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When generalizing the internal direct product from groups to all groupoids
Ž .binary systems , it has been customary to imitate the group case by making
restrictions, especially the existence of an identity element. This article develops
what seems a natural basic definition of internal direct product, then uses it as a
background against which to compare more popular restricted versions. Q 1999

Academic Press

1. PROLOGUE

w xThe fruitfulness of Jonsson and Tarski’s work 5 on direct product´
w xdecompositions is very clear from Willard’s summary 7, pp. 130]131 . Yet

w x5 includes a curious oversight concerning the definition of internal direct
products of groupoids. That definition generalizes the familiar group case,
which can be described as follows without mentioning normal subgroups.

A group G may be the internal direct product of subgroups G and G .1 2
In that case each element of G is uniquely expressible as x x with1 2
x g G , x g G ; and the product of any such x x and y y can be1 1 2 2 1 2 1 2

Ž .Ž .written x y x y . The connection with the ordinary external direct1 1 2 2
Ž .product G = G is that the mapping u : x , x ¬ x x is an isomor-1 2 1 2 1 2

phism from G = G onto G.1 2
If G is an external direct product H = H of groups, then it is also an1 2

internal direct product as follows. Let e be the identity element of H ,1 1
� 4 � 4and e of H , then let G s H = e and G s e = H . It is easy to2 2 1 1 2 2 1 2
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check that G is the internal direct product of G and G , although the1 2
isomorphism u is the notationally clumsy

x , e , e , x ¬ x , e e , x s x , x .Ž . Ž . Ž . Ž . Ž .Ž .1 2 1 2 1 2 1 2 1 2

Such arguments depend so vitally upon e and e that past generaliza-1 2
tions of the internal direct product from groups to groupoids have treated
identity elements as indispensable. The classic statement of that belief

w xoccurs within the book 5 of Jonsson and Tarski. Their algebras are´
groupoids with multiple operators, but the essential problem with internal
direct products lies in the groupoid structure. On p. 7 they make the
following claim.

w x‘‘On the other hand, the definition of a internal direct product implic-
itly involves the notion of a zero element, and it cannot be applied to
systems without a zero unless we agree to use the term ‘‘subalgebra’’ in a
more general sense. What is even more important, a detailed examination

w xof the proof of 1.5 characterizing internal direct products reveals that
Ž . w xcondition 1.1 ii existence and properties of zero plays an essential role in

this proof. It can easily be shown by means of examples that, in general,
Ž .Theorem 1.5 does not apply to systems A in which either part ii9 or part

Ž .ii0 of this condition fails; for it may then happen that A is isomorphic to
w xthe cardinal i.e., external direct product of two systems B and C, without

containing any subsystem isomorphic to B or C. We can thus say that only
Ž .by restricting ourselves to systems which satisfy 1.1 ii are we in a position

to introduce an adequate notion of an inner direct product.’’
Example 7.1 illustrates the difficulty they described and firmly blamed

on the lack of an identity element. The strong but unproved statement of
Jonsson and Tarski seems to have started a tradition, and not only in later´

w x w xpapers involving the same authors 2]4 . Łos 6 uses more general´
algebras, but imposes conditions from which he can derive essentially the
existence of the groupoid identity element as a theorem.

That tradition is renounced by Definition 2.2 below, whose conse-
quences do not include the existence of an identity element. It seems the

Žmost natural and economical definition of internal direct product. Evi-
w xdently Cohn thinks so, as his 1, p. 56, Exercise 11 gives the same

w x .definition; but he then reverts to tradition by citing 5 .

2. FUNDAMENTALS

The notation is reversed Polish. Various groupoids use the same opera-
tor symbol b , so the result of the appropriate binary operation on x and y
is written xyb. Also the notation introduced in each definition is assumed
from then on.
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Ž .DEFINITION 2.1. The external direct product of groupoids G , b and1
Ž . Ž .G , b is G = G , b , where2 1 2

; x , y g G , ; x , y g G ,1 1 1 2 2 2

x , x y , y b s x y b , x y b .Ž . Ž . Ž .1 2 1 2 1 1 2 2

Ž .DEFINITION 2.2. A groupoid G, b is the internal direct product of its
non-empty subgroupoids G and G if and only if the mapping u :1 2
Ž .x , x ¬ x x b is an isomorphism from G = G onto G.1 2 1 2 1 2

Prescribing that G / B is a minor convenience. Of course u is just the
mapping which interprets the binary operator symbol b in G.

Next, the isomorphism uy1 can be used to define the projections a and1
a from G onto G and G .2 1 2

DEFINITION 2.3. With the notation of Definition 2.2,

; x g G, xuy1 s xa , xa .Ž .1 2

From Definitions 2.2 and 2.3 easily follow Ga s G and Ga s G .1 1 2 2
Hence an element of G may be written either x or xa as convenient,1 1 1
and a similar remark applies to G . This is assumed in, for example, the2

Ž .proof of Theorem 2.5 b . Also the consequence that G a : G and1 1 1
G a : G is useful from Theorem 3.2 onward.2 2 2

THEOREM 2.4. ; x , y g G , ; x , y g G , x x b y y bb s1 1 1 2 2 2 1 2 1 2
x y b x y bb ; i.e., elements can be combined componentwise.1 1 2 2

Proof.

x x b y y bb1 2 1 2

s x , x u y , y ub s x , x y , y bu 2.2Ž . Ž . Ž . Ž .1 2 1 2 1 2 1 2

s x y b , x y b u 2.1Ž .1 1 2 2

s x y b x y bb . 2.21 1 2 2

The second paragraph of Section 1 has now been formalized for general
groupoids. Such pedestrian results are easily obtained by going back and
forth to the external direct product, but for faster progress an internal
direct product can be characterized purely by intrinsic properties.

THEOREM 2.5. Suppose a set G is closed to a binary operation b and
Ž .unary operations a and a . The groupoid G, b is the internal direct1 2

Ž .product of Ga and Ga if and only if the algebra G, b , a , a has the1 2 1 2
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following properties:

Ž .a ; x g G, xa xa b s x1 2

Ž .b ; x, y g G, xa ya ba s xa and xa ya ba s ya1 2 1 1 1 2 2 2

Ž .c ; x, y g G, xa ya b s xyba and xa ya b s xyba .1 1 1 2 2 2

Ž .Proof. Write Ga s G and Ga s G . First, assume G, b is the1 1 2 2
internal direct product of G and G . Then:1 2

a ; xgG, x s xuy1u s xa , xa u 2.3Ž . Ž .1 2

s xa xa b 2.21 2

b ; x g G , ; y g G ,Ž . 1 1 2 2

x , y s x , y uuy1 s x y buy1 2.2Ž . Ž .1 2 1 2 1 2

s x y ba , x y ba 2.3Ž .1 2 1 1 2 2

so x s x y ba and y s x y ba1 1 2 1 2 1 2 2

c ; x , ygG,Ž .
xyba , xybaŽ .1 2

s xybuy1 2.3

s xuy1 yuy1b { uy1 is an isomorphism by 2.2

s xa , xa ya , ya b 2.3Ž . Ž .1 2 1 2

s xa ya b , xa ya b 2.1Ž .1 1 2 2

so xyba s xa ya b and xyba s xa ya b.1 1 1 2 2 2

Ž . Ž .Conversely, assume a ] c are satisfied. Define h: G ª G = G by1 2
Ž .xh s xa , xa . Then1 2

xh s yh « xa s ya and xa s ya1 1 2 2

« xa xa b s ya ya b1 2 1 2

« x s y by a . [h is injective.Ž .

Also

; x gG , ; y g G , x y bh s x y ba , x y baŽ .1 1 2 2 1 2 1 2 1 1 2 2

s x , y by b . [ h is surjective.Ž . Ž .1 2
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Also

; x , ygG, xh yhb s xa , xa ya , ya bŽ . Ž .1 2 1 2

s xa ya b , xa ya b 2.1Ž .1 1 2 2

s xyba , xyba by cŽ . Ž .1 2

s xybh . [h is a homomorphism.

Finally let u s hy1. Then G is an internal direct product as in Defini-
tion 2.2.

Theorem 2.5 offers a useful alternative point of view. The class of all
groupoid internal direct products may now be regarded as a variety of
Ž . Ž . Ž . Žb , a , a -algebras, with the formulae 2.5 a ] c as axioms. These ax-1 2

. Ž . Ž .ioms are in fact independent. Subsequent proofs refer back to 2.5 a ] c
rather than directly to Definition 2.2.

Between those general proofs there are also references to special
properties commonly expected of internal direct products. The following
list seems to cover most such properties.

CONDITIONS 2.6. Custom prefers an internal direct product to satisfy:

Ž . Ž .a G has a neutral identity element.
Ž .b Every element of G commutes with every element of G .1 2

Ž . < < < <c G a s G a s 1.2 1 1 2

Ž .d G a s G a s a singleton invariant under a and a .2 1 1 2 1 2

Ž . < <e G l G s 1.1 2

Ž . < < 2f a and a are identity mappings. Equivalently, a s aG G1 2 1 11 2

and a 2 s a .2 2

Ž .The statement of d may appear awkward, especially since the singleton
Ž . Ž .in d and e traditionally contains just the identity element mentioned in

Ž . Ž . Ž .a . However the six statements a ] f as they stand are useful for
reference later. Rather obviously, they are not independent. Much less

Ž .obviously, they can all be false. Cf. the last of Examples 7.8 .

3. BASIC THEOREMS

Ž .Examples 7.3]7.9 show that 2.6 f cannot be proven in general. However
Ž .2.5 c means that a and a must be endomorphisms, and Theorem 3.21 2

shows that their restrictions to G and G , respectively, must be injective1 2
endomorphisms.
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First it is convenient to have notation for right and left translations.

DEFINITION 3.1. For any a g G, ; x g G, xr s xab anda

xl s axb .a

Ž .THEOREM 3.2. In any internal direct product G, b , a , a with G s1 2 1
< <Ga and G s Ga , a and a are injections.G G1 2 2 1 21 2

Ž .Proof. Choose any a g G which is non-empty by 2.2 . Then2 2

; x gG , x a r s x a a a b 3.11 1 1 1 a a 1 1 2 12 1

s x a ba 2.5 cŽ .1 2 1

s x . 2.5 bŽ .1

< <Thus a has a right inverse, so it is injective. Similarly a is injective.G G1 21 2

< <COROLLARY. For any a g G , r is a right in¨erse of a .G a G2 2 a a 11 1 12 1
< <For any a g G , l is a right in¨erse of a .G a G1 1 a a 22 2 21 2

Ž . <In light of Theorems 2.5 c and 3.2, the question whether a is anG1 1

actual automorphism is simply the question whether G a s G . Exam-1 1 1
ples 7.5]7.9 show that this is not always so. But the condition G a s G1 1 1

Ž .is a significant restriction as is G a s G , which the next theorem2 2 2
expresses in various forms.

Ž .THEOREM 3.3. In any internal direct product G, b , a , a with G s1 2 1
Ga and G s Ga , the following conditions are equï alent.1 2 2

Ž .a G a s G .1 1 1

Ž . � 4b G a is a singleton d with d a s d .2 1 1 1 1 1

Ž . � 4c G a l G a is a singleton d .1 1 2 1 1

Ž .d G a l G a / B.1 1 2 1

Four other mutually equï alent conditions are obtained by transposing the
subscripts 1 and 2 abo¨e.

Ž . Ž . Ž .Proof. a « b . Choose any c g G which is non-empty . Then1 1
Ž .c a a g G s G a from a , so 'd g G : c a a s d a .1 2 1 1 1 1 1 1 1 2 1 1 1

[ ; x gG , x a s c x ba a 2.5 bŽ .2 2 2 1 1 2 2 1

s c a a x a a b 2.5 cŽ .1 2 1 2 2 1

s d a x a a b1 1 2 2 1

s d x a ba 2.5 cŽ .1 2 2 1

s d , 2.5 bŽ .1
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� 4 � 4[G a s d , so d is unique. Also d a s c a a g G a s d .2 1 1 1 1 1 1 2 1 2 1 1
Ž .Hence b .

Ž . Ž . Ž . � 4 � 4 Ž .b « c . From b , G a s d s d a : G a . Hence c .2 1 1 1 1 1 1
Ž . Ž .c « d obviously.
Ž . Ž . Ž .d « a . From d , 'a g G , 'a g G : a a s a a .1 1 2 2 1 1 2 1

[ ; x gG , x s x a ba 2.5 bŽ .1 1 1 1 2 1

s x a a a b 2.5 cŽ .1 1 2 1

s x a a a b1 1 1 1

s x a ba 2.5 cŽ .1 1 1

g G a .1 1

Ž .[G : G a . Also G a : Ga s G . Hence a . Similar proofs apply1 1 1 1 1 1 1
throughout when subscripts 1 and 2 are transposed.

Ž . Ž . < Ž .COROLLARY. Under the conditions 3.3 a ] d , r is the two-sidedGd 11
<in¨erse automorphism of a . Under the corresponding conditions withG1 1

< Ž .transposed subscripts, l is the two-sided in¨erse automorphism ofGd 22
<a .G2 2

Ž . Ž .Proof. Rewrite the corollary to Theorem 3.2 using 3.3 a and b , and
Ž .also 2.5 c .

Ž .Of the two statements in 3.3 b , the invariance under a is the vital1
Ž . 2one. Condition 3.3 b can in fact be weakened to G a s G a with im-2 1 2 1

punity, but Examples 7.5]7.7 show that it cannot be weakened merely to
< <G a s 1.2 1

Ž . Ž .Conditions 3.3 a ] d are not equivalent to the four conditions obtained
Ž .from them by transposing subscripts. Examples 7.6 with k G 1 satisfy the

former but not the latter, and Examples 7.5 and 7.8 satisfy the latter but
not the former. However the next theorem deals with the situation where
both are satisfied simultaneously.

Ž .THEOREM 3.4. In any internal direct product G, b , a , a with G s1 2 1
Ga and G s Ga , the following conditions are equï alent.1 2 2

Ž .a G a s G and G a s G .1 1 1 2 2 2

Ž . � 4b G a s G a s a singleton d with da s da s d.2 1 1 2 1 2

Ž . � 4c G l G s a singleton d .1 2

Ž .d G l G / B.1 2

Ž . Ž . Ž . � 4Proof. a « b . From a , Theorem 3.3 gives G a s d2 1 1
� 4with d a s d , and G a s d with d a s d . Also d a g G a s1 1 1 1 2 2 2 2 2 2 1 2 1
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� 4d , so d a s d . Similarly d a s d .1 2 1 1 1 2 2

[ d s d a d a b 2.5 aŽ .1 1 1 1 2

s d d b s d a d a b s d 2.5 aŽ .1 2 2 1 2 2 2

s d ,

Ž .say. Hence b .
Ž . Ž . Ž .b « c . From b , d g G a l G a : G l G . Also ; x g G l2 1 1 2 1 2 1

Ž . � 4G , xa g G l G a : G a s d and2 1 1 2 1 2 1

� 4xa g G l G a : G a s d ,Ž .2 1 2 2 1 2

so

x s xa xa b 2.5 aŽ .1 2

� 4s ddb s d { d is a subgroupoid.

Ž .Hence c .
Ž . Ž .c « d obviously.
Ž . Ž . Ž .d « a . G l G a : G a l G a . Hence1 2 1 1 1 2 1

G l G / B « G a l G a / B1 2 1 1 2 1

« G a s G 3.31 1 1

and similarly

G a s G .2 2 2

Ž . Ž . < <COROLLARY 1. Under the conditions 3.4 a ] d , r and a areG Gd 11 1

< <in¨erse automorphisms, l and a are in¨erse automorphisms, andG Gd 22 2

ddb s d.

Proof. In the corollary to Theorem 3.3, put d s d s d. Also observe1 2
� 4that d is a subgroupoid.

< <COROLLARY 2. G l G can only be 1 or 0.1 2

Ž . Ž .Proof. 3.4 c m 3.4 d .

< <Cases with G l G s 1 satisfy all the Theorem 3.4 conditions and1 2
clearly generalize traditional internal direct products, whereas cases with
< <G l G s 0 satisfy none of the Theorem 3.4 conditions and are much1 2

Ž .more novel. Examples 7.5]7.9 and Section 8 exhibit some of the tangled
consequences of G l G s B. In the meantime Theorems 3.5]6.6 ex-1 2

� 4plore the tidier situation where G l G s d .1 2
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First, Theorem 3.4 Corollary 1 has something like a converse.

Ž .THEOREM 3.5. If a groupoid G , b has an idempotent element d such1 1
that r is an automorphism, then G is isomorphic to the left factor of and 11

internal direct product.
Ž .If a groupoid G , b has an idempotent element d such that l is an2 2 d2

automorphism, then G is isomorphic to the right factor of an internal direct2
product.

Any such G can be combined with any such G , and the resulting internal1 2
direct product satisfies the Theorem 3.4 conditions.

Proof. Both G and G will be needed in the construction. So, if given1 2
� 4only G , let G be the trivial group d ; if given only G , let G be the1 2 2 2 1

� 4trivial group d . Then in all cases both G and G are available.1 1 2
r is an automorphism of G , so r y1 is also. Likewise l y1 is and 1 d d1 1 2

automorphism of G . Hence we can define within G = G2 1 2

x , x a s x r y1 , d ,Ž . ž /1 2 1 1 d 21

and

x , x a s d , x l y1 .Ž . ž /1 2 2 1 2 d2

Ž . Ž .The verification of 2.5 a ] c is then quite routine, and is omitted here.
Also

� 4 y1G = G a s G = d { r is an automorphism of GŽ .1 2 1 1 2 d 11

( G { d is idempotent,1 2

Ž . � 4 Ž .and similarly G = G a s d = G ( G . Thus G = G , b is an1 2 2 1 2 2 1 2
internal direct product of subgroupoids isomorphic to G and G . These1 2

Ž � 4. Ž� 4 . �Ž .4subgroupoids have intersection G = d l d = G s d , d as1 2 1 2 1 2
Ž .in Theorem 3.4 c .

The main difficulty in applying Theorem 3.5 is notational. In practice
the construction is easier if the embeddings of G and G are treated as1 2
identifications. For this write d s d s d, choose notation to make1 2

� 4G l G s d only, and write the elements of G as x x b rather than1 2 1 2
Ž .x , x . Then G and G are themselves subgroupoids of G, as in1 2 1 2
Examples 7.2]7.4.

The idempotence condition ddb s d is vital to the Theorem 3.5 con-
struction. In Example 7.1, both r and r are automorphisms of G , anda b 1
both l and l are automorphisms of G ; but the direct product cannotf g 2
be made internal as above, because none of a, b, f , and g is idempotent.
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4. ANALYZING THE TRADITION

It is now possible to look in more detail at the traditional properties
Ž . Ž . Ž .2.6 a ] f and relations between them. Theorem 3.4 already includes 2.6 d
Ž .and e , and the following theorems treat internal direct products which

are closer to tradition in various other ways. The first of them involves
Ž . Ž .2.6 e and b .

� 4THEOREM 4.1. If G l G s d , and d commutes with e¨ery element of1 2
G, then e¨ery element of G commutes with e¨ery element of G .1 2

Proof. ; x g G , ; x g G ,1 1 2 2

x x b s dx a b x a dbb 2.5 a , 3.4 Corollary 1Ž .2 1 2 2 1 1

s dx a b x a dbb 2.4 { d g G and d g GŽ .1 1 2 2 1 2

s x a db dx a bb if d commutes with every element1 1 2 2

s x x b . 2.5 a , 3.4 Corollary 1Ž .1 2

This generalizes the traditional proof which assumes an identity element
and simply substitutes it for x and y in Theorem 2.4.1 2

Ž .The converse of Theorem 4.1 is false. Example 7.6 with k s 1 has
every element of G commuting with every element of G , but G l G1 2 1 2
empty.

Ž . <Now, 2.6 f includes the claim that a is an identity mapping. Theo-G1 1

<rem 3.3 and its corollary give conditions merely for a to be anG1 1

automorphism, but by an easy deduction it is idempotent and hence the
� 4identity mapping of G if and only if G a s d where d is a right1 2 1 1 1

identity element for G . Rather than spend time on that and on the1
corresponding result for a , the next theorem strengthens Theorem 3.42
Ž . Ž .involving both a and a to the whole of 2.6 f .1 2

< < Ž 2THEOREM 4.2. a and a are both identity mappings i.e., a s aG G1 2 1 11 22 .and a s a if and only if some element d in G l G is both a right2 2 1 2
identity element for G and a left identity element for G . In such a case1 2
� 4d s G l G s G a s G a .1 2 2 1 1 2

< <Proof. Assume both a s 1 and a s 1 . This is a specialG G1 G 2 G1 21 2
Ž . Ž . Ž . � 4case of 3.4 a . Hence 3.4 c and b give d s G l G s G a s G a ,1 2 2 1 1 2

< <and 3.4 Corollary 1 gives r s 1 and l s 1 so d has theG Gd G d G1 21 2

required identity properties.
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Conversely, assume an element d in G l G is both a right identity1 2
Ž .element for G and a left identity element for G . Then 3.4 d holds, so1 2

Ž . Ž . � 43.4 c and b give d s G l G s G a s G a , and 3.4 Corollary 11 2 2 1 1 2
< <gives a s 1 and a s 1 .G G1 G 2 G1 21 2

Ž . wŁos included 2.6 f in his definition of internal direct product 6, p. 34,´
Ž .x Ž w1 , but he missed the consequence that G l G / B. Cf. 6, p. 35,1 2

x .Lemma 3 .
Ž . Ž .An effect of combining 2.6 b and f can be inferred from 4.2 as

THEOREM 4.3. If e¨ery element of G commutes with e¨ery element of G ,1 2
and a 2 s a and a 2 s a , then G has an identity element.1 1 2 2

Proof. Assuming a 2 s a and a 2 s a , apply Theorem 4.2 but write1 1 2 2
e instead of d. Then in particular e g G , and e is a left identity element1
for G . Thus, assuming every element of G commutes with every element2 1
of G , e is also a right identity element for G .2 2

[ ; xgG, xebsxa xa beebb 2.5 aŽ .1 2

s xa eb xa ebb 2.4, { e g G and e g G1 2 1 2

s xa xa b { e is a right identity for G and G1 2 1 2

s x 2.5 aŽ .
s exb similarly.

Ž . Ž .The last of these miscellaneous theorems combines 2.6 a and e .

� 4THEOREM 4.4. If G has identity element e, and G l G s d , then1 2
d s e.

� 4 Ž . Ž .Proof. Assume G lG s d as in 3.4 c . Then 3.4 b gives dsda s1 2 1
da , so2

da s da 2 s edba 2 assuming identity element e1 1 1

s ea da ba 2.5 cŽ .1 1 1

s ea da ba1 2 1

s ea , 2.5 bŽ .1

Ž .and similarly da s ea . Combine these two equations using 2.5 a .2 2
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Theorem 4.4 does not assert that if G has identity element e, then
� 4 � 4G l G s e : the hypothesis G l G s d is vital. Some of Examples1 2 1 2

7.8 show that when G l G is empty, G may yet have an identity element1 2
somewhere else.

Ž . Ž .Implications connecting 2.6 a ] f can now be assembled. Theorem 4.2
Ž . Ž . Ž . Ž . Ž . Ž .shows that f « e . Theorem 3.4 shows that e m d . Trivially d « c .

Ž . Ž . Ž .Theorems 4.4 and 4.1 show that a n e « b . Theorems 4.4 and 4.2
Ž . Ž . Ž . Ž . Ž . Ž .show that a n e « f . Theorem 4.3 shows that b n f « a .

From all that, the appropriate Boolean disentangling sorts internal
direct products into 12 classes partially ordered by inclusion as in Fig. 4.5.
ŽFor simplicity, one-sided conditions such as in Theorem 3.3 are not

. Ž .included here. The figure’s notation c, d, e , for example, means the class
Ž . Ž . Ž .of all internal direct products satisfying 2.6 c , d , and e .

Ž .The 12 classes in the figure are all distinct. Example 7.2 satisfies 2.6 c]f
Ž . Ž . Ž .but neither a nor b , so every class containing c, d, e, f is distinct from

Ž . Ž .every class contained in a or b . Example 7.3 shows likewise that every
Ž . Ž .class containing b, c, d, e is distinct from every class contained in a or

Ž .c, d, e, f . Various cases of Example 7.8 show that every class containing
Ž . Ž .a, b, c is distinct from every class contained in c, d, e , every class contain-

Ž . Ž .ing a, b is distinct from every class contained in c , and every class
Ž . Ž .containing a, c is distinct from every class contained in b .

Perhaps Theorem 3.4 Corollary 2 locates the major watershed, between
< < < <internal direct products having G l G s 1 and those having G l G1 2 1 2

Ž .s 0, i.e., between members and non-members of c, d, e . Within that class,
Ž . Ž . Ž .Fig. 4.5 shows that b and f essentially as in Theorems 4.1 and 4.2 may

be regarded as two independent components which together strengthen
< < Ž .the condition G l G s1 to the fully classical a, b, c, d, e, f .1 2

All internal direct productsŽ .

Ž .a Ž .Ž . cb

Ž .a, c Ž .c, d, e
Ž . Ž .a, b b, c

Ž .c, d, e, fŽ . Ž .a, b, c b, c, d, e

Ž .a, b, c, d, e, f

FIGURE 4.5
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5. STANDARD SPECIAL PROPERTIES

Some familiar groupoid properties force internal direct products to
Ž . Ž .satisfy 2.6 c, d, e or even c, d, e, f . The next three theorems show why. As

usual G / B from Definition 2.2.

< <THEOREM 5.1. If G is finite, then G l G s 1.1 2

< <Proof. By Theorem 3.2, a and a are injective. Hence in theG G1 21 2

finite case G a s G and G a s G . The result now follows from1 1 1 2 2 2
Theorem 3.4.

THEOREM 5.2. If G satisfies either the right or left cancellation law, then
< <G l G s 1.1 2

Proof. Assume G satisfies the left cancellation law. Choose any a g G1 1
and a g G . Then2 2

a a a a b s a 2.5 aŽ .1 1 1 2 1

s a a ba 2.5 bŽ .1 2 1

s a a a a b . 2.5 cŽ .1 1 2 1

Cancel a a from the left. [ a a s a a . [ G l G / B. The result1 1 1 2 2 1 1 2
now follows from Theorem 3.4.

The proof is similar if G has right cancellation.

It may be observed that the foregoing proof really requires only one left
cancellable element in G a or one right cancellable element in G a .1 1 2 2

The last two theorems show that either finiteness or a cancellation law
Ž .puts an internal direct product into the class c, d, e of Fig. 4.5. However,

Ž . Ž .it need not be in either of the subclasses b, c, d, e or c, d, e, f : Example
Ž .7.4 is a finite cancellation groupoid in which d is neither central as in 4.1

Ž .nor a one-sided identity element for G or G as in 4.2 .1 2
The next result is stronger: the associative law puts an internal direct

Ž . Ž .product into the class c, d, e, f . In fact 2.6 f is equivalent to a restricted
associative condition, as follows.

THEOREM 5.3. a 2 s a and a 2 s a if and only if1 1 2 2

; x g G , ; y g G, ;z g G , x yb z b s x yz bb .1 1 2 2 1 2 1 2
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Proof. Assume every x yb z b s x yz bb. Choose any a , b g G .1 2 1 2 2 2 2
Then

; x gG , x a s x a a b bba 2.5 bŽ .1 1 1 1 1 1 2 2 1

s x a a b b ba from the above assumption1 1 2 2 1

s x a a ba b a b 2.5 cŽ .1 1 2 1 2 1

s x a b a b 2.5 bŽ .1 1 2 1

s x b ba 2.5 cŽ .1 2 1

s x . 2.5 bŽ .1

< <[ a s 1 . Similarly a s 1 .G G1 G 2 G1 21 2

Conversely, assume a 2 s a and a 2 s a . Then an element d has1 1 2 2
properties as in Theorem 4.2. Now, for every x g G and y g G,1 1

x yba s x a ya b 2.5 cŽ .1 1 1 1 1

[ x yba db s x a ya dbb { d is a right identity for G , by 4.2.1 1 1 1 1 1

Hence, for every z g G ,2 2

� 4x yba z a b s x a ya z a bb { G a s d by 4.21 1 2 1 1 1 1 2 1 2 1

[ x ybz ba s x a yz ba b 2.5 cŽ .1 2 1 1 1 2 1

s x yz bba . 2.5 cŽ .1 2 1

Similarly x yb z ba s x yz bba . Combine the last two equations using1 2 2 1 2 2
Ž .2.5 a . [ x yb z b s x yz bb.1 2 1 2

COROLLARY. If G is a semigroup, then a 2 s a , a 2 s a , and1 1 2 2
� 4G l G s d where d is a right identity element for G and a left identity1 2 1

element for G .2

Proof. The equation in Theorem 5.3 is a restricted case of the associa-
tive law. The result follows from Theorems 5.3 and 4.2.

The corollary shows that the associative law puts an internal direct product
Ž .into the class c, d, e, f of Fig. 4.5. However it need not be in the subclass

Ž .a, b, c, d, e, f : Example 7.2 is a semigroup in which d is neither an identity
Ž . Ž .element as in 4.4 nor even central as in 4.1 .

Theorems 5.1]5.3 ensure that most well-known groupoids can form
< <internal direct products only with G l G s 1. Any example with1 2

< <G l G s 0 must be infinite and without the associative law or either1 2
Žcancellation law. Perhaps this helps to explain why Examples 7.5]7.9 may
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. < <seem far-fetched. However, the commutative law does not force G l G1 2
Ž .to be 1: Example 7.6 with k s 1 is commutative but has G l G empty.1 2

< <Also the condition G l G s 1 does not enforce any of the special1 2
Ž . < <properties of Theorems 5.1]5.3: Example 7.6 with k s 0 has G l G1 2

s 1 but enjoys neither finiteness nor the associative nor cancellation law.

6. CLOSER TO TRADITION

< <Consider any internal direct product G having G l G s 1, and1 2
Ž .hence belonging to the class c, d, e of Fig. 4.5. Although G need not

Ž .satisfy 2.6 f and the corresponding properties in 4.2, it is always isotopic to
Ž .a groupoid which has those properties and so belongs to the class c, d, e, f .

Ž . Ž .If G is in b, c, d, e , then the isotopic groupoid is in a, b, c, d, e, f .
Several construction steps lead to the main result in Theorem 6.6.

Ž .DEFINITIONS 6.1 of g , d , « , « .11 1 2

; x g G, xg s xa 2 xa 2b.11 1 2

The binary operation d s bg .11

� 4When G l G s d , then ; x g G, x« s xa db , and x« s1 2 1 1 2
dxa b.2

The notation g is part of a systematic notation g mentioned in11 m n
Section 8.

Ž .Theorem 6.6 shows that G, d , « , « is an internal direct product of G1 2 1
Ž . Ž . Ž .and G , satisfying 2.6 c]f , and having G, d isotopic to G, b . The proof2

uses several lemmas.

Ž .LEMMA 6.2. g is an endomorphism of G, b .11

Proof.

; x , ygG, xybg s xyba 2 xyba 2b 6.111 1 2

s xa 2 ya 2b xa 2 ya 2bb 2.5 cŽ .1 1 2 2

s xa 2 xa 2b ya 2 ya 2bb 2.41 2 1 2

s xg yg b . 6.111 11
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� 4LEMMA 6.3. If G l G s d , then1 2

g « s « g s a , g « s « g s a ,11 1 1 11 1 11 2 2 11 2

G« s G , and G« s G .1 1 2 2

Proof.

; xgG, xg « s xa 2 xa 2ba db 6.111 1 1 2 1

s xa 2db 2.5 bŽ .1

s xa 3.4 Corollary 11

; xgG, x« g s xa dba 2 xa dba 2b 6.11 11 1 1 1 2

s xa 2da b 2.5 b , { d g GŽ .1 2 2

s xa 2db 3.4 bŽ .1

s xa . 3.4 Corollary 11

Similarly g « s « g s a .11 2 2 11 2

; xgG, xa s xg « from above1 11 1

g G« .1

[ G : G« .1 1

; xgG, x« s xa db 6.11 1

g G . { d g G1 1

[ G« : G . [ G« s G . Similarly G« s G .1 1 1 1 2 2

� 4 Ž .LEMMA 6.4. If G l G s d , then G, d , « , « is an internal direct1 2 1 2
product.

Ž . Ž .Proof. The appropriate versions of 2.5 a ] c are verified as follows.

a ; xgG, x« x« d s x« x« bg 6.1Ž . 1 2 1 2 11

s x« g x« g b 6.21 11 2 11

s xa xa b 6.31 2

s x . 2.5 aŽ .
b ; x , ygG, x« y« d« s x« y« bg « 6.1Ž . 1 2 1 1 2 11 1

s x« y« ba 6.31 2 1

s x« ; 2.5 bŽ .1

since 6.3 shows x« g G and y« g G .1 1 2 2
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Similarly x« y« d« s y« .1 2 2 2
Ž .c For every x, y g G,

xyba s xa ya b 2.5 cŽ .1 1 1

[ xybg « s x« g y« g b 6.311 1 1 11 1 11

s x« y« bg 6.21 1 11

[ xyd« s x« y« d . 6.11 1 1

Similarly xyd« s x« y« d .2 2 2

� 4 Ž .LEMMA 6.5. If G l G s d , then g is an automorphism of G, b ,1 2 11
ha¨ing in¨erse x ¬ x« x« b.1 2

Proof.

; xgG, x« x« bg s x« x« d 6.11 2 11 1 2

s x , 6.4 aŽ .
and

xg « xg « b s xa xa b 6.311 1 11 2 1 2

s x . 2.5 aŽ .
Thus xg y1 s x« x« b , so the endomorphism g of Lemma 6.2 is in11 1 2 11
fact an automorphism.

Lemma 6.2 does not require that G l G / B, but Lemma 6.5 does:1 2
Žcf. Examples 7.5]7.9 and Section 8. In fact the converse of Lemma 6.5 can

.be proven.

Ž .THEOREM 6.6. Any internal direct product G, b , a , a with G l G1 2 1 2
� 4s d has the following properties.

Ž . Ž . Ž .a G, b is isotopic to G, d .
Ž . Ž .b G, d , « , « is an internal direct product of G and G .1 2 1 2

Ž . 2 2c « s « and « s « .1 1 2 2

Ž . Ž .d d is a right identity element for G , d and a left identity element1
Ž .for G , d .2

Proof.

a g is a permutation of G 6.5Ž . 11

and
; x , y g G, xybg s xyd . 6.111

Ž . Ž . Ž . Ž[ 1 , 1 , g is an isotopism from G, b onto G, d . Lemma 6.5 showsG G 11
Ž . .that g , g , 1 is another.11 11 G
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Ž .b Lemma 6.3 shows G« s G and G« s G . The result then1 1 2 2
follows from Lemma 6.4.

c ; xgG, x« 2 s xa dba db 6.1Ž . 1 1 1

s xa db 2.5 b , { d g GŽ .1 2

s x « . 6.11

Similarly « 2 s « .2 2

Ž .d now follows from Theorem 4.2.

7. EXAMPLES

In each of the finite examples 7.1]7.4, G is the opposite of G . The2 1
infinite examples begin with 7.5.

EXAMPLE 7.1. An external direct product which cannot be made in-
ternal.

G f gG a b 21

f g fa b b
b a a g g f

G = G a, f a, g b , f b , gŽ . Ž . Ž . Ž .1 2

a, f b , g b , f b , g b , fŽ . Ž . Ž . Ž . Ž .
a, g b , g b , f b , g b , fŽ . Ž . Ž . Ž . Ž .
b , f a, g a, f a, g a, fŽ . Ž . Ž . Ž . Ž .
b , g a, g a, f a, g a, fŽ . Ž . Ž . Ž . Ž .

G = G has no non-trivial subgroupoids at all, so it is certainly not an1 2
internal direct product of two subgroupoids. Section 1 referred to this
difficulty.

As mentioned at the end of Section 3,

r s r s the transposition a b s an automorphism of GŽ .a b 1

and

l s l s the transposition f g s an automorphism ofG .Ž .f g 2

However none of a, b, f , g is idempotent, so Theorem 3.5 does not apply.
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EXAMPLE 7.2. A semigroup which is an internal direct product satisfy-
Ž . Ž . Ž .ing 2.6 c, d, e, f but neither a nor b .

G d f2G d a1

d d fd d d
a a a f d f

Here ddb s d, r is the identity automorphism of G , and l is thed 1 d
identity automorphism of G , so the 3.5 conditions are satisfied. Hence2
combine G and G as described after Theorem 3.5, writing t for afb.1 2
That gives:

x d a f t
xa d a d a1

xa d d f f2

Thus, for example,

tfba s ta fa b 2.5 cŽ .1 1 1

s adb s a from tables above

and

tfba s ta fa b s ffb s f2 2 2

so

tfb s tfba tfba b 2.5 aŽ .1 2

s afb s t .

Calculating by components in that way leads to this table:

G d a f t

d d d f f
a a a t t
f d d f f
t a a t t

Of course the last two tables could have been given in the first place, but
Ž . Ž .then they would need to be checked for conditions 2.5 a ] c . The G and1

G tables occur within the G table.2
Ž . < <The table for a and a attests 2.6 f : a and a are identityG G1 2 1 21 2

Žmappings. Theorem 4.2 restates this in terms of d. Indeed, G has d and1
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. Ž .also a as a right but not left identity element, and G has d and also f2
as a left but not right identity element. But neither d nor anything else is

Ž .even a one-sided identity element for G itself, so 2.6 a is false. Also
Ž .a g G and d g G but a does not commute with d, so 2.6 b is false.1 2

Since G and G are obviously associative, G is also.1 2
Ž .Finally, G alone or G alone illustrates the introductory paragraph of1 2

the proof of Theorem 3.5. Since ddb s d and r is an automorphism ofd
G , the groupoid G can be seen as the internal direct product of itself1 1

� 4and d .

EXAMPLE 7.3. A commutative quasigroup which is an internal direct
Ž . Ž . Ž .product satisfying 2.6 b, c, d, e but neither a nor f .

G , b d f gŽ .2G , b d a bŽ .1

d d g fd d b a
f g f da b a d

b a d b g f d g

< Ž .Here r is the transposition a b which is easily seen to be anGd 1

<automorphism of G . Likewise l is an automorphism of G , and alsoG1 d 22

ddb s d. Hence Theorem 3.5 applies, so G and G can be combined as in1 2
the previous example to give a groupoid G of order 9, not tabulated here.

< < Ž .By Theorem 3.4 Corollary 1, a is the inverse of r so it also is a b ,G G1 d1 1

< Ž .and similarly a s f g .G2 2

Ž .Now, d commutes with every element, so Theorem 4.1 ensures 2.6 b :
every element of G commutes with every element of G . As an example1 2
of the Theorem 4.1 proof, gab s dfb bdbb s dbb fdbb s bdbdfbb s
ag b. But neither d nor anything else is even a one-sided identity element,

Ž . < <so 2.6 a is false. Also a and a as given above are not identityG G1 21 2

Ž .mappings, so 2.6 f is false.
Incidentally, G is a finite commutative quasigroup with G ( G , but1 2

Ž . Ž .nevertheless it satisfies neither 2.6 a nor f .
This is a convenient example to illustrate Section 6. Using Definition

Ž .Ž .Ž .Ž .6.1, g turns out to be the permutation a b f g afb bg b ag b bfb11
leaving d invariant. Hence d s bg gives, in particular, new tables for G11 1
and G :2

G , d d f gŽ .2G , d d a bŽ .1

d d f gd d a b
f f g da a b d

b b d a g g d f



INTERNAL DIRECT PRODUCTS 619

Ž .These are both groups, so their direct product G, d is just the elementary
Abelian group of order 9. Other details from Theorem 6.6 are easy to
check.

EXAMPLE 7.4. A finite quasigroup which is an internal direct product
Ž . Ž . Ž . Ž .satisfying 2.6 c, d, e but neither a , b , nor f .

G d f g h2G d a b c1

d d g h fd d c a b
f h f d ga b a c d

b c d b a g f h g d
c a b d c h g d f h

< Ž .Here r is the cycle a b c which is an automorphism of G .Gd 11

<Likewise l is an automorphism of G , and also ddb s d. HenceGd 22

Theorem 3.5 applies, so G and G can be combined as in Example 7.2 to1 2
give a groupoid G of order 16, not tabulated here. By Theorem 3.4

< < Ž .Corollary 1, a is the inverse of r so it is a c b , and similarlyG G1 d1 1

< Ž .a s f h g .G2 2

Ž .G is a finite cancellation groupoid because both G and G are , and1 2
Ž .indeed satisfies 2.6 c]e as Theorems 5.1 and 5.2 require. But it has not

Ž .even a one-sided identity element, so 2.6 a is false. Also d commutes with
Ž . < <no other element, so 2.6 b is false. Also a and a as given aboveG G1 21 2

Ž .are not identity mappings, so 2.6 f is false.
Like the previous example, this one can be used to illustrate Theorem

Ž .6.6, although in this case G, d is not a group.

EXAMPLES 7.5. The simplest internal direct products having G l G1 2
Ž .s B, i.e., not satisfying 2.6 c, d, e .

Theorem 5.1 shows that any such G must be infinite, so at least one of
< < < <G and G is infinite. Hence the smallest possible orders G and G are1 2 1 2

Ž ./ and 1 or vice versa , as in these examples.0

� 4 � 4G s N j 0 s 0, 1, 2, . . . .

m y 1 if m ) n¡~m if m s n ,;m , n g G, mnb s¢m q n y m f if m - nŽ .

� 4 Žwhere f is any mapping N ª N j 0 . Different choices of f give
.different examples.

;n g G, na s n q 1 and na s 0.1 2
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Ž . Ž .Since cases with G l G s B are unfamiliar, 2.5 a ] c are here veri-1 2
fied in full.

aŽ .
;ngG, na na b s n q 1 0b s n q 1 y 1 { n q 1 ) 0Ž . Ž .1 2

s n.
Ž .b

;m , n g G, ma na ba s m q 1 0ba s maŽ .1 2 1 1 1

and

ma na ba s 0 s na .1 2 2 2

c m ) n « ma na b s m q 1 n q 1 b s mŽ . Ž . Ž .1 1

s m y 1 a s mnbaŽ . 1 1

m s n « ma na b s ma s mnba1 1 1 1

m - n « ma na b s m q 1 n q 1 bŽ . Ž .1 1

s m q 1 q n y m f s mnb q 1 s mnbaŽ . 1

Also ;m , n g G, ma na b s 00b s 0 s mnba .2 2 2

Hence G is indeed an internal direct product with G s Ga s N and1 1
� 4 < < < <G s Ga s 0 , so G s / and G s 1. Incidentally also G j G s2 2 1 0 2 1 2

G, showing another sense in which these examples are small.
Ž .Clearly G l G s B, so 2.6 e is false. In fact G is easily seen to satisfy1 2

Ž . Ž . Ž . Ž . Ž . Ž .2.6 c but neither a , d , e , nor f . It satisfies 2.6 b if and only if f is
Ž .the mapping n ¬ n y 1 as in Example 7.6 with k s 1 .

It follows from Theorems 5.1]5.3 that G is neither finite nor a cancella-
tion groupoid nor a semigroup. Indeed, 00b s 0 s 10b and 20b s 1 s
21b are counter-examples to the two cancellation laws, and 21b 0b s 10b
s 0 / 1 s 20b s 210bb is a counter-example to the associative law.

� 4 Ž . Ž .Since G a s 2, 3, 4, . . . / G , the conditions 3.3 a ] d are not satis-1 1 1
fied. However, they are satisfied when the subscripts 1 and 2 are trans-

� 4posed, since G a s 0 s G .2 2 2
Section 6 mentioned that although Lemma 6.2 showed g to be an11

endomorphism in all cases, Lemma 6.5 only showed it to be an automor-
phism in cases where G l G / B. In the present examples, ng s1 2 11

2 2 Ž . Žna na b s n q 2 0b s n q 1, so indeed g is not surjective. Similar1 2 11
.remarks apply in Examples 7.6]7.9.

Ž .Theorem 2.5 c shows that a is an endomorphism, and in these1
examples a : n ¬ n q 1 is injective. Hence Ga , Ga 2, etc. are sub-1 1 1
groupoids isomorphic to G itself, and thus internal direct products in their
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� 4own right. In particular, Ga s 1, 2, 3, 4, . . . is an internal direct product1
2 � 4 � 4of Ga s 2, 3, 4, . . . and 1 . Thus1

G s internal direct product of Ga and Ga1 2

2 � 4s internal direct product of internal direct product of Ga and 1Ž .1

� 4and 0 .

But this internal direct multiplication is not associative. There is no
� 4 � 4internal direct product of 1 and 0 ; since their external direct product

has order one, whereas there are two elements to accommodate. Hence
any extension of internal direct products to more than two factors requires
special care.

EXAMPLES 7.6. Groupoids from 7.5 which factorize as internal direct
products in more than one way.

Ž .With the same G, b as in Examples 7.5, can the projections a and a1 2
Ž .be different from before? This can happen if and in fact only if there is

Ž . Žsome integer k G 0 such that ;n G Max k, 1 , nf s n y k. If k G 2, the
Ž . .values 1f, 2f, . . . , k y 1 f are still arbitrary non-negative integers. Then

Ž .G, b is an internal direct product not only as in 7.5 but also in a new way
Ž . Ž .where ;n g G, na s 0, and na s n q k. The verification of 2.5 a ] c1 2

� 4 �is omitted this time. G s Ga s 0 and G s Ga s k, k q 1, k q1 1 2 2
42, . . . .

Case k s 0.

m y 1 if m ) n
;n g N, nf s n , so mnb s ½ n if m F n

;n g G, na s 0 and na s n.1 2

� 4 � 4G is the internal direct product of G s 0 and G s G s N j 0 .1 2
� 4 Ž .Hence G l G s 0 / B, and indeed G satisfies all of 2.6 c]f as in1 2

Theorem 4.2. Observe then that a groupoid may factorize as an internal
Ž .direct product in one way which satisfies 2.6 e as well as in another way

Ž .cf. 7.5 which does not.

Case k s 1.

m y 1 if m ) n
;n g N, nf s n y 1, so mnb s m if m s n½

n y 1 if m - n

;n g G, na s 0 and na s n q 1.1 2

� 4G is the internal direct product of G s 0 and G s N.1 2
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The formula for mnb shows that G is commutative, so the commutative
Žlaw does not force G l G to be non-empty as mentioned near the end1 2

.of Section 5 . In particular, every element of G commutes with every1
Ž . Ž . Ž . Ž .element of G , and indeed G satisfies 2.6 b, c but neither a , d , e , nor2

Ž .f , so the converse of Theorem 4.1 is false.
The present factorization of G as an internal direct product is just the

7.5 factorization with the subscripts 1 and 2 transposed. The commutative
law makes this possible.

� 4 �Cases k G 1 have G a s 0 s G and G a s 2k, 2k q 1, 2k q1 1 1 2 2
4 Ž . Ž .2, . . . / G , so they satisfy the conditions 3.3 a ] d but not the same2

conditions with the subscripts 1 and 2 transposed.
Cases k G 2 have G / G j G .1 2

EXAMPLES 7.7. Groupoids resembling Examples 7.5 but with G and1
G both infinite.2

� 4 � 4G s N j 0 = N j 0 .Ž . Ž .
� 4 Ž .Ž .;m, n, p, q g N j 0 , m, n p, q b is the ordered pair whose first com-

ponent

m y 1 if m ) p¡~m if m s ps¢m q p y m f if m - pŽ . 1

and second component

q y 1 if q ) n¡~q if q s ns¢q q n y q f if q - n ,Ž . 2

� 4 Žwhere f and f are any mappings N ª N j 0 . Different choices of f1 2 1
.and f give different examples.2

� 4;m, n g N j 0 ,

m , n a s m q 1, 0 and m , n a s 0, n q 1 .Ž . Ž . Ž . Ž .1 2

Ž . Ž .Verification of 2.5 a ] c is no harder than in Examples 7.5. G s Ga s1 1
� 4 � 4N = 0 and G s Ga s 0 = N, so G l G s B. Indeed G is easily2 2 1 2

Ž . Ž . Ž . Ž . Ž . Ž .seen to satisfy 2.6 c but neither a , d , e , nor f . It satisfies 2.6 b if and
only if ;n g N, nf s nf s n y 1, in which case G is commutative. It1 2

Ž .violates both parts of 3.4 a , since G a / G and G a / G .1 1 1 2 2 2

< < < <EXAMPLES 7.8. Internal direct products in which G a s 1 but G a1 2 2 1
is any non-zero cardinal number at all, and the other traditions also can be
violated.
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Ž .Let I, v be any groupoid whose subgroupoid J has identity element j.
Ž .This j need not be an identity for the whole of I. Let x and c be

� 4mappings N = I ª N j 0 , arbitrary except that ;n g N, ; y g J, nyx s
n y 1.

Ž � 4.Then G is the set N j 0 = I = J.
� 4;m, n g N j 0 , ;u, ¨ g I, ; x, y g J,

¡ m y n ¨x q n , u , xyv if m ) nŽ .Ž .~ n , u¨v , xyv if m s nŽ .m , u , x n , ¨ , y b sŽ . Ž . ¢ n y m uc q m , ¨ , xyv if m - nŽ .Ž .
m , u , x a s m q 1, u , jŽ . Ž .1

m , u , x a s 0, x , x .Ž . Ž .2

After all that, it may be heartening to observe that Examples 7.5 are the
� 4 Ž .special cases having I s J s j and nj x s n y 1, with n, j, j abbrevi-

ated to n, and njc abbreviated to nf. Even so, perhaps the check of
Ž . Ž .2.5 a ] c had better not be left to the hapless reader.
First,

m , u , x a n , ¨ , y a b s m q 1, u , j 0, y , y bŽ . Ž . Ž . Ž .1 2

s m q 1 yx , u , jyv { m q 1 ) 0Ž .Ž .
s m , u , y { y g J .Ž .

Thus
a m , u , x a m , u , x a b s m , u , xŽ . Ž . Ž . Ž .1 2

b m , u , x a n , ¨ , y a ba s m , u , y aŽ . Ž . Ž . Ž .1 2 1 1

s m q 1, u , jŽ .
s m , u , x aŽ . 1

m , u , x a n , ¨ , y a ba s m , u , y aŽ . Ž . Ž .1 2 2 2

s 0, y , yŽ .
s n , ¨ , y aŽ . 2

c From the definitions of b and a ,Ž . 1

¡ m y n ¨x q n q 1, u , j if m ) nŽ .Ž .~ n q 1, u¨v , j if m s nŽ .m , u , x n , ¨ , y ba sŽ . Ž . 1 ¢ n y m uc q m q 1, ¨ , j if m - nŽ .Ž .
s m q 1, u , j n q 1, ¨ , j b { jjv s jŽ . Ž .
s m , u , x a n , ¨ , y a b .Ž . Ž .1 1
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m , u , x n , ¨ , y ba s something, something, xyv aŽ . Ž . Ž .2 2

s 0, xyv , xyvŽ .
s 0, x , x 0, y , y bŽ . Ž .
s m , u , x a n , ¨ , y a b .Ž . Ž .2 2

�Ž . 4The definitions of a and a show that G s p, u, j : p g N, u g I ,1 2 1
�Ž .4 �Ž . 4so G a s 0, j, j ; and also that G s 0, x, x : x g J , so G a s1 2 2 2 1

�Ž . 4 Ž . Ž .1, x, j : x g J . It follows easily that 2.6 d ] f are all false. However
Ž . Ž .2.6 a ] c depend upon the choice of I, J, x , and c .

Ž .Conditions for 2.6 c are almost immediate. From the previous para-
< < Ž . Ž .graph G a s 1, but the definition of b shows that G a , b ( J, v .1 2 2 1

Ž . < < � 4Thus G satisfies 2.6 c if and only if J s 1, i.e., J s j . However G a2 1
can be isomorphic to any groupoid with identity, and hence of any
non-zero order. This makes Examples 7.8 very different from orthodox
internal direct products as in 2.6 or even in 3.4 where every member of G2
has the same first component d.

Ž .Next consider a condition which is sufficient and in fact necessary for
Ž .G to satisfy 2.6 b . Suppose ;n g N, ; y g J, nyc s n y 1. Then

m q 1, u , j 0, y , y b s m q 1 yx , u , jyv s m , u , y ,Ž . Ž . Ž . Ž .Ž .
and

0, y , y m q 1, u , j b s m q 1 yc , u , yjv s m , u , y .Ž . Ž . Ž . Ž .Ž .

Ž .Thus every element m q 1, u, j of G commutes with every element1
Ž . Ž .0, y, y of G , so 2.6 b is satisfied.2

ŽNow consider some conditions which are sufficient and in fact neces-
. Ž . Ž .sary for G to satisfy 2.6 a . Suppose I, v has an identity element i f J,

and ;n g N, nix s nic s n.
Then

mix , u , xjv if m ) 0Ž .
m , u , x 0, i , j b sŽ . Ž . ½ 0, uiv , xjv if m s 0Ž .

s m , u , x ,Ž .
and

0, ï v , jyv if 0 s nŽ .
0, i , j n , ¨ , y b sŽ . Ž . ½ nic , ¨ , jyv if 0 - nŽ .

s n , ¨ , y .Ž .



INTERNAL DIRECT PRODUCTS 625

Ž . Ž .Thus G has the identity element 0, i, j , so 2.6 a is satisfied. Notice that
G l G is empty, yet G has an identity element somewhere else.1 2

All those conditions suggest examples to separate some of the classes in
Fig. 4.5. First:

I , v i jŽ .
� 4with J s ji i j

j j j

and

;n g N, nix s nic s n , nj x s n y 1.

The conditions used in defining G are fulfilled, and the foregoing discus-
Ž . Ž . Ž .sion shows that G satisfies 2.6 a and c . It also satisfies 2.6 b if ;n g N,

Ž . Ž .njc s n y 1, which provides an example satisfying 2.6 a]c but neither d ,
Ž . Ž .e , nor f . But otherwise 'n g N: njc / n y 1, say, for example, 5 jc s 8.

Ž .Ž . Ž . Ž . Ž .Ž .In that case 5, i, j 0, j, j b s 4, i, j / 8, i, j s 0, j, j 5, i, j b con-
Ž . Ž .trary to 2.6 b ; which provides an example satisfying 2.6 a, c but neither

Ž . Ž . Ž . Ž .b , d , e , nor f .
Next:

I , v i j kŽ .
i i j k � 4with J s j, k ,
j j j k
k k k k

and

;n g N, nix s nic s n , nj x s nkx s njc s nkc s n y 1.

The conditions used in defining G are fulfilled, and the earlier discussion
Ž . Ž . Ž . Ž . Ž .shows that G satisfies 2.6 a, b but neither c , d , e , nor f .

Finally:

I , v j kŽ .
with J s I ,j j k

k k k

and

;n g N, nj x s nkx s n y 1,

but 5 jc s 8. The reader may check that G is then an internal direct
Ž . Ž .product satisfying none of the six conditions 2.6 a ] f . This highly un-

orthodox example vindicates the claim at the end of Section 2.
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< < < <EXAMPLES 7.9. Internal direct products in which G a and G a are2 1 1 2
any non-zero cardinal numbers.

The construction details will not be given. But just as each Example 7.7
is compounded from two versions of 7.5, so each Example 7.9 can be
constructed analogously from two versions of 7.8. The elements are now
ordered sextuples so the notation looks intricate, but the generalization
from Examples 7.8 raises no other difficulties.

8. EPILOGUE

Examples 7.5]7.9 perhaps look like conjuring tricks. It seems only fair to
disclose briefly how the rabbits got into the hats.

Ž .Consider any internal direct product G, b , a , a . For all non-negative1 2
integers m and n, define g : G ª G by xg s xa mq 1 xa nq1b. Everym n m n 1 2

Ž Ž .such g is an endomorphism of G as shown in Theorem 2.5 a for gm n 00
.and in Lemma 6.2 for g . If G is defined as Gg , then G l G s11 m n m n m n p q

� 4G . This can be extended by defining G s F G : m g NMaxŽm , p., MaxŽn, q. `0 m0
� 4 � 4 � 4and G s F G : n g N and then ; r, s g 0 j N j ` , G s G l0` 0 n r s r 0

G . Incidentally the Theorem 3.3 conditions are also equivalent to G s0 s 10
G, the same conditions with transposed subscripts are equivalent to
G s G, and the Theorem 3.4 conditions are equivalent to G s G s01 10
G . G can now be partitioned into four subsets as follows. Define01

Ž .K s G y G j G , L s G y G , and L s G y G . Also write10 01 1 `0 01 2 0` 10
� � 44 �G s g : m, n g N j 0 , so, for example, K G s xg : x g K, m G 0,m n m n
4n G 0 . Then G is the disjoint union K G j L G j L G j G . The Theo-˙ ˙ ˙1 2 ``

< <rem 3.4 conditions such as G l G s 1 are equivalent to K s L s L1 2 1 2
Ž .s B, i.e., G s G . Lemma 6.5 partly proves this. Examples 7.5 and 7.8``

have K s L s G s B, so G s L G. Examples 7.5 were constructed by1 `` 2
� 4 Žwriting L s 0 and each 0g s m and in fact include isomorphic2 m n

< < .copies of all groupoids L G having L s 1 . After a long struggle,2 2
� 4Examples 7.8 were constructed by writing L s 0 = I = J and each2

Ž . Ž .0, u, x g s m, u, x . Examples 7.7 and 7.9 have L s L s G s B,m n 1 2 ``

�Ž .4so G s K G. Examples 7.7 were constructed by writing K s 0, 0 and
Ž . Ž . � 4 � 4each 0, 0 g s m, n . Examples 7.9 have K s 0 = I = J = 0 =m n 1 1

I = J .2 2
Ž w x .An obvious final question vital for the refinement property of 5 etc. is

how to generalize this whole theory of internal direct products to more
than the two factors G and G . The ideal would be to find minimum1 2
restrictions permitting such a generalization. Some restrictions would
probably be needed because Examples 7.5 display a non-associative aspect
of internal direct multiplication, and perhaps also because the related
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Ž .Example 7.6 with k s 0 has one factorization which satisfies the condi-
Ž .tions 2.6 c]e and another which does not.
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