditions of Theorem 6.1, there exist constants ĉ0 and ĉ independent
of i ∈ Z

D and ω ∈ Ω such that

E
ω
i

∣∣f − E
ω
i f

∣∣ � ĉ0E
ω
i |∇if | (68)

and

EntΦ
E

ω
i

(|f |) � ĉE
ω
i |∇if | (69)

for all suitable functions f , i ∈ ZD and ω ∈ Ω .

Proof. Firstly, by Theorem 2.7, we have that there exists a constant c0 independent of i such that

μi|f − μif | � c0μi|∇if |.

Since
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osc
(
Hω

i

)
� 2

∥∥Hω
i

∥∥∞ � 2
∑

{i}∩X 	=∅
‖ψX‖∞ � 8M,

by a standard result about bounded perturbations of Poincaré type inequalities (see [12]), in-
equality (68) holds.

Moreover, by the assumptions and Theorem 2.8, we have

EntΦμi

(|f |) = μi
(
Φ

(|f |)) − Φ
(
μi|f |) � cμi|∇if |

for all i ∈ Z
D . Thus by the bounded perturbation Corollary 2.6, (69) holds. �

Lemma 6.3. Under the conditions of Theorem 6.1, there exists J0 > 0 such that for |J | < J0,
there exists a constant ε ∈ (0,1) such that

ν
∣∣∇Γk

(EΓl
f )

∣∣ � ν|∇Γk
f | + εν|∇Γ1f |

for all suitable f and k, l ∈ {0,1} such that k 	= l.

Proof. We suppose k = 1 and l = 0. The case k = 0, l = 1 follows similarly. We can write

ν
∣∣∇Γ1(EΓ0f )

∣∣ = ν

( ∑
i∈Γ1

∣∣∇i(EΓ0f )
∣∣) � ν

( ∑
i∈Γ1

∣∣∇i(E{∼i}f )
∣∣)

� ν
∑
i∈Γ1

|∇if | + |J |ν
( ∑

i∈Γ1

∣∣E{∼i}
(
f [∇iH{∼i} − E{∼i}∇iH{∼i}]

)∣∣)

where we have used (66) and denoted {∼ i} = {j: j ∼ i}. Now set Wi = Wi − E{∼i}Wi, where
Wi = ∇iH

ω
{∼i}. Then since E{∼i}Wi = 0, we have that

ν
∣∣∇Γ1(EΓ0f )

∣∣ � ν
∑
i∈Γ1

|∇if | + |J |ν
( ∑

i∈Γ1

∣∣E{∼i}(f − E{∼i}f )Wi
∣∣). (70)

Now, by our assumptions on the potential, we have ‖Wi‖∞ � 8M for all i ∈ Z
D , so that

∣∣E{∼i}(f − E{∼i}f )Wi
∣∣ � 8ME{∼i}|f − E{∼i}f |. (71)

Note that by construction, E{∼i} is a product measure. Now by Lemma 6.2 together with
Lemma 2.9 there exists a constant ĉ0 such that

E{∼i}|f − E{∼i}f | � ĉ0E{∼i}|∇{∼i}f |. (72)

Using (71) and (72) in (70), we then arrive at
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ν
∣∣∇Γ1(EΓ0f )

∣∣ � ν
∑
i∈Γ1

|∇if | + 8Mĉ0|J |ν
( ∑

i∈Γ1

|∇{∼i}f |
)

= ν
∑
i∈Γ1

|∇if | + 32Mĉ0|J |ν
( ∑

i∈Γ0

|∇if |
)

.

Thus taking J0 = 1
32Mĉ0

proves the lemma. �
Lemma 6.4. Under the conditions of Theorem 6.1, there exists J0 > 0 (given by Lemma 6.3) such
that for |J | < J0, P rf converges almost everywhere to νf , where we recall that P = EΓ1EΓ0 . In
particular ν is unique.

Proof. The proof is standard: see for example Lemma 5.6 of [24]. �
Proof of Theorem 6.1. We may suppose f � 0. Using (66), write

ν
(
Φ(f )

) − Φ(νf ) = νEΓ0

(
Φ(f )

) − ν
(
Φ(EΓ0f )

)
+ ν

(
Φ(EΓ0f )

) − Φ(νf )

= ν
(
EntΦ

EΓ0
(f )

) + ν
(
EntΦ

EΓ1
(EΓ0f )

)
+ ν

(
Φ(EΓ1EΓ0f )

) − Φ(νf ).

Since probability measures EΓ0 and EΓ1 are product measures by construction, we have by Lem-
mas 2.9 and 6.2 that they both satisfy L1Φ-entropy inequalities with constant ĉ. Therefore, the
above yields

ν
(
Φ(f )

) − Φ(νf ) � ĉν|∇Γ0f | + ĉν
∣∣∇Γ1(EΓ0f )

∣∣
+ ν

(
Φ(P f )

) − Φ(νf ).

We can similarly write

μ
(
Φ(P f )

) = ν
(
EntΦ

EΓ0
(P f )

) + ν
(
EntΦ

EΓ1
(EΓ0 P f )

) + ν
(
Φ

(
P 2f

))
� ĉν|∇Γ0 P f | + ĉν

∣∣∇Γ1(EΓ0f )
∣∣ + ν

(
Φ

(
P 2f

))
.

Repeating this process, after r steps we see that

ν
(
Φ(f )

) − Φ(νf ) � ĉ

r−1∑
k=0

ν
∣∣∇Γ0 P kf

∣∣ + ĉ

r−1∑
k=0

ν
∣∣∇Γ1

(
EΓ0 P kf

)∣∣ (73)

+ ν
(
Φ

(
P rf

)) − Φ(νf ). (74)

We may control the first and second terms using Lemma 6.3. Indeed
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ν
∣∣∇Γ0 P kf

∣∣ � ε2ν
∣∣∇Γ0 P k−1f

∣∣
� ε2k−1ν|∇Γ1EΓ0f |
� ε2k−1ν|∇Γ1f | + ε2kν|∇Γ0f |. (75)

Similarly

ν
∣∣∇Γ1

(
EΓ0 P kf

)∣∣ � ε2kν|∇Γ1f | + ε2k+1ν|∇Γ0f |. (76)

Using (75) and (76) in (73) yields

ν
(
Φ(f )

) − Φ(νf ) � ĉ
(
1 + ε−1)[(

r−1∑
k=0

ε2k

)
ν|∇Γ1f | +

(
r−1∑
k=0

ε2k+1

)
ν|∇Γ0f |

]

+ ν
(
Φ

(
P rf

)) − Φ(νf ).

By Lemma 6.4 we have that limr→∞ P rf = νf , ν-almost surely. Therefore taking the limit as
r → ∞ in the above (which exists since ε ∈ (0,1)) yields

ν
(
Φ(f )

) − Φ(νf ) � Cν|∇ZDf |

where C = ĉ 1+ε−1

1−ε2 . �
Next, we consider (IFI2) for a family of examples. In particular we restrict ourselves to a

situation when M is an H-type group and assume that for i ∈ Z
D

Ui ≡
∑

k=0,...,p−1

αkd
p−k

i ≡
∑

k=0,...,p−1

αkd
p−k(ωi) (77)

with d(·) denoting the Carnot–Carathéodory distance from the unit element, p � 2, where α0 ∈
(0,∞) and αk ∈ R. As above we consider an interaction

Hω
Λ(xΛ) =

∑
Λ∩X 	=∅

ψX(xΛ •Λ ω), (78)

which is assumed to be bounded with bounded (sub-)gradient and for simplicity is of finite range,
as specified at the beginning of the current section. Moreover we are given a family of regular
conditional expectations defined by (6.1). Combining the previous results with those of this sec-
tion the previous we arrive at the following theorem.

Theorem 6.5. Suppose p � 2. Then there exists J0 > 0 such that for |J | < J0 the unique Gibbs
measure ν corresponding to the interaction (77)–(78) satisfies the following inequalities:

(i)

EntΦν
(|f |) � C1ν

( ∑
D

|∇if |
)

, (79)

i∈Z
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where Φ(x) = x(log(1 + x))
1
q , 1

q
+ 1

p
= 1, with some constant C1 ∈ (0,∞), for any f for

which the right-hand side is well defined;

(ii)

U2(νf ) � ν

(
U2(f )2 + C2

∑
i∈ZD

|∇if |2
) 1

2

(80)

where U2 is the Gaussian isoperimetric profile function (as defined in Section 3), with some
constant C2 ∈ (0,∞) for any function 0 � f � 1 for which the right-hand side is well de-
fined.

Proof. To begin we notice that the reference measure dμ satisfies a U -bound, and therefore
the conditional expectation (as a perturbation of the reference measure by strictly bounded and
strictly positive density), also satisfies the following inequality

∫
H

f |U | 1
q dEi � A

∫
H

|∇if |dEi + B

∫
H

f dEi (81)

with some constants A,B ∈ (0,∞) independent of i and ωj, where Ei denotes the correspond-
ing conditional expectations. Thus we can apply Theorem 4.5 to conclude that the Ei’s satisfy
Cheeger’s inequality, as well as L1Φ-entropy and (IFI2) bounds with constants independent of i
and ωj’s. With this bound the proof of (ii) follows via the strategy developed in [33]. �
Remark 6.6. We remark that once the conditional measures satisfy L1Φ-entropy or (IFI2)
inequalities with constants independent of external conditions, one can show that the Gibbs
measure also satisfies (IFI2) even when the interactions Hi contain an unbounded component,
provided we have Cheeger’s inequality and appropriate U -bounds. In particular one obtains the
following generalisation of the results of [33] where only the bounded interaction case was stud-
ied.

Theorem 6.7. Suppose M ≡ R and that U is a semibounded polynomial of degree at least 2. Let

Hω
i (xi) ≡ ε

∑
{i}∩X 	=∅

ψX(xi •i ω) + ε
∑

j

Gijxiωj

with ψX satisfying conditions of Theorem 6.5,
∑

j |Gij| < ∞ and ε ∈ (0,∞). Then, if ε ∈ (0,∞)

is sufficiently small, the corresponding Gibbs measure satisfies (IFI2).

Remark 6.8. For cylinder functions dependent on N coordinates, adapting the length of the
gradient in part (i) of Theorem 6.5, we get

EntΦν
(|f |) � C1

√
Nν

( ∑
D

|∇il f |2
) 1

2

(82)

il∈Z ,l=1,...,N
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for all functions f for which the right-hand side is well defined. Now, choosing a Lipschitz
approximation of a cylinder set AN (specified by conditions on coordinates ωil , l = 1, . . . ,N ),
by Theorem 3.1 we arrive at

Uq

(
ν(AN)

)
� c̃

√
Nν+

2 (AN) (83)

with suitable constant c̃ ∈ (0,∞) independent of N , and with use of the subscript 2 on the
right-hand side to emphasise that we have here the surface measure with respect to the quadratic
distance. On the other hand using part (ii) of Theorem 6.5 yields

U2
(
ν(AN)

)
�

√
C2ν

+
2 (AN). (84)

Thus we obtain a potentially useful tool for optimisation of isoperimetric relations for finite
dimensional marginals of the measure ν.
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Appendix A. Exponential bounds

Suppose for dμ ≡ e−U dλ/Z, with U � ε, for some ε > 0, and Z a normalisation constant,
we have

μ
(
f Uβ

)
� Cμ|∇f | + Dμf

for all locally Lipschitz functions f . In particular, for a Lipschitz cut-off function 0 < ε �
UL � U , for f ≡ eλULUα

L , with α,β > 0, α + β = 1, we have

μ
(
eλULUL

) = μ
(
eλULUα

L · Uβ
L

)
� Cμ

∣∣∇(
eλULUα

L

)∣∣ + Dμ
(
eλULUα

L

)
� λCμ

(
eλULUα

L · |∇UL|) + αCμ
(
eλULUα−1

L · |∇UL|)
+ Dμ

(
eλULUα

L

)
.

If we assume that

|∇UL| � aU
β
L

with a ∈ (0,∞) independent of L, then we get

μ
(
eλULUL

)
� λCμ

(
eλULUα

L · (aU
β
L

))
+ αCμ

(
eλULUα−1

L · (aU
β
L

)) + Dμ
(
eλULUα

L

)
� λaCμ

(
eλULUL

) + αaCμ
(
eλUL

) + Dμ
(
eλULUα

)
.
L
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Using our assumption that UL � ε > 0 and a bound

Uα
L � λδUL + A(λδ)

with some δ,A(λδ) ∈ (0,∞) independent of L, we get

μ
(
eλULUL

)
� λ(aC + Dδ)μ

(
eλULUL

) + (
αaC + D · A(λδ)

)
μ

(
eλUL

)
.

Hence for λ ∈ (0, λ0), with λ0 ≡ (aC + Dδ)−1, we have

d

dλ
μ

(
eλUL

) = μ
(
eλULUL

)
� Bμ

(
eλUL

)
with

B ≡ B(λ0, δ) ≡ (
αaC + D · A(λδ)

)(
1 − λ0(aC + Dδ)

)−1
.

Solving this differential inequality for λ ∈ (0, λ0), we obtain

μ
(
eλUL

)
� eλB.

Since the constant B is independent of L, by the dominated convergence theorem we obtain the
following bound

μ
(
eλU

)
� eλB,

which holds true for λ ∈ (0, λ0).

Appendix B. Rothaus argument

Here we give a brief outline of how to tighten a defective q-logarithmic Sobolev inequality
under the additional assumption of a q-Poincaré inequality. To do this we need the following
results from [12] which generalise the so-called Rothaus argument.

Suppose that q ∈ [1,2] and define the Orlicz space LNq (μ) generated by the function Nq(x) =
xq log(1 + xq) to be the space of measurable functions f such that

‖f ‖q
Nq

:= inf

{
λ > 0:

∫
Nq

(
f

λ

)
dμ � 1

}
< ∞.

Lemma B.1. (See [12].) If f � 0 ∈ LNq (μ) then

‖f ‖q
Nq

� μ

(
f q log

f q

μ(f q)

)
+ μ

(
f q

)
.

Lemma B.2. (See [12].) If f ∈ LNq (μ) and μ(f ) = 0 then

sup
a∈R

∫
|f + a|q log

|f + a|q
μ|f + a|q dμ � 16‖f ‖q

Nq
.
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With these results in hand, suppose that we have a defective (LSq ) inequality

μ

(
|f |q log

|f |q
μ|f |q

)
� Cμ|∇f |q + Dμ|f |q, (85)

as well as a q-Poincaré inequality

μ|f − μf |q � Kμ|∇f |q . (86)

By Lemma B.1 applied to the function |f − μf | we have

‖f − μf ‖q
Nq

� μ

(
|f − μf |q log

|f − μf |q
μ|f − μf |q

)
+ μ|f − μf |q

� Cμ|∇f |q + (D + 1)μ|f − μf |q
�

(
C + K(D + 1)

)
μ|∇f |q,

where we have first used (85) and then (86). By applying Lemma B.2 to f − μf we obtain

μ

(
|f |q log

|f |q
μ|f |q

)
= μ

(
|f − μf + μf |q log

|f − μf + μf |q
μ|f − μf + μf |q

)

� 16‖f − μf ‖q
Nq

� 16
(
C + K(D + 1)

)
μ|∇f |q,

so that we arrive at the desired tight form of the logarithmic Sobolev inequality.
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[12] S. Bobkov, B. Zegarliński, Entropy Bounds and Isoperimetry, Mem. Amer. Math. Soc., vol. 829, 2005.
[13] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians,

Springer Monogr. Math., Springer-Verlag, 2007.
[14] P. Cattiaux, N. Gozlan, A. Guillin, C. Roberto, Functional inequalities for heavy tails distributions and application

to isoperimetry, preprint.
[15] D. Chafaï, Entropies, convexity and functional inequalities: on φ-entropies and φ-Sobolev inequalities, J. Math.

Kyoto Univ. 44 (2) (2004) 325–363.
[16] B. Driver, T. Melcher, Hypoelliptic heat kernel inequalities on the Heisenberg group, J. Funct. Anal. 221 (2) (2005)

340–365.
[17] N. Eldredge, Precise estimates for the subelliptic heat kernel on H-type groups, J. Math. Pures Appl. 92 (2009)

52–85.
[18] N. Eldredge, Gradient estimates for the subelliptic heat kernel on H-type groups, J. Funct. Anal. 258 (2) (2010)

504–533.
[19] P. Fougères, Hypercontractivité et isopérimétrie gaussienne. Applications aux systémes de spins, Ann. Inst.

H. Poincaré Probab. Statist. 36 (5) (2000) 647–689.
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