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Abstract

In this paper we prove the global well-posedness for the three-dimensional Euler–Boussinesq system with
axisymmetric initial data without swirl. This system couples the Euler equation with a transport-diffusion
equation governing the temperature.
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1. Introduction

Boussinesq systems are widely used to model the dynamics of the ocean or the atmosphere.
They arise from the density dependent fluid equations by using the so-called Boussinesq approxi-
mation which consists in neglecting the density dependence in all the terms but the one involving
the gravity. This approximation can be justified from compressible fluid equations by a simulta-
neous low Mach number/Froude number limit, we refer to [15] for a rigorous justification. In this
paper we shall assume that the fluid is inviscid but heat-conducting and hence the system reads⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tv + v · ∇v + ∇p = ρez, (t, x) ∈ R+ × R
3,

∂tρ + v · ∇ρ − �ρ = 0,

divv = 0,

v|t=0 = v0, ρ|t=0 = ρ0.

(1)

Here, the velocity v = (v1, v2, v3) is a three-component vector field with zero divergence, the
scalar function ρ denotes the density or the temperature and p the pressure of the fluid. Note that
we have assumed that the heat conductivity coefficient is one, one can always reduce the problem
to this situation by a change of scale (as soon as the fluid is assumed to be heat conducting) which
is not important for global well-posedness issues with data of arbitrary size that we shall consider
here. The term ρez where ez = (0,0,1)t takes into account the influence of the gravity and the
stratification on the motion of the fluid. Note that when the initial density ρ0 is identically zero
(or constant) then the above system reduces to the classical incompressible Euler equation:⎧⎨⎩

∂tv + v · ∇v + ∇p = 0,

divv = 0,

v|t=0 = v0.

(2)

From this observation, one cannot expect to have a better theory for the Boussinesq system
than for the Euler equation. For the Euler equation, a well-known criterion for the existence
of global smooth solution is the Beale–Kato–Majda criterion [3]. It states that the control of
the vorticity of the fluid ω = curlv in L1

loc(R+,L∞) is sufficient to get global well-posedness.
In space dimension two, the vorticity ω can be identified to a scalar function which solves the
transport equation

∂tω + v · ∇ω = 0.

From this transport equation, one immediately gets that∥∥ω(t)
∥∥

p � ‖ω0‖Lp

L
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for every p � 1 and hence the global well-posedness follows from the Beale–Kato–Majda crite-
rion.

In a similar way, the global well-posedness for two-dimensional Boussinesq systems which
has recently drawn a lot of attention seems to be in a satisfactory state. More precisely global
well-posedness has been shown in various function spaces and for different viscosities, we refer
for example to [1,5,7,12,13,17–20,22]. In particular, for the model (1) in 2D, the main idea is
that by studying carefully the coupling between the two equations and by using the smoothing
effect of the second equation, it is still possible to get an a priori estimate in L∞ (or in B0

∞,1)
for ω and hence the global well-posedness.

In the three-dimensional case, very few is known: even for the Euler equation, the vorticity ω

solves the equation

∂tω + v · ∇ω = ω · ∇v (3)

and the way to control the vortex stretching term ω · ∇v in the right-hand side is a widely open
problem. Nevertheless, a classical situation where one can get global existence is the case that v

is axisymmetric without swirl [30,23]. Our aim here is to study how this classical global existence
result for axisymmetric data for the Euler equation can be extended to the Boussinesq system (1).

Before stating our main result, let us recall the main ingredient in the global existence proof for
the Euler equation with axisymmetric data. The assumption that the vector field v is axisymmetric
without swirl means that it has the form:

v(t, x) = vr(t, r, z)er + vz(t, r, z)ez, x = (x1, x2, z), r = (
x2

1 + x2
2

) 1
2 , (4)

where (er , eθ , ez) is the local basis of R
3 corresponding to cylindrical coordinates. Note that

we assume that the velocity is invariant by rotation around the vertical axis (axisymmetric flow)
and that the angular component vθ of v is identically zero (without swirl). For these flows, the
vorticity is under the form

ω = (
∂3v

r − ∂rv
z
)
eθ := ωθeθ

and the vortex stretching term reads

ω · ∇v = vr

r
ω.

In particular ωθ satisfies the equation

∂tωθ + v · ∇ωθ = vr

r
ωθ . (5)

The crucial fact is then that the quantity ζ := ωθ

r
solves the transport equation

∂t ζ + v · ∇ζ = 0

from which we get that for every p ∈ [1,∞]∥∥ζ(t)
∥∥

p � ‖ζ0‖Lp . (6)

L
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It was shown by Ukhoviskii and Yudovich [30] and independently by Ladyzhenskaya [23] that
these new a priori estimates are strong enough to prevent the formation of singularities in fi-
nite time for axisymmetric flows without swirl. More precisely global existence and uniqueness
was established for axisymmetric initial data with finite energy and satisfying in addition ω0 ∈
L2 ∩ L∞ and ω0

r
∈ L2 ∩ L∞. In terms of Sobolev regularity these assumptions are satisfied if

the velocity v0 belongs to Hs with s > 7
2 . This condition was improved more recently. In [29], it

was proven that global well-posedness still holds if v0 is in Hs with s > 5
2 (note that this is the

natural regularity requirement for the initial velocity in the Sobolev scale in view of the standard
local existence result) and in the recent work [11], Danchin has obtained global existence and
uniqueness for initial data such that ω0 ∈ L3,1 ∩L∞ and ζ0 ∈ L3,1 (here, L3,1 denotes the Lorentz
space, the definition of the Lorentz spaces Lp,q as interpolation spaces is recalled below). Their
proof is based on the observation that one can deduce from the Biot–Savart law, the pointwise
estimate ∣∣∣∣vr

r

∣∣∣∣ � 1

| · |2 ∗ |ζ |. (7)

By convolution laws in Lorentz spaces (again recalled below) and (6), this yields the estimate∥∥∥∥vr

r
(t)

∥∥∥∥
L∞

�
∥∥ζ(t)

∥∥
L3,1 � ‖ζ0‖L3,1 .

Since one gets from a crude estimate on (5) that∥∥ωθ(t)
∥∥

L∞ �
∥∥ω0(t)

∥∥
L∞e

∫ t
0 ‖vr /r‖L∞ ,

the global well-posedness in Hs s > 5/2 (the assumption ζ0 ∈ L3,1 is automatically satisfied)
then follows from the Beale–Kato–Majda criterion. It is actually possible, as shown in [2], to get

global well-posedness in the critical Besov regularity, that is, v0 ∈ B
3
p

+1

p,1 , ∀p ∈ [1,∞], in the

sense that it is possible to propagate globally the critical Besov regularity if ζ0 ∈ L3,1.
Our aim here is to extend these global well-posedness results to the Boussinesq system (1).

Our main result reads:

Theorem 1.1. Consider the Boussinesq system (1). Let s > 5
2 , v0 ∈ Hs be an axisymmetric di-

vergence free vector field without swirl and let ρ0 be an axisymmetric function belonging to
Hs−2 ∩ Lm with m > 6 and such that r2ρ0 ∈ L2. Then there is a unique global solution (v,ρ)

such that

(v,ρ) ∈ C
(
R+;Hs

) × (
C
(
R+;Hs−2 ∩ Lm

) ∩ L1
loc

(
R+;W 1,∞))

and r2ρ ∈ C
(
R+;L2).

Let us give a few comments about our result.

Remark 1.2. By axisymmetric scalar function we mean again a function that depends only on
the variables (r, z) but not on the angle θ in cylindrical coordinates. One can easily check that
for smooth local solutions, if (ρ0, v0) is axisymmetric (and v0 without swirl), this property is
preserved by the evolution.
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Remark 1.3. The assumption on the moment of ρ is probably technical. The control of the
moments of ρ are needed in our proof in some commutator estimates (see (9) for example).

Note that in view of the proof for the Euler equation, the crucial part is to get an a priori
estimate for ζ in L3,1. The equation for ζ = ωθ/r becomes

∂t ζ + v · ∇ζ = −∂rρ

r
(8)

and consequently, the main difficulty is to find some strong a priori estimates on ρ to control
the term in the right-hand side of (8). The rough idea is that on the axis r = 0 the singularity
1
r

scales as a derivative and hence that the forcing term ∂rρ/r can be thought as a Laplacian
of ρ and thus one may try to use smoothing effects to control it. We observe that if we neglect
for the moment the advection term v · ∇ρ in the equation of the density then using the maximal
smoothing effects of the heat semigroup we can gain two derivatives by integrating in time which
is exactly what we need. From this point of view we see that our model is in some sense critical
for the global well-posedness analysis. The main difficulty if one wants to use this argument is
to deal with the advection term. Indeed, the only control on v that we have at our disposal is a
L∞

locL
2 estimate (which comes from the basic energy estimate) and this is not sufficient to obtain

an estimate for D2ρ in L1
loc(L

p) by considering the convection term as a source term and by
using the maximal smoothing effect of the heat equation. Even more refined maximal regularity
estimates on convection–diffusion equations ([9,16] for example) do not seem to provide useful
information when the control of the velocity field is so poor. Consequently, our strategy for the
proof will be to use more carefully the structure of the coupling between the two equations of
(1) in order to find suitable a priori estimates for (ζ, ρ). Since the coupling between the two
equations does not make the original Boussinesq system well suited for a priori estimates, our
main idea is to use an approach that was successfully used for the study of two-dimensional
systems with a critical dissipation, see [19,20] and the Navier–Stokes–Boussinesq system with
axisymmetric data [21]. It consists in diagonalizing the linear part of the system satisfied by ζ

and ρ. We introduce a new unknown Γ which here formally reads

Γ = ζ + ∂r

r
�−1ρ

and we study the system satisfied by (Γ,ρ) which is given by:

∂tΓ + v · ∇Γ = −
[
∂r

r
�−1, v · ∇

]
ρ, ∂tρ + v · ∇ρ = �ρ

where [ ∂r

r
�−1, v · ∇] is the commutator defined by[

∂r

r
�−1, v · ∇

]
ρ = ∂r

r
�−1(v · ∇ρ) − v · ∇

(
∂r

r
�−1ρ

)
.

Note that if we forget the commutator for a while, we immediately get an a priori Lp estimate
for Γ for every p from which we can hope to get an Lp estimate for ζ , if the operator ∂r

r
�−1

behaves well.
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To make this argument rigorous, we need first to study the action of the operator ∂r

r
�−1 over

axisymmetric functions. This is done in Proposition 2.9 where we prove that this operator takes
the form

∂r

r
�−1 =

∑
i,j

aij (x)Rij

where Rij = ∂i∂j�
−1 are Riesz operators and the functions aij are bounded. This yields that

∂r

r
�−1 acts continuously on L3,1 and hence that∥∥∥∥∂r

r
�−1ρ(t)

∥∥∥∥
L3,1

�
∥∥ρ(t)

∥∥
L3,1 � ‖ρ0‖L3,1 .

It follows that the control of Γ is equivalent to the control of ζ in L3,1. Now it remains to estimate
in a suitable way the commutator term [ ∂r

r
�−1, v ·∇]ρ which is the main technical part. It seems

that there is no hope to bound the commutator without using unknown quantities because there
is no other known a priori estimates of the velocity except that given by energy estimate which
is not strong enough. We shall prove (Theorem 3.1) that∥∥[

(∂r/r)�−1, v · ∇]
ρ
∥∥

L3,1 � ‖ωθ/r‖L3,1

(‖ρxh‖B0
∞,1∩L2 + ‖ρ‖

B
1
2

2,1

)
. (9)

This estimate is the heart of our argument, its proof combines the use of paradifferential calculus
and some harmonic analysis results and also requires a careful use of the property that velocity
v is axisymmetric without swirl in the Biot–Savart law.

The main reason for which we need some moments of ρ in the right-hand side of (9) is that
we want an estimate of the commutator involving ωθ/r and not ω.

In the right-hand side of (9), ‖ρ‖
B

1
2

2,1

and ‖ρxh‖L2 can be controlled in terms of the initial

data only by using the smoothing effect of the convection–diffusion equation for ρ and standard
energy estimates. Consequently, from this commutator estimate, we obtain that∥∥ζ(t)

∥∥
L3,1 � C(t)e

C‖ρxh‖
L1

t B0∞,1 (10)

and the next difficult step is to control ‖ρxh‖L1
t B

0∞,1
. This is done in two steps. The first step is

to get a global L∞ estimate of ρxh in terms of the initial data only and then in a second step, we
shall prove a logarithmic estimate for the B0

∞,1 norm of xhρ in terms of the L3,1 norm of ζ .
For the first step, let us observe that f = ρxh solves the equation

∂tf + v · ∇f − �f = vhρ − 2∇hρ. (11)

Note that for the moment, we only have at our disposal the standard energy estimate for v (thus
we control ‖v‖L∞

t L2 only), consequently to obtain an L∞ estimate for f we need to use an

L2 → L∞ estimate for the convection–diffusion equation since the source term in the right-
hand side can be estimated only in L2. Note that the convection term cannot be neglected (again
because of the weak control on v that we have at this stage) and hence this estimate cannot be
obtained from heat kernel estimates. We shall obtain this estimate by using the Nash–Moser–
De Giorgi iterations [14,26,25]. Indeed, the main interest of this approach is that since it is based
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on energy type estimates, the convection term does not contribute. A general result is recalled
in Appendix A. For technical reasons, some higher order moment estimates which are easier to
obtain are also needed, they are stated in Proposition 4.2.

Once the estimate of ‖ρxh‖L∞ is known in terms of the initial data, one can establish loga-
rithmic Besov space estimates for the convection–diffusion equation (11) by using a special time
dependent frequency cut-off of xhρ where we combine the L∞ estimate with some smoothing
effects for xhρ. This yields (see (56))

‖ρxh‖L1
t B

0∞,1
� C0(t)

(
1 +

t∫
0

h(τ) log
(
2 + ‖ζ‖L∞

τ L3,1

)
dτ

)
(12)

where C0(t) is a given continuous function and h is some L1
loc(R+) function. We point out

that the use of the moment of order two |xh|2ρ is due to the treatment of the commutator
[�q,v · ∇](xhρ) which appears when we deal with the smoothing effects.

The combination of the estimates (12) and (10) with Gronwall inequality allows to
control ‖ζ(t)‖L3,1 globally in time.

The final step is to deduce, as for the incompressible Euler equation, from the control of
‖ζ‖L∞

t L3,1 an estimate of ‖ω‖L∞
t L∞ and of ‖∇v‖L∞

t L∞ . This is the aim of Propositions 4.5
and 4.6. Estimates in Sobolev spaces then follow in a rather classical way.

Once a priori estimates for sufficiently smooth functions are known, the result of Theorem 1.1
follows from an approximation argument.

The paper is organized as follows. In Section 2 we fix the notations, give the definitions of
the functional spaces, in particular Besov and Lorentz spaces, that we shall use and state some of
their useful properties. We also study the operator ∂r

r
�−1 in Proposition 2.9. Next, in Section 3,

we study the commutator [ ∂r

r
�−1, v · ∇]. In Section 4, we turn to the proof of a priori estimates

for sufficiently smooth solutions of (1). We first prove in Proposition 4.1 some basic energy
estimates, next, we study the moments of ρ in Proposition 4.2 and then we control ‖ζ‖L3,1

in Proposition 4.4. Lipschitz and Sobolev estimates are finally obtained in Proposition 4.5 and
Proposition 4.6. In Section 5, we give the proof of Theorem 1.1: we obtain the existence part by
using the a priori estimates and an approximation argument and then we prove the uniqueness
part. Finally, Appendix A is devoted to the proof of a priori estimates for convection–diffusion
equations by the Nash–De Giorgi iterations which are needed in the estimate of the moments
of ρ. In Appendix B we give the proof of Lemma 2.7 which is a technical commutator lemma
used in several places.

2. Preliminaries

2.1. Dyadic decomposition and functional spaces

Throughout this paper, C stands for some real positive constant which may be different in
each occurrence and C0 denotes a positive number depending on the initial data only. We shall
sometimes alternatively use the notation X � Y for the inequality X � CY .

When B is a Banach space, we shall use the shorthand L
p
(B) for Lp(0, T ,B).
T
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Now to introduce Besov spaces which are a generalization of Sobolev spaces we need to recall
the dyadic decomposition of the unity in the whole space (see [8]).

Proposition 2.1. There exist two positive radial functions χ ∈ D(R3) and ϕ ∈ D(R3\{0}) such
that

(1) χ(ξ) +
∑
q∈N

ϕ(2−qξ) = 1,
1

3
� χ2(ξ) +

∑
q∈N

ϕ2(2−qξ) � 1 ∀ξ ∈ R
3,

(2) suppϕ(2−p·) ∩ suppϕ(2−q ·) = ∅, if |p − q| � 2,
(3) q � 1 ⇒ suppχ ∩ suppϕ(2−q) = ∅.

For every u ∈ S ′(R3) we define the nonhomogeneous Littlewood–Paley operators by,

�−1u = χ(D)u; ∀q ∈ N, �qu = ϕ
(
2−qD

)
u and Squ =

∑
−1�j�q−1

�ju.

One can easily prove that for every tempered distribution u,

u =
∑

q�−1

�q u. (13)

In the sequel we will frequently use Bernstein inequalities (see for example [8]).

Lemma 2.2. There exists a constant C such that for k ∈ N, 1 � a � b and u ∈ La , we have

sup
|α|=k

∥∥∂αSqu
∥∥

Lb � Ck2q(k+3( 1
a
− 1

b
))‖Squ‖La ,

and for q ∈ N

C−k2qk‖�qu‖La � sup
|α|=k

∥∥∂α�qu
∥∥

La � Ck2qk‖�qu‖La .

The basic tool of the paradifferential calculus is Bony’s decomposition [4]. It distinguishes in
a product uv three parts as follows:

uv = Tuv + Tvu + R(u, v),

where

Tuv =
∑
q

Sq−1u�qv, and R(u, v) =
∑
q

�qu�̃qv,

with

�̃q =
1∑

�q+i .
i=−1
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The term Tuv is called the paraproduct of v by u and R(u, v) the remainder term. The main inter-
est of the paraproduct term is that each term Sq−1u�qv has the support of its Fourier transform
still localized in an annulus of size 2q and thus Tuv is a sum of almost orthogonal functions.

Let (p, r) ∈ [1,+∞]2 and s ∈ R, then the nonhomogeneous Besov space Bs
p,r is the set of

tempered distributions u such that

‖u‖Bs
p,r

:= (
2qs‖�qu‖Lp

)
�r < +∞.

We remark that the Sobolev space Hs coincides with the Besov space Bs
2,2. Also, by using the

Bernstein inequalities we get easily the embeddings

Bs
p1,r1

↪→ B
s+3( 1

p2
− 1

p1
)

p2,r2 , p1 � p2 and r1 � r2.

Finally, let us notice that we can also characterize Lp spaces in terms of the dyadic decompo-
sition, see [28]. For p ∈ ]1,+∞[, there exists C > 0 such that: f belongs to Lp if and only if
(�qf )q�−1 ∈ Lpl2 and

C−1
∥∥∥∥( ∑

q�−1

|�qf |2
) 1

2
∥∥∥∥

Lp

� ‖f ‖Lp � C

∥∥∥∥( ∑
q�−1

|�qf |2
) 1

2
∥∥∥∥

Lp

. (14)

2.2. Lorentz spaces and interpolation

For p ∈ ]1,∞[, q ∈ [1,+∞], the Lorentz space Lp,q can be defined by real interpolation
from Lebesgue spaces: (

Lp0 ,Lp1
)
(θ,q)

= Lp,q,

where 1 � p0 < p < p1 � ∞, θ satisfies 1
p

= 1−θ
p0

+ θ
p1

and 1 � q � ∞.
From this definition, we get:

Lp,q ↪→ Lp,q ′
, Lp,p = Lp (15)

for every 1 < p < ∞,1 � q � q ′ � ∞.
Lorentz spaces will arise in a natural way in our problem because of the following classical

convolution results, for the proof see for instance [24,27].

Theorem 2.3. For every α, 0 < α < d , pi ∈ ]1,+∞[, qi ∈ [1,+∞], such that 1 + 1
p1

= 1
p2

+ 1
p3

and 1
q1

= 1
q2

+ 1
q3

, there exists C > 0 such that

‖f ∗ g‖Lp1,q1 � C‖f ‖Lp2,q2 ‖g‖Lp3,q3 . (16)

Moveover, in the case that p1 = ∞, we have

‖f ∗ g‖L∞(Rd ) � C‖f ‖
L

d
α ,∞(Rd )

‖g‖
L

d
d−α

,1
(Rd )

. (17)
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In particular, by using this result and the fact that 1/|x|2 belongs to L
3
2 ,∞(R3), we have that∥∥∇�−1f

∥∥
L∞(R3)

� ‖f ‖L3,1(R3) (18)

and thanks to the pointwise estimate (7) that∥∥∥∥vr

r

∥∥∥∥
L∞

� ‖ζ‖L3,1 . (19)

To establish some functional inequalities involving Lorentz spaces the following classical inter-
polation result (see [24] for example) will be very useful.

Theorem 2.4. Let 1 � p1 < p2 � ∞, 1 � r1 < r2 � ∞, q ∈ [1,∞] and T be a linear bounded
operator from Lpi to Lri . Let θ ∈ ]0,1[ and p, r such that 1

p
= θ

p1
+ 1−θ

p2
and 1

r
= θ

r1
+ 1−θ

r2
.

Then T is also bounded from Lp,q to Lr,q with

‖T ‖L(Lp,q ;Lr,q ) � C‖T ‖θ
L(Lp1 ;Lr1 )‖T ‖1−θ

L(Lp2 ;Lr2 )
.

As a consequence, we obtain the following results.

Proposition 2.5. For 1 < p < +∞, q ∈ [1,+∞], then exists a constant C > 0 such that the
following estimates hold true

(1) ‖uv‖Lp,q � C‖u‖L∞‖v‖Lp,q .
(2) ‖Tuv‖Lp,q � C‖u‖L∞‖v‖Lp,q .

(3) Let us define the Riesz transform Rij = ∂i∂j�
−1, i, j ∈ {1,2}, then

‖Rij u‖Lp,q � C‖u‖Lp,q .

(4) For s > 1
2 we have Hs ↪→ L3,1. For 1 � p < 3 we have B

3
p

−1

p,1 ↪→ L3,1.

Proof. (1) For a fixed function u ∈ L∞, the linear operator T : v 
→ uv belongs to L(Lp,Lp)

with norm smaller that ‖u‖L∞ and hence the result follows by interpolation from Theorem 2.4.
(3) In a similar way, for every p ∈ ]1,+∞[, Rij ∈ L(Lp,Lp) thanks to the Calderón–

Zygmund theorem and hence (3) follows again by using Theorem 2.4.
(2) To establish the inequality, it is again sufficient thanks to Theorem 2.4 to prove that for

u ∈ L∞, v ∈ Lp we have ‖Tuv‖Lp � C‖u‖L∞‖v‖Lp . For this last purpose we will make use of
the maximal functions tool. We will start with some classical results in this subject. For a locally
integrable function f : R

3 → R, we shall define its maximal function Mf by

Mf (x) = sup
r>0

1

r3

∫
B(x,r)

∣∣f (y)
∣∣dy.

From the definition we get

0 � M(fg)(x) � ‖g‖L∞ Mf (x). (20)
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It is well known that M maps continuously Lp to itself for p ∈ ]1,∞]. Moreover, we have the
following lemma. We refer to [28] for a proof.

Lemma 2.6.

(1) Let ψ ∈ S(R3) and define ψε(x) = ε−3ψ(ε−1x) for ε > 0. Then there exists C > 0 such that
for every p ∈ [1,∞], ε ∈ (0,1], we have

sup
ε>0

∣∣ψε � f (x)
∣∣ � CMf (x).

In particular, we have

sup
q�−1

∣∣�qf (x)
∣∣ � CMf (x).

(2) Let p ∈ ]1,∞] and {fq, q � −1} be a sequence belonging to Lp�2. Then we have

∥∥∥∥( ∑
q

∣∣Mfq(x)
∣∣2

) 1
2
∥∥∥∥

Lp

� C

∥∥∥∥( ∑
q

∣∣fq(x)
∣∣2

) 1
2
∥∥∥∥

Lp

.

Let us now come back to the proof of (2). By using (14), we have

‖Tuv‖Lp �
∥∥∥∥( ∑

j�−1

∣∣�j(Tuv)
∣∣2

) 1
2
∥∥∥∥

Lp

=
∥∥∥∥( ∑

j�−1

∣∣∣∣�j

( ∑
|j−q|�4

Sq−1u�qv

)∣∣∣∣2) 1
2
∥∥∥∥

Lp

.

This yields according to Lemma 2.6 and (20),

‖Tuv‖Lp �
∥∥∥∥( ∑

j�−1

( ∑
|j−q|�4

M(Sq−1u�qv)

)2) 1
2
∥∥∥∥

Lp

� ‖u‖L∞
∥∥∥∥( ∑

j�−1

( ∑
|j−q|�4

M �qv

)2) 1
2
∥∥∥∥

Lp

� ‖u‖L∞
∥∥∥∥( ∑

q�−1

(M�qv)2
) 1

2
∥∥∥∥

Lp

� ‖u‖L∞
∥∥∥∥( ∑

q�−1

(�qv)2
) 1

2
∥∥∥∥

Lp

� ‖u‖L∞‖v‖Lp

where the last estimate follows from a new use of (14). This ends the proof of (2).
(4) The first embedding follows from Sobolev embeddings combined with Theorem 2.4. This

is left to the reader. For the second one we refer for example to the proof of Proposition 2.2
of [2]. �
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2.3. Some useful commutator estimates

This section is devoted to the study of some basic commutators which will be needed in our
main commutator estimates, especially in Theorem 3.1 and Proposition 3.2 . Our first result reads
as follows. The proof is postponed to Appendix B.

Lemma 2.7. Given (p, r, ρ,m) ∈ [1,+∞]4 such that

1 + 1

p
= 1

m
+ 1

ρ
+ 1

r
, p � r and ρ > 3

(
1 − 1

r

)
.

Let f,g and h be three functions such that ∇f ∈ Lρ , g ∈ Lm and xF −1h ∈ Lr . Then∥∥[
h(D), f

]
g
∥∥

Lp � C
∥∥xF −1h

∥∥
Lr ‖∇f ‖Lρ ‖g‖Lm,

where C is a constant.

As an application of Lemma 2.7 we get the following commutator estimates.

Lemma 2.8. Let p,m,ρ ∈ [1,+∞] such that 1
p

= 1
m

+ 1
ρ

. Then, there exists C > 0 such that for
∇f ∈ Lρ , g ∈ Lm and for every q ∈ N ∪ {−1}∥∥[�q,f ]g∥∥

Ẇ 1,p � C‖∇f ‖Lρ ‖g‖Lm,

with the following definition ‖ϕ‖Ẇ 1,p = ‖∇ϕ‖Lp .

Proof. We write for i = 1,2,3,

∂i

([�q,f ]g) = [∂i�q,f ]g − ∂if �qg = [
hq(D), f

]
g − ∂if �qg,

with hq(ξ) = 2qφ(2−qξ), and φ ∈ S(R3). Using Lemma 2.7 we get

∥∥[
hq(D), f

]
g
∥∥

Lp � C
∥∥xF −1hq

∥∥
L1‖∇f ‖Lρ ‖g‖Lm � C‖∇f ‖Lρ ‖g‖Lm.

For the other term, the Hölder inequality yields

‖∂if �qg‖Lp � C‖∇f ‖Lρ ‖�qg‖Lm

� C‖∇f ‖Lρ ‖g‖Lm. �
2.4. Some algebraic identities

We intend in this paragraph to describe first the action of the operator ∂r

r
�−1u over ax-

isymmetric functions. We will show that it behaves like Riesz transforms. The second part is
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concerned with the study of some algebraic identities involving some multipliers which will
appear in a natural way when try to study our main commutator [∂r/r)�−1, v · ∇]ρ.

Proposition 2.9. We have for every axisymmetric smooth scalar function u

(∂r/r)�−1u(x) = x2
2

r2
R11u(x) + x2

1

r2
R22u(x) − 2

x1x2

r2
R12u(x), (21)

with Rij = ∂ij�
−1. Moreover, for p ∈ ]1,∞[, q ∈ [1,∞] there exists C > 0 such that∥∥(∂r/r)�−1u

∥∥
Lp,q � C‖u‖Lp,q . (22)

Proof. We set f = �−1u, then we can show from Biot–Savart law that f is also axisymmetric.
Hence we get by using polar coordinates that

∂11f + ∂22f = (∂r/r)f + ∂rrf (23)

where

∂r = x1

r
∂1 + x2

r
∂2.

By using this expression of ∂r , we obtain

∂rr =
(

x1

r
∂1 + x2

r
∂2

)2

= ∂r

(
x1

r

)
∂1 + ∂r

(
x2

r

)
∂2 + x2

1

r2
∂11 + x2

2

r2
∂22 + 2x1x2

r2
∂12.

= x2
1

r2
∂11 + x2

2

r2
∂22 + 2x1x2

r2
∂12

since

∂r

(
xi

r

)
= 0, ∀i ∈ {1,2}.

This yields by using (23) that

∂r

r
f =

(
1 − x2

1

r2

)
∂11f +

(
1 − x2

2

r2

)
∂22f − 2x1x2

r2
∂12f

= x2
2

r2
∂11f + x2

1

r2
∂22f − 2x1x2

r2
∂12f.

To get (21), it suffices replace f by �−1u.
The estimate (22) is a consequence of (21) and the estimates (1) and (3) of Proposition 2.5

since for every i, j ∈ {1,2}, xixj

r2 ∈ L∞. �
We shall also need the following identities and estimates.
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Lemma 2.10. For every f ∈ S(R3,R), we have

(1) For i, j ∈ {1,2,3}
�−1(xi∂jf ) = xi∂j�

−1f + Lij f

where Lij f = −2Rij�
−1f. Moreover, we have the estimates:

‖∇Lij f ‖L∞ � C‖f ‖L3,1 , (24)∥∥∇2 Lij f
∥∥

Lp,q � C‖f ‖Lp,q , p ∈ ]1,+∞[, q ∈ [1,+∞]. (25)

(2) For i, j, k ∈ {1,2,3}
Rij (xkf ) = xk Rij f + Lk

ij f,

with

Lk
ij := −2∂k�

−1 Rij + δik∂j�
−1 + δjk∂i�

−1

where δij denotes the Kronecker symbol. Moreover we have the estimates∥∥Lk
ij f

∥∥
L∞ � C‖f ‖L3,1 , (26)∥∥∇Lk

ij f
∥∥

Lp,q � C‖f ‖Lp,q , p ∈ ]1,+∞[, q ∈ [1,+∞]. (27)

Proof. (1) We first expand

�
(
xi∂j�

−1f − 2Rij�
−1f

) = 2∂ij�
−1f + xi∂jf − 2Rij f = xi∂jf.

This yields

�−1(xi∂j f ) = xi∂j�
−1f − 2Rij�

−1f + P(x),

with P a harmonic polynomial. We can easily see that the r.h.s of this identity and Rij�
−1f

are decreasing at infinity. Thus to prove that P is zero it suffices to prove that xi∂j�
−1f goes to

zero at infinity. Since

∣∣xi∂j�
−1f

∣∣ � |xj |
∫
R3

|f (y)|
|x − y|2 dy �

∫
R3

|f (y)|
|x − y| dy +

∫
R3

|yjf (y)|
|x − y|2 dy.

Using Theorem 2.3, we get that xi∂j�
−1f ∈ Lp , for every p > 3. Hence we get P = 0.

The estimates (24), (25) are a direct consequence of the above expression and (18) and the
estimate (3) of Proposition 2.5.

(2) We use the same idea as previously. We first get the identity

�Lk
ij f = �

(
Rij (xkf ) − xk Rij f

) = ∂ij (xkf ) − 2∂k Rij f − xk∂ij f

= δik∂jf + δjk∂if − 2∂k Rij f
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and by the same argument as above, we finally obtain that

Rij (xkf ) − xk Rij f = δik∂j�
−1f + δjk∂i�

−1f − 2∂k Rij�
−1f.

The estimates (26), (27) are a direct consequence of the above expression and (18) and the esti-
mate (3) of Proposition 2.5. �
3. Commutator estimates

3.1. The commutator between the advection operator and ∂r

r
�−1

In this part we discuss the commutation between the operators ∂r

r
�−1 and v · ∇ . This is a

crucial estimate in order to get better a priori estimates for the solution of (1) by using our
transformation. Our result reads as follows.

Theorem 3.1. Let v be an axisymmetric smooth and divergence free without swirl vector field
and ρ an axisymmetric smooth scalar function. Then we have, with the notation xh = (x1, x2),
that ∥∥[

(∂r/r)�−1, v · ∇]
ρ
∥∥

L3,1 � ‖ωθ/r‖L3,1

(‖ρxh‖B0∞,1∩L2 + ‖ρ‖
B

1
2

2,1

)
.

Proof. Since the functions ρ and v · ∇ρ are axisymmetric then using the identity of Proposi-
tion 2.9 we have

(∂r/r)�−1ρ(x) = x2
2

r2
R11ρ(x) + x2

1

r2
R22ρ(x) − 2

x1x2

r2
R12ρ(x) :=

2∑
i,j=1

aij (x)Ri,j ρ(x)

and also

(∂r/r)�−1(v · ∇ρ)(x) =
2∑

i,j=1

aij (x)Ri,j (v · ∇ρ)(x).

Since v has no swirl and the functions ai,j do not depend on r and z, we have for every 1 �
i, j � 2

v · ∇ai,j (x) = vr∂rai,j + vz∂3ai,j = 0.

Consequently our commutator can be rewritten as

[
(∂r/r)�−1, v · ∇]

ρ(x) =
2∑

ai,j (x)[Rij , v · ∇]ρ =
2∑

ai,j (x)div
{[Rij , v]ρ}
i,j=1 i,j=1
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where we have used the fact that v is divergence free to get the last equality. By using that
aij ∈ L∞ and the estimate (1) of Proposition 2.5, we first obtain that

∥∥[
(∂r/r)�−1, v · ∇]

ρ
∥∥

L3,1 �
2∑

i,j=1

∥∥div
([Rij , v]ρ)∥∥

L3,1 . (28)

The terms ∂1([Rij , v
1]ρ) and ∂2([Rij , v

2]ρ) can be treated in same way and hence, we shall
prove the estimate of the first one only. The estimate of ∂3([Rij , v

3]ρ) which is easier will be
done in a second step.

• Estimate of ∂1([Rij , v
1]ρ). Since v is divergence free, we have that �v = −∇ ∧ ω. Hence

for axisymmetric flows (where in particular ω = ωθeθ ), we obtain that

v1(x) = �−1∂3ω
2 = �−1∂3

(
x1(ωθ/r)

)
.

Applying Lemma 2.10(1) we get

v1(x) = x1�
−1∂3(ωθ/r) + L(ωθ/r), with L = −2∂13�

−2 (29)

(we omit the subscript ij for notational convenience). Consequently the commutator can be
rewritten under the form

∂1
{[

Rij , v
1]ρ} = ∂1

([
Ri,j , L(ωθ/r)

]
ρ
) + ∂1

([
Ri,j ,

(
�−1∂3(ωθ/r)

)
x1

]
ρ
)

= ∂1
([

Ri,j , L(ωθ/r)
]
ρ
) + ∂1

([
Ri,j ,

(
�−1∂3(ωθ/r)

)]
x1ρ

)
+ ∂1

((
�−1∂3(ωθ/r)

)[Rij , x1]ρ
)

= ∂1
((

�−1∂3(ωθ/r)
)

L1
ij ρ

) + ∂1
([

Ri,j , L(ωθ/r)
]
ρ
)

+ ∂1
([

Ri,j ,
(
�−1∂3(ωθ/r)

)]
x1ρ

)
= I + II + III (30)

where we have used the identity (2) of Lemma 2.10.
Estimate of I. We write

∂1
(
∂3�

−1(ωθ/r)L1
ij ρ

) = R13(ωθ/r)L1
ij ρ + ∂3�

−1(ωθ/r)∂1 L1
ij ρ. (31)

By using (1) and (3) of Proposition 2.5 and (26) we have∥∥R13(ωθ/r)L1
ij ρ

∥∥
L3,1 �

∥∥R13(ωθ/r)
∥∥

L3,1

∥∥L1
ij ρ

∥∥
L∞ � C‖ωθ/r‖L3,1‖ρ‖L3,1

and by using Proposition 2.5(1) and (18), (27), we also obtain∥∥∂3�
−1(ωθ/r)∂1 L1

ij ρ
∥∥

L3,1 �
∥∥∂3�

−1(ωθ/r)
∥∥

L∞
∥∥∂1 L1

ij ρ
∥∥

L3,1 � C‖ωθ/r‖L3,1‖ρ‖L3,1 .

Combining these estimates we find

‖I‖L3,1 � C‖ωθ/r‖L3,1‖ρ‖L3,1 . (32)
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Estimate of II. We will use Bony decomposition

II = II1 + II2 + II3,

with

II1 = ∂1

∑
q�0

[
Rij , Sq−1

(
L(ωθ/r)

)]
�qρ,

II2 = ∂1

∑
q�0

[
Rij ,�q

(
L(ωθ/r)

)]
Sq−1ρ,

II3 = ∂1

∑
q�−1

[
Rij ,�q

(
L(ωθ/r)

)]
�̃qρ.

For the first term we easily get that there exists a function ψ ∈ S(R3) such that

II1 =
∑
q�0

∂1
{[

ψq(D), Sq−1
(

L(ωθ/r)
)]

�qρ
}
,

with ψq = 23qψ(2q ·). By using the Bernstein inequality, this yields∥∥∂1
{[

ψq(D), Sq−1
(

L(ωθ/r)
)]

�qρ
}∥∥

L2 � C2q
∥∥[

ψq(D), Sq−1
(

L(ωθ/r)
)]

�qρ
∥∥

L2 .

Thanks to Lemma 2.7 and (24), we find∥∥∂1
{[

ψq(D), Sq−1
(

L(ωθ/r)
)]

�qρ
}∥∥

L2 � C2q‖xψq‖L1

∥∥∇L(ωθ/r)
∥∥

L∞‖�qρ‖L2

� C‖xψ‖L1‖ωθ/r‖L3,1‖�qρ‖L2 .

It follows that

‖II1‖
B

1
2

2,1

� C
∑
q∈N

2q 1
2
∥∥∂1

{[
ψq(D), Sq−1

(
L(ωθ/r)

)]
�qρ

}∥∥
L2 � C‖ωθ/r‖L3,1‖ρ‖

B
1
2

2,1

and hence by using the embedding B
1
2
2,1 ↪→ L3,1 (see Proposition 2.5(4)), we obtain

‖II1‖L3,1 � C‖ωθ/r‖L3,1‖ρ‖
B

1
2

2,1

. (33)

To estimate the term II2 we do not need to detect cancellation in the structure of the commutator,
we just write

II2 =
∑
q�0

∂1 Rij

(
�q

(
L(ωθ/r)

)
Sq−1ρ

) −
∑
q�0

∂1
{
�q

(
L(ωθ/r)

)
Rij Sq−1ρ

}
.

A useful remark is that thanks to the Bernstein inequalities and (25), we have

‖�q Lf ‖Lp � 2−2q
∥∥∇2 L�qf

∥∥
p � 2−2q‖f ‖Lp , ∀q � 0, p ∈ ]1,+∞[. (34)
L
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This yields by using the Hölder inequality and Proposition 2.5(3) that

‖II2‖
B

1
2

2,1

�
∑
q�0

2
3
2 q

∥∥�q

(
L(ωθ/r)

)
Sq−1ρ

∥∥
L2 +

∑
q�0

2q 3
2
∥∥�q

(
L(ωθ/r)

)
Rij Sq−1ρ

∥∥
L2

�
∑
q�0

2q 3
2
∥∥�q L(ωθ/r)

∥∥
L3

(‖Sq−1ρ‖L6 + ‖Rij Sq−1ρ‖L6

)
� ‖ωθ/r‖L3

∑
q�0

2−q 1
2 ‖Sq−1ρ‖L6

� ‖ωθ/r‖L3

∑
q�0

∑
k�q−2

2
1
2 (k−q)

(
2

k
2 ‖�kρ‖L2

)
� ‖ωθ/r‖L3‖ρ‖

B
1
2

2,1

.

Hence we get from Proposition 2.5(4) that

‖II2‖L3,1 � C‖ωθ/r‖L3,1‖ρ‖
B

1
2

2,1

. (35)

For the term II3 we write

II3 = ∂1

∑
q�1

[
Rij ,�q

(
L(ωθ/r)

)]
�̃qρ + ∂1

∑
−1�q�0

[
Rij ,�q

(
L(ωθ/r)

)]
�̃qρ

:= II31 + II32.

To estimate the first term we first use the Bernstein inequality to get

‖�kII31‖L2 � 2k
∑

q�k−4

∥∥[
Rij ,�q

(
L(ωθ/r)

)]
�̃qρ

∥∥
L2 .

Next, to estimate the terms inside the sum we do not need to use the structure of the commutator.
By using again the Hölder inequality, (34) and the Bernstein inequality, we obtain

∥∥[
Rij ,�q

(
L(ωθ/r)

)]
�̃qρ

∥∥
L2

�
∥∥�q

(
L(ωθ/r)

)∥∥
L3‖�̃qρ‖L6 + ∥∥�q

(
L(ωθ/r)

)∥∥
L3‖Rij �̃qρ‖L6

� 2−q‖ωθ/r‖L3‖�̃qρ‖L2 .

It follows by using again Proposition 2.5(4) that

‖II31‖L3,1 � ‖II31‖
B

1
2

2,1

� ‖ωθ/r‖L3

∑ ∑
2

3
2 (k−q)2q 1

2 ‖�̃qρ‖L3 � ‖ωθ/r‖L3‖ρ‖
B

1
2

2,1

.

k�−1 q�k−4



T. Hmidi, F. Rousset / Journal of Functional Analysis 260 (2011) 745–796 763
For the estimate of the low frequencies term II32 we need to use more deeply the structure of the
commutator. We first write

II32 =
∑

−1�q�0

[
∂1 Rij ,�q

(
L(ωθ/r)

)]
�̃qρ −

∑
−1�q�0

∂1 L�q(ωθ/r)Rij �̃qρ.

The last term of the above identity is estimated as follows by using again Proposition 2.5 (1) and
(3) and (24)∥∥∥∥ ∑

−1�q�0

∂1 L�q(ωθ/r)Rij �̃qρ

∥∥∥∥
B

1
2

2,1

�
∑

−1�q�0

∥∥∂1 L�q(ωθ/r)Rij �̃qρ
∥∥

L2

�
∥∥∂1 L(ωθ/r)

∥∥
L∞‖ρ‖L2

� ‖ωθ/r‖L3,1‖ρ‖
B

1
2

2,1

.

To estimate the first term of II32 we write for every −1 � q � 0 thanks to Lemma 2.7 that∥∥[
∂1 Rij ,�q

(
L(ωθ/r)

)]
�̃qρ

∥∥
L

5
2

� ‖xh‖
L

10
9

∥∥∇L(ωθ/r)
∥∥

L∞‖�̃qρ‖L2,

where ĥ(ξ) = ξ1
ξiξj

|ξ |2 χ̃ (ξ) and χ̃ ∈ D(R3). Using Mikhlin–Hörmander Theorem we have

∣∣h(x)
∣∣ � C

(
1 + |x|)−4

, ∀x ∈ R
3.

This gives in particular xh ∈ L
10
9 . Therefore we get by using again (24) that∥∥∥∥ ∑

−1�q�0

[
∂1 Rij ,�q

(
L(ωθ/r)

)]
�̃qρ

∥∥∥∥
B

1
5
5
2 ,1

�
∥∥∇L(ωθ/r)

∥∥
L∞‖ρ‖L2 � ‖ωθ/r‖L3,1‖ρ‖L2 .

By using the embedding B
1
5
5
2 ,1

↪→ L3,1, (see Proposition 2.5(4)), we find that

‖II32‖L3,1 � ‖ωθ/r‖L3,1‖ρ‖L2 .

We have thus obtained that the term II3 enjoys the estimate

‖II3‖L3,1 � ‖ωθ/r‖L3,1‖ρ‖L2 .

Consequently, by gathering this last estimate and the estimates (33), (35), we finally get that

‖II‖L3,1 � C‖ωθ/r‖L3,1‖ρ‖
B

1
2

2,1

. (36)

Estimate of III. We also decompose the term III by using Bony’s formula as follows:

III = III1 + III2 + III3,
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with

III1 = ∂1

∑
q�0

[
Rij , Sq−1

(
∂3�

−1(ωθ/r)
)]

�q(x1ρ),

III2 = ∂1

∑
q�0

[
Rij ,�q

(
∂3�

−1(ωθ/r)
)]

Sq−1(x1ρ),

III3 = ∂1

∑
q�−1

[
Rij ,�q

(
∂3�

−1(ωθ/r)
)]

�̃q(x1ρ).

As we have done to handle the term II1, we can use that there exists a function ψ ∈ S(R3) such
that

III1 =
∑
q�0

∂1
([

ψq(D), Sq−1
(
∂3�

−1(ωθ/r)
)]

�q(x1ρ)
)
,

with ψq = 23qψ(2q ·). For every p ∈ ]1,∞[, we first write thanks to the Bernstein inequality that∥∥∂1
{[

ψq(D), Sq−1
(
∂3�

−1(ωθ/r)
)]

�q(x1ρ)
}∥∥

Lp

� C2q
∥∥[

ψq(D), Sq−1
(
∂3�

−1(ωθ/r)
)]

�q(x1ρ)
∥∥

Lp .

Then by using successively Lemma 2.7 and the continuity of the Riesz transform (i.e. Proposi-
tion 2.5(3)), we get∥∥[

ψq(D), Sq−1
(
∂3�

−1(ωθ/r)
)]

�q(x1ρ)
∥∥

Lp

� ‖xψq‖L1

∥∥Sq−1
(∇∂3�

−1(ωθ/r)
)∥∥

Lp

∥∥�q(x1ρ)
∥∥

L∞

� 2−q‖xψ‖L1

∥∥∇∂3�
−1(ωθ/r)

∥∥
Lp

∥∥�q(x1ρ)
∥∥

L∞

� 2−q‖ωθ/r‖Lp

∥∥�q(x1ρ)
∥∥

L∞ .

It follows that

‖III1‖Lp �
∑
q�0

‖ωθ/r‖Lp

∥∥�q(x1ρ)
∥∥

L∞ � ‖ωθ/r‖Lp‖x1ρ‖B0∞,1
.

This proves that the linear operator T

f 
→
∑
q�0

∂1
{[

ψq(D), Sq−1
(
∂3�

−1f
)]

�q(x1ρ)
}

is continuous from Lp into itself for every p ∈ ]1,∞[ and that

‖T ‖L(Lp) � Cp‖x1ρ‖B0
∞,1

.

Consequently, by using the interpolation result of Theorem 2.4, we get that T is continuous on
Lp,q for every 1 < p < ∞ and q ∈ [1,∞]. In particular, this yields

‖III1‖L3,1 � ‖ωθ/r‖L3,1‖x1ρ‖B0 . (37)

∞,1
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For the term III3, we use split it into

III3 = ∂1

∑
q�1

[
Rij ,�q

(
∂3�

−1(ωθ/r)
)]

�̃q(x1ρ)

+ ∂1

∑
−1�q�0

[
Rij ,�q

(
∂3�

−1(ωθ/r)
)]

�̃q(x1ρ)

:= III31 + III32.

Let p ∈ ]1,∞[ from the Bernstein inequality, we have that

‖�kIII31‖Lp � 2k
∑

q�k−4

∥∥[
Rij ,�q

(
∂3�

−1(ωθ/r)
)]

�̃q(x1ρ)
∥∥

Lp

and the terms inside the sum can be controlled without using the structure of the commutator.
We just write∥∥[

Rij ,�q

(
∂3�

−1(ωθ/r)
)]

�̃q(x1ρ)
∥∥

Lp �
∥∥�q

(
∂3�

−1(ωθ/r)
)∥∥

Lp

∥∥�̃q(x1ρ)
∥∥

L∞

+ ∥∥�q

(
∂3�

−1(ωθ/r)
)∥∥

Lp

∥∥Rij �̃q(x1ρ)
∥∥

L∞

� 2−q‖ωθ/r‖Lp

∥∥�̃q(x1ρ)
∥∥

L∞ .

Note that we have used the Bernstein inequality, the continuity of the Riesz transform on Lp and
the fact that the support of the Fourier transform of �̃q does not contain zero which gives that the
operator Rij�q also acts continuously on L∞ (since it can be written as the convolution with an
L1 function). It follows that for every p ∈ ]1,+∞[, we have

‖III31‖Lp � ‖ωθ/r‖Lp

∑
k�−1

∑
q�k−4

2k−q
∥∥�̃q(x1ρ)

∥∥
L∞ � ‖ωθ/r‖Lp‖x1ρ‖B0∞,1

.

By using again the interpolation result of Theorem 2.4, this yields

‖III31‖L3,1 � ‖ωθ/r‖L3,1‖x1ρ‖B0∞,1
.

We can also estimate the term III32 without using the structure of the commutator. By using the
continuity of the Riesz transform on L2 and (18), we obtain∥∥[

Rij ,�q

(
∂3�

−1(ωθ/r)
)]

�̃q(x1ρ)
∥∥

L2 �
∥∥�q

(
∂3�

−1(ωθ/r)
)∥∥

L∞
∥∥�̃q(x1ρ)

∥∥
L2

+ ∥∥�q

(
∂3�

−1(ωθ/r)
)∥∥

L∞
∥∥Rij �̃q(x1ρ)

∥∥
L2

�
∥∥∂3�

−1(ωθ/r)
∥∥

L∞
∥∥�̃q(x1ρ)

∥∥
L2

� ‖ωθ/r‖L3,1‖x1ρ‖L2 .

Therefore we get

‖III32‖
B

1
2

� ‖ωθ/r‖L3,1‖x1ρ‖L2 .
2,1
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Consequently we obtain

‖III3‖B0
3,1

� ‖ωθ/r‖L3,1‖x1ρ‖B0∞,1∩L2 . (38)

Let us now turn to the estimate of the term III2. We write

III2 =
∑
q�0

[
Rij ,�q(∂13�

−1(ωθ/r)
]
Sq−1(x1ρ) + [

Rij ,�q(∂3�
−1(ωθ/r)

]
∂1Sq−1(x1ρ)

= III21 + III22.

We have by definition of the paraproducts that

III21 = Rij

(
Tx1ρ R13(ωθ/r)

) − TRij (x1ρ)R13(ωθ/r).

Thanks to Proposition 2.5, we get that

‖III21‖L3,1 �
∥∥R13(ωθ/r)

∥∥
L3,1

(‖x1ρ‖L∞ + ∥∥R13(x1ρ)
∥∥

L∞
)

� ‖ωθ/r‖L3,1

(‖x1ρ‖L∞ + ∥∥R13(x1ρ)
∥∥

L∞
)

� ‖ωθ/r‖L3,1‖x1ρ‖B0∞,1∩L2 .

Note that the L2 norm in the right-hand side comes from the low frequency term in the
Littlewood–Paley decomposition: we have∥∥R13�−1(x1ρ)

∥∥
L∞ �

∥∥R13�−1(x1ρ)
∥∥

L2 � ‖x1ρ‖L2 (39)

thanks to the Bernstein inequality and the L2 continuity of the Riesz transform.
For the estimate of III22, we shall use that thanks to the Bernstein inequality, we have for

every f that, ∥∥�q∂3�
−1f

∥∥
Lp � 2−q‖f ‖Lp , ∀q � 0, p ∈ ]1,+∞[.

This yields

‖III22‖Lp � ‖ωθ/r‖Lp

∑
q�0

2−q
(∥∥∂1Sq−1(x1ρ)

∥∥
L∞ + ∥∥∂1Sq−1 Rij (x1ρ)

∥∥
L∞

)
� ‖ωθ/r‖Lp

∑
q�0

∑
q−2�p�−1

2p−q
(∥∥�p(x1ρ)

∥∥
L∞ + ∥∥�p Rij (x1ρ)

∥∥
L∞

)
� ‖ωθ/r‖Lp

(‖x1ρ‖B0
∞,1

+ ∥∥Rij (x1ρ)
∥∥

B0∞,1

)
� ‖ωθ/r‖Lp‖x1ρ‖B0

∞,1∩L2

by using again (39). Consequently, by interpolation, we also find

‖III22‖L3,1 � ‖ωθ/r‖L3,1‖x1ρ‖B0 ∩L2 .
∞,1
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We have thus shown that

‖III2‖L3,1 � ‖ωθ/r‖L3,1‖x1ρ‖B0
∞,1∩L2 . (40)

Gathering (37), (38) and (40), we obtain

‖III‖L3,1 � ‖ωθ/r‖L3,1‖x1ρ‖B0∞,1∩L2 . (41)

Finally we obtain∥∥∂1
{[

Rij , v
1]ρ}∥∥

L3,1 � ‖ωθ/r‖L3,1

(‖x1ρ‖B0∞,1∩L2 + ‖ρ‖
B

1
2

2,1

)
thanks to (41), (36), (32) and (30). In the same way, we also obtain the estimate∥∥∂2

{[
Rij , v

2]ρ}∥∥
L3,1 � ‖ωθ/r‖L3,1

(‖x2ρ‖B0
∞,1∩L2 + ‖ρ‖

B
1
2

2,1

)
.

In view of (28), it remains to estimate the term ∂3([Rij , v
3]ρ) which has a different structure.

• Estimate of ∂3([Rij , v
3]ρ). Since we can write that

�v3 = −(curlω)3 = −
(

∂rωθ + ωθ

r

)
= −

(
r∂r

(
ωθ

r

)
+ 2

ωθ

r

)
= −xh · ∇h

(
ωθ

r

)
− 2

ωθ

r
,

we obtain that

v3(x) = −�−1
(

xh · ∇h

(
ωθ

r

))
− 2�−1

(
ωθ

r

)
and hence by using Lemma 2.10 that

−v3(x) = xh · ∇h�
−1(ωθ/r) − 2

2∑
i=1

�−1 Rii (ωθ/r) + 2�−1(ωθ/r)

= xh · ∇h�
−1(ωθ/r) + 2�−1 R33(ωθ/r). (42)

Thus, we have a decomposition of the commutator under the form

−∂3
([

Rij , v
3]ρ) =

2∑
k=1

∂3
(
∂k�

−1(ωθ/r)[Rij , xk]ρ
) + 2∂3

([
Rij ,�

−1 R33(ωθ/r)
]
ρ
)

+
2∑

k=1

∂3
([

Rij , ∂k�
−1(ωθ/r)

]
(xkρ)

)
= I + II + III.

To estimate the first term I, we use Lemma 2.10(2) to obtain that
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∂3

(
∂k�

−1
(

ωθ

r

)
[Rij , xk]ρ

)
= ∂3

(
∂k�

−1
(

ωθ

r

)
Lk

ij ρ

)
= R3k

(
ωθ

r

)
Lk

ij ρ + ∂k�
−1

(
ωθ

r

)
∂3 Lk

ij ρ.

It follows that

‖I‖L3,1 �
2∑

k=1

(∥∥Lk
ij ρ

∥∥
L∞

∥∥R3k(ωθ/r)
∥∥

L3,1 + ∥∥∂k�
−1(ωθ/r)

∥∥
L∞

∥∥∂3 Lk
ij ρ

∥∥
L3,1

)
� ‖ρ‖L3,1‖ωθ/r‖L3,1

thanks to (26), (27). The estimates of the terms II and III are similar to the ones of II and III
in (30) (indeed, the operator �−1 R33 = ∂33�

−2 has the same properties as L = −2∂13�
−2

which arises in (30)) consequently, we also get as in (36) and (41) that

‖I‖L3,1 � ‖ωθ/r‖L3‖ρ‖
B

1
2

2,1

, ‖II‖L3,1 � ‖ωθ/r‖L3,1‖ρxh‖B0∞,1∩L2 .

Consequently, we also find that∥∥∂3
([

Rij , v
3]ρ)∥∥

L3,1 � ‖ωθ/r‖L3,1

(‖ρxh‖B0∞,1∩L2 + ‖ρ‖
B

1
2

2,1

)
.

This ends the proof of Theorem 3.1. �
3.2. Commutation between the advection operator and �q

The last commutator estimate which is needed in the proof of our main result is the following.

Proposition 3.2. Let v be an axisymmetric divergence free vector field without swirl and ρ a
smooth scalar function. Then there exists C > 0 such that for every q ∈ N ∪ {−1} we have∥∥[�q,v · ∇]ρ∥∥

L2 � C‖ωθ/r‖L3,1

(‖ρxh‖L6 + ‖ρ‖L2

)
.

Proof. From the incompressibility of the velocity we have

[�q,v · ∇]ρ =
3∑

i=1

∂i

([
�q,vi

]
ρ
) = I + II + III. (43)

The first and the second terms can be handled in the same way, so we shall only detail the proof
of the estimate of the first one. Thanks to (29), we have that

v1(x) = x1�
−1∂3(ωθ/r) + L(ωθ/r), with L = −2R13�

−1

and hence we get
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I = ∂1
([

�q,x1�
−1∂3(ωθ/r)

]
ρ
) + ∂1

([
�q, L(ωθ/r)

]
ρ
)

= I1 + I2.

The estimate of the second term in the right-hand side is again a direct consequence of Lemma 2.8
and (24). Indeed, we write

‖I2‖L2 �
∥∥∇L(ωθ/r)

∥∥
L∞‖ρ‖L2 � ‖ωθ/r‖L3,1‖ρ‖L2 .

The first term I1 in the right-hand side can be expanded under the form

I1 = ∂1
([

�q,�−1∂3(ωθ/r)
]
(x1ρ)

) + ∂1
(
�−1∂3(ωθ/r)[�q,x1]ρ

) = I11 + I12.

We start with the estimate of I12. By definition of �q , we have

x1�qρ = x123q

∫
R3

ϕ
(
2q(x − y)

)
ρ(y)dy

= 23q

∫
R3

ϕ
(
2q(x − y)

)
y1ρ(y)dy + 23q

∫
R3

ϕ
(
2q(x − y)

)
(x1 − y1)ρ(y) dy

= �q(x1ρ) + 2−q23q ϕ1
(
2q ·) � ρ,

where ϕ1(x) = x1ϕ(x) ∈ S(R3). Consequently we get the expression of the commutator:

[�q,x1]ρ = −2−q23qϕ1
(
2q ·) � ρ. (44)

This yields

I12 = −(
R13(ωθ/r)

)
22qϕ1

(
2q ·) � ρ − {

�−1∂3(ωθ/r)
}
23q(∂1ϕ1)

(
2q ·) � ρ.

Therefore we get by using again the Hölder inequality, the continuity of the Riesz transform, (18)
and the Young inequality for convolutions that:

‖I12‖L2 �
∥∥R13(ωθ/r)

∥∥
L3 22q

∥∥ϕ1
(
2q ·) � ρ

∥∥
L6 + ∥∥�−1∂3(ωθ/r)

∥∥
L∞23q

∥∥(∂1ϕ1)
(
2q ·) � ρ

∥∥
L2

� ‖ωθ/r‖L3‖ϕ1‖
L

3
2
‖ρ‖L2 + ‖ωθ/r‖L3,1‖∂1ϕ1‖L1‖ρ‖L2

� ‖ωθ/r‖L3,1‖ρ‖L2 .

Note that we have also used the embedding (15).
To estimate I11 we use again Lemma 2.8:

‖I11‖L2 �
∥∥∇�−1∂3(ωθ/r)

∥∥
L3‖x1ρ‖L6 � ‖ωθ/r‖L3‖x1ρ‖L6 � ‖ωθ/r‖L3,1‖x1ρ‖L6 .

We have thus shown that

‖I‖L2 � ‖ωθ/r‖L3,1

(‖ρ‖L2 + ‖x1ρ‖L6

)
. (45)
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In the same way, we obtain that

‖II‖L2 � ‖ωθ/r‖L3,1

(‖ρ‖L2 + ‖x2ρ‖L6

)
. (46)

It remains to estimate the last term III. By using (42), we get

−III = ∂3
{[

�q,∇h�
−1(ωθ/r)

]
(xhρ)

} + ∂3
{∇h�

−1(ωθ/r)[�q,xh]ρ
}

+ 2∂3
{[

�q,�−1 R33(ωθ/r)
]
ρ
}

= III1 + III2 + III3.

The estimates of the first and last terms follow again from Lemma 2.8: we write that

‖III1‖L2 � C
∥∥∇2�−1(ωθ/r)

∥∥
L3‖xhρ‖L6 � ‖ωθ/r‖L3‖xhρ‖L6 � ‖ωθ/r‖L3,1‖xhρ‖L6

and that

‖III3‖L2 � C
∥∥∇�−1 R33(ωθ/r)

∥∥
L∞‖ρ‖L2 �

∥∥R33(ωθ/r)
∥∥

L3,1‖ρ‖L2 � C‖ωθ/r‖L3,1‖ρ‖L2 .

Note that we have used again the estimate (18).
Finally, to estimate the second term III2 we can use the expression of the commutator [�q,xh]

given by (44):

III2 = 2−q∂3
((∇h�

−1(ωθ/r)
)
23qϕh

(
2q ·) � ρ

)
= 2−q

(
∂3∇h�

−1(ωθ/r)
)(

23qϕh

(
2q ·) � ρ

) + ∇h�
−1(ωθ/r)

(
23q(∂3ϕh)

(
2q ·) � ρ

)
,

with ϕh(x) = −xhϕ(x). It follows as before that

‖III2‖L2 � 2−q‖ωθ/r‖L3 23q
∥∥ϕh

(
2q ·) � ρ

∥∥
L6 + ∥∥∇h�

−1(ωθ/r)
∥∥

L∞23q
∥∥(∂3ϕh)

(
2q ·) � ρ

∥∥
L2

� ‖ωθ/r‖L3‖ϕh‖
L

3
2
‖ρ‖L2 + ‖ωθ/r‖L3,1‖∂3ϕh‖L1‖ρ‖L2

� ‖ωθ/r‖L3,1‖ρ‖L2 .

Gathering these estimates we also find that

‖III‖L3 � ‖ωθ/r‖L3,1

(‖ρ‖Lp + ‖xhρ‖L6

)
.

In view of (43), (45), (46) and the last estimate, this ends the proof of Proposition 3.2. �
4. A priori estimates

In this section we intend to establish the global a priori estimates needed for the proof of
Theorem 1.1. We shall first prove some basic weak estimates that can be obtained easily through
energy type estimates. In a second step, we shall prove the control of some stronger norms such as
‖ω(t)‖L∞ and ‖∇v(t)‖L∞ . This part requires more refined analysis: we use the special structure
of the Boussinesq model combined with the previous commutator estimates.
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4.1. Energy estimates

We start with some elementary energy estimates.

Proposition 4.1. Let (v,ρ) be a smooth solution of (1) then

(1) For p ∈ ]1,∞[, q ∈ [1,∞] and t ∈ R+, we have

‖ρ‖2
L∞

t L2 + 2‖∇ρ‖2
L2

t L
2 � ‖ρ0‖2

L2 , ‖ρ‖L∞
t Lp,q � C‖ρ0‖Lp,q .

(2) For v0 ∈ L2, ρ0 ∈ L2 and t ∈ R+ we have∥∥v(t)
∥∥

L2 � ‖v0‖L2 + t‖ρ0‖L2 .

(3) For ρ0 ∈ L2 we have the dispersive estimate

∥∥ρ(t)
∥∥

L∞ � C

(
1 + 1

t
3
4

)
‖ρ0‖L2 .

The constant C is absolute.

Note that the axisymmetric assumption is not needed in this proposition.

Proof. (1) By taking the L2-scalar product of the second equation of (1) with ρ and integrating
by parts, we get since v is divergence free that

1

2

d

dt

∥∥ρ(t)
∥∥2

L2 +
∫
R3

∣∣∇ρ(t, x)
∣∣2

dx = 0.

Integrating in time this differential inequality gives the desired result.
Let us now move to the estimate of the density in Lorentz spaces. First, the same argument

yields that for every p ∈ [1,∞], we have∥∥ρ(t)
∥∥

Lp � ‖ρ0‖Lp .

It suffices now to use the interpolation result of Theorem 2.4.
(2) We take the L2-scalar product of the velocity equation with v and we integrate by parts

1

2

d

dt

∥∥v(t)
∥∥2

L2 �
∥∥v(t)

∥∥
L2

∥∥ρ(t)
∥∥

L2

and this implies that

d ∥∥v(t)
∥∥

L2 �
∥∥ρ(t)

∥∥
L2 .
dt
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Thus, integrating in time gives

∥∥v(t)
∥∥

L2 � ‖v0‖L2 +
t∫

0

∥∥ρ(τ)
∥∥

L2 dτ.

Since ‖ρ(t)‖L2 � ‖ρ0‖L2 , we infer∥∥v(t)
∥∥

L2 � ‖v0‖L2 + t‖ρ0‖L2 .

(3) The estimate is a direct consequence of Lemma A.1 The proof of the proposition is now
achieved. �
4.2. Estimates of the moments of ρ.

We have seen in Section 3.1 and Section 3.2 that the estimates of the commutators involve
some moments of the density. Thus we aim in this paragraph at giving suitable estimates for the
moments that will be needed later when we shall perform our diagonalization of the Boussinesq
system. Two types of estimates are discussed: the energy estimates of the horizontal moments
|xh|kρ, with k = 1,2 and some dispersive estimates. More precisely we prove the following.

Proposition 4.2. Let v be a vector field with zero divergence and satisfying the energy estimate
of Proposition 4.1. Let ρ be a solution of the transport-diffusion equation

∂tρ + v · ∇ρ − �ρ = 0, ρ(0, x) = ρ0.

Then we have the following estimates.

(1) For ρ0 ∈ L2 and xhρ0 ∈ L2 , there exists C0 > 0 such that for every t � 0

‖xhρ‖L∞
t L2 + ‖xhρ‖L2

t Ḣ
1 � C0

(
1 + t

5
4
)
.

(2) For ρ0 ∈ L2 ∩ Lm,m > 6 and xhρ0 ∈ L2, there exists C0 > 0 such that for every t > 0

∥∥xhρ(t)
∥∥

L∞ � C0
(
t

1
4 + t−

3
4
)
.

(3) For ρ0 ∈ L2 and |xh|2ρ0 ∈ L2, there exists C0 > 0 such that for every t � 0

∥∥|xh|2ρ
∥∥

L∞
t L2 + ∥∥|xh|2ρ

∥∥
L2

t Ḣ
1 � C0

(
1 + t

5
2
)
.

(4) For ρ0 ∈ L2 ∩ L6 and |xh|2ρ0 ∈ L2, there exists C0 > 0 such that for every t > 0

∥∥|xh|2ρ(t)
∥∥

L6 � C0
(
t

13
6 + t−

1
2
)
.
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Remark 4.3. Note that when ρ0 ∈ L2 and |xh|2ρ0 ∈ L2 then automatically the moment of order
one belongs to L2, that is xhρ0 ∈ L2. This is an easy consequence of the Hölder inequality

‖xhρ‖L2 � ‖ρ‖
1
2
L2

∥∥|xh|2ρ
∥∥ 1

2
L2 .

Proof. (1) Setting f = xhρ, we can easily check that f solves the equation

∂tf + v · ∇f − �f = vhρ − 2∇hρ (47)

with the notations vh = (v1, v2) and ∇h = (∂1, ∂2). Now, taking the L2-scalar product with f ,
integrating by parts and using the Hölder inequality

1

2

d

dt

∥∥f (t)
∥∥2

L2 + ∥∥∇f (t)
∥∥2

L2 =
∫
R3

vhρf dx − 2
∫
R3

∇hρf dx

� ‖v‖L2‖ρ‖L3‖f ‖L6 + 2‖ρ‖L2‖∇f ‖L2 .

By using the Sobolev embedding Ḣ 1 ↪→ L6 combined with the Young inequality, we obtain

d

dt

∥∥f (t)
∥∥2

L2 + ∥∥∇f (t)
∥∥2

L2 � ‖v‖2
L2‖ρ‖2

L3 + ‖ρ‖2
L2 .

Since the Gagliardo–Nirenberg inequality gives that

‖ρ‖2
L3 � ‖ρ‖L2‖∇ρ‖L2,

we infer

d

dt

∥∥f (t)
∥∥2

L2 + ∥∥∇f (t)
∥∥2

L2 � ‖v‖2
L2‖ρ‖L2‖∇ρ‖L2 + ‖ρ‖2

L2 . (48)

Integrating in time and using the energy estimate of Proposition 4.1(1), we thus obtain∥∥f (t)
∥∥2

L2 + ∥∥∇f (t)
∥∥2

L2
t L

2 � ‖f0‖2
L2 + ‖v‖2

L∞
t L2‖ρ0‖L2‖∇ρ‖L1

t L
2 + ‖ρ0‖2

L2 t

� ‖f0‖2
L2 + C0

(
1 + t2)t 1

2 + ‖ρ0‖2
L2 t

� C0
(
1 + t

5
2
)
.

(2) We shall apply Lemma A.1 to (47) with F = ρ ei and G = viρ. First, we observe that we
have obviously from the Hölder inequality combined with Proposition 4.1(1) that for m � 2

‖G‖
L∞

t L
2m

m+2
� ‖v‖L∞

t L2‖ρ‖L∞
t Lm

� C0(1 + t)

and

‖F‖L∞L6 � ‖ρ0‖L6 .

t
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Consequently, we get from Lemma A.1 and Proposition 4.1 that for m > 6 and for t > 0,

∥∥f (t)
∥∥

L∞ � C
(
1 + t−

3
4
)‖f0‖L2 + C0

(
1 + t

1
4 − 3

2m
) + (

1 + t
1
4
)‖ρ0‖L6

� C0
(
t−

3
4 + t

1
4
)
.

(3) The second moment g = |xh|2ρ solves the following equation

∂tg + v · ∇g − �g = 2vh(xhρ) − 2∇hρ − 4 divh(xhρ)

= vhf − 2∇hρ − 4 divh f.

By using again an L2 energy estimate, we find that

d

dt

∥∥g(t)
∥∥2

L2 + ∥∥∇g(t)
∥∥2

L2 �
∥∥v(t)

∥∥2
L2

∥∥f (t)
∥∥

L2

∥∥∇f (t)
∥∥

L2 + ∥∥ρ(t)
∥∥2

L2 + ∥∥f (t)
∥∥2

L2 .

Thus, by integrating in time and using the energy estimates for ρ, v and f we get

∥∥g(t)
∥∥

L2 + ‖∇g‖L2
t L

2 � ‖g0‖L2 + ‖v‖L∞
t L2‖f ‖

1
2
L∞

t L2‖∇f ‖
1
2

L2
t L

2 t
1
4 + ‖ρ0‖L2 t

1
2 + ‖f ‖L∞

t L2 t
1
2

� C0
(
1 + t

5
2
)
,

where C0 is a constant depending on the quantities ‖|xh|kρ0‖L2 for k = 0,1,2.
(4) By setting g1(t, x) = tg(t, x), we have that

∂tg1 + v · ∇g1 − �g1 = g + 2vh(txhρ) − 2t∇hρ − 4 divh(txhρ).

Multiplying this equation by |g1|4g1, integrating by parts and the obvious inequality |xhρ| �
|ρ| 1

2 |g| 1
2 , we thus get

1

6

d

dt
‖g1‖6

L6 + 5
∫
R3

|∇g1|2|g1|4 dx � ‖g‖L6‖g1‖5
L6 + t

1
2

∫
R3

|v||ρ| 1
2 |g1| 11

2 dx

+ t

∫
R3

|ρ||∇g1||g1|4 dx + t
1
2

∫
R3

|ρ| 1
2 |g1| 9

2 |∇g1|dx.

It follows from Hölder inequality that

t
1
2

∫
R3

|ρ| 1
2 |g1| 9

2 |∇g1|dx � t
1
2 ‖v‖L2‖g1‖

11
2

L18‖ρ‖
1
2

L
18
7

.

Consequently
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1

6

d

dt
‖g1‖6

L6 + 5
∫
R3

|∇g1|2|g1|4 dx

� ‖g‖L6‖g1‖5
L6 + t

1
2 ‖v‖L2‖g1‖

11
2

L18‖ρ‖
1
2

L
18
7

+ (
t‖ρ‖L6‖g1‖2

L6 + t
1
2 ‖ρ‖

1
2
L6‖g1‖

5
2
L6

)( ∫
R3

|∇g1|2|g1|4 dx

) 1
2

.

Now we can use the Young inequality combined with the following Sobolev inequality

‖g1‖18
L18 �

∥∥∇(
g3

1

)∥∥2
L2 = 9

∫
R3

|∇g1|2|g1|4 dx

to obtain that

d

dt
‖g1‖6

L6 + c‖g1‖6
L18 + c

∫
R3

|∇g1|2|g1|4 dx � ‖g‖L6‖g1‖5
L6 + t6‖v‖12

L2‖ρ‖6

L
18
7

+ t2‖ρ‖2
L6‖g1‖4

L6 + t‖ρ‖L6‖g1‖5
L6 .

By using Proposition 4.1, we deduce that

d

dt
‖g1‖6

L6 + c‖g1‖6
L18 + c

∫
R3

|∇g1|2|g1|4 dx � ‖g‖L6‖g1‖5
L6 + C0t

6(1 + t12)
+ t2‖ρ0‖2

L6‖g1‖4
L6 + t‖ρ0‖L6‖g1‖5

L6 .

Next, by using again the Young inequality, we infer

d

dt

∥∥g1(t)
∥∥6

L6 � C0
(
t6 + t18) + C0

(
t + ∥∥g(t)

∥∥
L6

)∥∥g1(t)
∥∥5

L6 .

By integrating in time this differential inequality, we obtain that

∥∥g1(t)
∥∥6

L6 � C0
(
t7 + t19) + C0

t∫
0

(
τ + ∥∥g(τ)

∥∥
L6

)∥∥g1(τ )
∥∥5

L6 dτ.

Therefore we get from Proposition 4.2(3) combined with the Sobolev embedding Ḣ 1 ⊂ L6 that

∥∥g1(t)
∥∥

L6 � C0
(
t

7
6 + t

19
6
) + C0‖g‖L1

t L
6

� C0
(
t

7
6 + t

19
6
) + t

1
2 ‖∇g‖L2

t L
2

� C0
(
t

7
6 + t

19
6
) + C0

(
1 + t

5
2
)
t

1
2 .
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Therefore, we obtain that ∥∥|xh|2ρ(t)
∥∥

L6 � C0
(
t

13
6 + t−

1
2
)
.

This ends the proof of Proposition 4.2. �
4.3. Strong estimates

As in the study of the axisymmetric Euler equation, the main important quantity that one
should estimate in order to get the global existence of smooth solutions is ‖ω

r
(t)‖L3,1 . Indeed,

this will enable us to bound stronger norms such as ‖ω(t)‖L∞ and ‖∇v(t)‖L∞ which are the
significant quantities to propagate higher regularities.

4.3.1. Estimate of ‖ω
r
(t)‖L∞

First, we will introduce the following notation: we denote by Φk any function of the form

Φk(t) = C0 exp
(
. . . exp︸ ︷︷ ︸

k times

(
C0t

19
6
)
. . .

)
,

where C0 depends on the involved norms of the initial data and its value may vary from line to
line up to some absolute constants. We will make an intensive use (without mentioning it) of the
following trivial facts

t∫
0

Φk(τ) dτ � Φk(t) and exp

( t∫
0

Φk(τ) dτ

)
� Φk+1(t).

We first establish the following result.

Proposition 4.4. Let v0 ∈ L2 be an axisymmetric vector field such that ω0
r

∈ L3,1 and ρ0 ∈
L2 ∩ Lm, for m > 6, axisymmetric and such that |xh|2ρ0 ∈ L2. Then, we have for every t ∈ R+∥∥∥∥ω

r
(t)

∥∥∥∥
L3,1

+
∥∥∥∥vr

r
(t)

∥∥∥∥
L∞

� Φ2(t),

where C0 is a constant depending on the norms of the initial data.

Proof. Recall that the equation of the scalar component of the vorticity ω = ωθeθ is given by

∂tωθ + v · ∇ωθ = vr

r
ωθ − ∂rρ. (49)

It follows that the evolution of the quantity ωθ

r
is governed by the equation

(∂t + v · ∇)
ωθ = −∂rρ · (50)

r r
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By applying the operator ∂r

r
�−1 to the equation of the density in (1), we obtain that

(∂t + v · ∇)

(
1

r
∂r�

−1ρ

)
− ∂rρ

r
= −

[
1

r
∂r�

−1, v · ∇
]
ρ.

By setting Γ := ωθ

r
+ ∂r

r
�−1ρ, we infer

(∂t + v · ∇)Γ = −
[

1

r
∂r�

−1, v · ∇
]
ρ.

Observe that the incompressibility of the velocity field allows us to get that for every p ∈ [1,∞]

∥∥Γ (t)
∥∥

Lp � ‖Γ0‖Lp +
t∫

0

∥∥∥∥[
1

r
∂r�

−1, v · ∇
]
ρ

∥∥∥∥
Lp

dτ.

Therefore we get by the interpolation result of Theorem 2.4 that for 1 < p < ∞ and q ∈ [1,∞]

∥∥Γ (t)
∥∥

Lp,q � ‖Γ0‖Lp,q +
t∫

0

∥∥∥∥[
1

r
∂r�

−1, v · ∇
]
ρ(τ)

∥∥∥∥
Lp,q

dτ.

In particular, we have

∥∥Γ (t)
∥∥

L3,1 � ‖Γ0‖L3,1 +
t∫

0

∥∥∥∥[
1

r
∂r�

−1, v · ∇
]
ρ(τ)

∥∥∥∥
L3,1

dτ.

Applying Theorem 3.1 we find

∥∥Γ (t)
∥∥

L3,1 � ‖Γ0‖L3,1 +
t∫

0

∥∥(ωθ/r)(τ )
∥∥

L3,1

(∥∥xhρ(τ)
∥∥

B0∞,1∩L2 + ∥∥ρ(τ)
∥∥

B
1
2

2,1

)
dτ.

Moreover, thanks to Proposition 2.9 and Proposition 4.1 we have

∥∥(ωθ/r)(t)
∥∥

L3,1 �
∥∥Γ (t)

∥∥
L3,1 +

∥∥∥∥1

r
∂r�

−1ρ(t)

∥∥∥∥
L3,1

�
∥∥Γ (t)

∥∥
L3,1 + C‖ρ0‖L3,1 .

The combination of these last estimates yield

∥∥(ωθ/r)(t)
∥∥

L3,1 � C
(‖ω0/r‖L3,1 + ‖ρ0‖L3,1

)
+

t∫ ∥∥(ωθ/r)(τ )
∥∥

L3,1

(∥∥xhρ(τ)
∥∥

B0∞,1∩L2 + ∥∥ρ(τ)
∥∥

B
1
2

2,1

)
dτ.
0
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Thus we get by the Gronwall inequality that∥∥(ωθ/r)(t)
∥∥

L3,1 � C
(‖ω0/r‖L3,1 + ‖ρ0‖L3,1

)
exp

(
C‖xhρ‖L1

t (B
0∞,1∩L2) + C‖ρ‖

L1
t B

1
2

2,1

)
. (51)

The term ‖ρ‖
L1

t B
1
2

2,1

will be controlled only by energy estimates. Indeed, the interpolation esti-

mate

‖ρ‖
B

1
2

2,1

� ‖ρ‖
1
2
L2‖∇ρ‖

1
2
L2

combined with Proposition 4.1 and the Hölder inequality give

‖ρ‖
L1

t B
1
2

2,1

� ‖ρ‖
1
2
L∞

t L2 t
3
4 ‖∇ρ‖

1
2

L2
t L

2 � t
3
4 ‖ρ0‖L2 .

To control the term ‖xhρ‖L1
t L

2 in the right-hand side of (51), we can use Proposition 4.2:

‖xhρ‖L1
t L

2 � t‖xhρ‖L∞
t L2 � C0

(
1 + t

9
4
)
.

Consequently we obtain in view of (51)∥∥∥∥ω

r
(t)

∥∥∥∥
L3,1

� C0e
C0t

9
4
e
C‖ρxh‖

L1
t B0∞,1 . (52)

Now it remains to estimate the right term of (52) inside the exponential. Let us first sketch the
strategy of our approach. We will introduce an integer N(t) ∈ N that will be chosen in an optimal
way in the end and we will split in frequency the involved quantity into two parts: low frequencies
corresponding to q � N(t) and high frequencies associated to q > N(t). To estimate the low
frequencies we use the dispersive result of Proposition 4.2(2). The estimate of high frequencies
is based on a smoothing effect.

By using Proposition 4.2(2) and the Bernstein inequality, we find that

‖xhρ‖L1
t B

0∞,1
=

t∫
0

∑
q�N(τ)

∥∥�q(xhρ)(τ )
∥∥

L∞ dτ +
t∫

0

∑
q>N(τ)

∥∥�q(xhρ)(τ )
∥∥

L∞ dτ

� C0

t∫
0

(
τ

1
4 + τ− 3

4
)
N(τ)dτ + C

t∫
0

∑
q>N(τ)

2q 3
2
∥∥�q(xhρ)(τ )

∥∥
L2 dτ. (53)

Now we intend to estimate the last sum in the above inequality. For this purpose we localize in
frequency the equation for f = xhρ which is

∂tf + v · ∇f − �f = vhρ − 2∇hρ := F.
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By setting fq := �qf , we infer

∂tfq + v · ∇fq − �fq = −[�q,v · ∇]f + Fq.

From an L2 energy estimate, we obtain that

1

2

d

dt

∥∥fq(t)
∥∥2

L2 −
∫
R3

(�fq)fq dx � ‖fq‖L2

(∥∥[�q,v · ∇]f ∥∥
L2 + ‖Fq‖L2

)
.

Since the Bessel identity yields

c22q‖fq‖2
L2 � −

∫
R3

(�fq)fq dx,

it follows that

d

dt

∥∥fq(t)
∥∥

L2 + c22q
∥∥fq(t)

∥∥
L2 � C

(∥∥[�q,v · ∇]f ∥∥
L2 + ‖Fq‖L2

)
.

Therefore we obtain by integration in time that

∥∥fq(t)
∥∥

L2 � e−ct22q ∥∥fq(0)
∥∥

L2 +
t∫

0

e−c(t−τ)22q (∥∥[�q,v · ∇]f ∥∥
L2 + ‖Fq‖L2

)
dτ.

To estimate the commutator in the right-hand side, we can use Proposition 3.2 and Proposi-
tion 4.2,

∥∥[�q,v · ∇]f (τ)
∥∥

L2 � C
∥∥(ωθ/r)(τ )

∥∥
L3,1

(∥∥|xh|2ρ(τ)
∥∥

L6 + ∥∥xhρ(τ)
∥∥

L2

)
� C0

∥∥(ωθ/r)(τ )
∥∥

L3,1

(
τ

13
6 + τ− 1

2
)
.

Hence we get

∥∥fq(t)
∥∥

L2 � e−ct22q ∥∥fq(0)
∥∥

L2 +
t∫

0

e−c(t−τ)22q ∥∥Fq(τ)
∥∥

L2 dτ

+ C0

t∫
0

e−c(t−τ)22q ∥∥(ωθ/r)(τ )
∥∥

L3,1

(
τ

13
6 + τ− 1

2
)
dτ. (54)

Let us set K(τ ) = τ
13
6 + τ− 1

2 , then (54) and convolution inequalities yield
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t∫
0

∑
q>N(τ)

2q 3
2
∥∥�q(xhρ)(τ )

∥∥
L2 dτ

�
∑

q�−1

2− 1
2 q

(∥∥fq(0)
∥∥

L2 + ‖Fq‖L1
t L

2

)

+ C0

t∫
0

∑
q>N(τ)

2q 3
2

τ∫
0

e−c(τ−τ ′)22q K
(
τ ′)∥∥(ωθ/r)

(
τ ′)∥∥

L3,1 dτ ′

� ‖f0‖L2 + ‖F‖L1
t L

2 + C0

t∫
0

‖ωθ/r‖L∞
τ L3,1

( ∑
q>N(τ)

2q 3
2

τ∫
0

e−c(τ−τ ′)22q K
(
τ ′)dτ ′

)
dτ.

Moreover, from Proposition 4.1 and Lemma A.1, we also have

‖F‖L1
t L

2 � t
1
2 ‖∇ρ‖L2

t L
2 + ‖v‖L∞

t L2‖ρ‖L1
t L

∞

� C‖ρ0‖L2 t
1
2 + C0(1 + t)‖ρ0‖L2

( t∫
0

τ− 3
4 dτ + t

)

� C0
(
1 + t2).

Inserting these estimates into (53) yields

‖xhρ‖L1
t B

0∞,1

� C0
(
1 + t2) + C0

t∫
0

(
τ

1
4 + τ− 3

4
)
N(τ)dτ

+ C0

t∫
0

‖ωθ/r‖L∞
τ L3,1

( ∑
q>N(τ)

2q 3
2

τ∫
0

e−c(τ−τ ′)22q ({
τ ′} 13

6 + {
τ ′}− 1

2
)
dτ ′

)
dτ

� C0
(
1 + t2) + C0

t∫
0

(
τ

1
4 + τ− 3

4
)
N(τ)dτ

+ C0

t∫
0

‖ωθ/r‖L∞
τ L3,1

(
τ

13
6 2− 1

2 N(τ) +
∑

q>N(τ)

2q 3
2

τ∫
0

e−c(τ−τ ′)22q {
τ ′}− 1

2 dτ ′
)

dτ. (55)

By a change of variables we get
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∑
q>N(τ)

2q 3
2

τ∫
0

e−c(τ−τ ′)22q {
τ ′}− 1

2 dτ ′ =
∑

q>N(τ)

2q 1
2 e−cτ22q

22qτ∫
0

ecτ ′{
τ ′}− 1

2 dτ ′

=
∑

q∈Λ1(τ )

2q 1
2 e−cτ22q

22qτ∫
0

ecτ ′{
τ ′}− 1

2 dτ ′

+
∑

q∈Λ2(τ )

2q 1
2 e−cτ22q

22qτ∫
0

ecτ ′{
τ ′}− 1

2 dτ ′

:= I(τ ) + II(τ ).

with

Λ1(τ ) = {
q > N(τ) and τ22q � 1

}
and Λ2(τ ) = {

q > N(τ) and τ22q � 1
}
.

To estimate the first term we use the following inequality which can, be proven by integration by
parts: there exists C > 0 such that for every x � 1

x∫
0

y− 1
2 ecy dy � Cx− 1

2 ecx.

It follows that

I(τ ) � τ− 1
2

∑
q>N(τ)

2− 1
2 q � 2− 1

2 N(τ)τ− 1
2 .

To estimate the second term, we observe that the integral is bounded by a fixed number and
hence, we find that

II(τ ) �
∑

q∈Λ2(τ )

2
1
2 q � 2− 1

2 N(τ)
∑

22q�τ−1

2q � 2− 1
2 N(τ)

(
1 + τ− 1

2
)
.

Gathering these estimates, we obtain

∑
q>N(τ)

2q 3
2

τ∫
0

e−c(τ−τ ′)22q {
τ ′}− 1

2 dτ ′ � 2− 1
2 N(τ)

(
1 + τ− 1

2
)
.

By plugging this estimate into (55), we get

‖xhρ‖L1
t B

0∞,1
� C0

(
1 + t2) + C0

t∫ (
τ

13
6 + τ− 3

4
)(

N(τ) + ‖ωθ/r‖L∞
τ L3,1 2− 1

2 N(τ)
)
dτ.
0
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We choose N such that

N(τ) = 2
[
log2

(
2 + ‖ωθ/r‖L∞

τ L3,1

)]
and then we find

‖xhρ‖L1
t B

0∞,1
� C0

(
1 + t

19
6
) + C0

t∫
0

(
τ

13
6 + τ− 3

4
)

log
(
2 + ‖ωθ/r‖L∞

τ L3,1

)
dτ. (56)

Putting together (52), (56) and Proposition 4.2(2), we find that

log
(
2 + ‖ωθ/r‖L∞

t L3,1

)
� C0

(
1 + t

19
6
) + C0

t∫
0

(
τ

13
6 + τ− 3

4
)

log
(
2 + ‖ωθ/r‖L∞

τ L3,1

)
dτ .

From the Gronwall inequality, we infer

log
(
2 + ‖ωθ/r‖L∞

t L3,1

)
� C0

(
1 + t

19
6
)
eC0(t

19
6 +t

1
4 ) � Φ1(t).

Therefore we get by using again (56) that∥∥∥∥ωθ

r
(t)

∥∥∥∥
L3,1

� Φ2(t).

Since ω
r

= ωθ

r
eθ , (22) implies that ∥∥∥∥ω

r
(t)

∥∥∥∥
L3,1

� Φ2(t). (57)

Finally, thanks to (19), we obtain∥∥∥∥vr

r
(t)

∥∥∥∥
L∞

� C

∥∥∥∥ω

r
(t)

∥∥∥∥
L3,1

� Φ2(t).

This ends the proof of Proposition 4.4. �
4.3.2. Estimate of ‖ω(t)‖L∞

Our purpose now is to bound the vorticity.

Proposition 4.5. Let v0 ∈ L2 be an axisymmetric divergence free vector field without swirl such
that ω0 ∈ L∞, ω0

r
∈ L3,1. Let ρ0 be axisymmetric scalar function, belonging to L2 ∩ Lm,m > 6

and such that |xh|2ρ0 ∈ L2. Then we have for every t ∈ R+∥∥ω(t)
∥∥

L∞ + ‖∇ρ‖L1
t L

∞ � Φ4(t).
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Proof. From the maximum principle for Eq. (49), we obtain that

∥∥ω(t)
∥∥

L∞ � ‖ω0‖L∞ +
t∫

0

∥∥vr/r(τ )
∥∥

L∞
∥∥ω(τ)

∥∥
L∞ dτ +

t∫
0

∥∥∇ρ(τ)
∥∥

L∞ dτ.

By combining Proposition 4.4 and the Gronwall inequality, this yields

∥∥ω(t)
∥∥

L∞ � Φ3(t)

(
1 +

t∫
0

‖∇ρ‖L∞ dτ

)
.

Now we claim that,

‖∇ρ‖L1
t L

∞ � C0

(
1 + t2 +

t∫
0

∥∥ω(τ)
∥∥

L∞ dτ

)
. (58)

Let us first finish the proof by using this estimate. We deduce that

∥∥ω(t)
∥∥

L∞ � Φ3(t)

(
1 +

t∫
0

∥∥ω(τ)
∥∥

L∞ dτ

)

and thanks to the Gronwall inequality that∥∥ω(t)
∥∥

L∞ � Φ4(t).

This gives in turn

‖∇ρ‖L1
t L

∞ � Φ4(t).

Let us now come back to the proof of (58). For q ∈ N we set ρq := �qρ, then

∂tρq + v · ∇ρq − �ρq = −[�q,v · ∇]ρ.

Let p � 2 then multiplying this equation by |ρq |p−2ρq and using Hölder inequality

1

p

d

dt

∥∥ρ(t)
∥∥p

Lp −
∫
R3

(�ρq)|ρq |p−2ρq dx � ‖ρq‖p−1
Lp

∥∥[�q,v · ∇]ρ∥∥
Lp .

Now we use the generalized Bernstein inequality, see [24],

1

p
22q‖ρq‖p

Lp � −
∫

3

(�ρq)|ρq |p−2ρq dx.
R
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Hence we get

d

dt

∥∥ρ(t)
∥∥

Lp + cp22q‖ρq‖Lp �
∥∥[�q,v · ∇]ρ∥∥

Lp .

This gives

∥∥ρq(t)
∥∥

Lp � e−cpt22q ‖�qρ0‖Lp +
t∫

0

e−cp22q (t−τ)
∥∥[�q,v · ∇]ρ∥∥

Lp dτ. (59)

Integrating in time implies that

‖ρq‖L1
t L

p � 2−2q‖ρ0‖Lp + 2−2q
∥∥[�q,v · ∇]ρ∥∥

L1
t L

p .

According to Proposition 2.3 [18] and Proposition 4.1 we have∥∥[�q,v · ∇]ρ∥∥
Lp � C‖ρ‖Lp

(
(q + 1)‖ω‖L∞ + ‖∇�−1v‖L∞

)
� C‖ρ0‖Lp

(
(q + 1)‖ω‖L∞ + ‖v‖L2

)
� C‖ρ0‖Lp

(
(q + 1)‖ω‖L∞ + C0(1 + t)

)
.

It follows that

‖ρq‖L1
t L

p � C0
(
1 + t2)2−2q + C‖ρ0‖Lp(q + 1)2−2q‖ω‖L1

t L
∞ .

By using the Bernstein inequality, we find for p > 3 that

‖∇ρ‖L1
t L

∞ � Ct‖ρ0‖L2 + C
∑
q∈N

2q(1+ 3
p

)‖ρq‖L1
t L

p

� C0
(
1 + t2)∑

q∈N

2q(−1+ 3
p

) + C0‖ω‖L1
t L

∞
∑
q∈N

2q(−1+ 3
p
)
(q + 1)

� C0
(
1 + t2) + C0‖ω‖L1

t L
∞ .

This ends the proof of the desired inequality. �
4.3.3. Lipschitz bound of the velocity

We shall now deal with the global propagation of the sub-critical Sobolev regularities. This is
basically related to the control of the Lipschitz norm of the velocity.

Proposition 4.6. Let 5
2 < s < 3 and (v0, ρ0) ∈ Hs ×Hs−2 and (v,ρ) be a solution of the Boussi-

nesq system (1). Then we have for every t � 0

‖v‖˜∞ s + ‖ρ‖˜∞ s−2 + ‖ρ‖˜1 s � C0(1 + t)e
C‖∇v‖

L1
t L∞

.
Lt H Lt H Lt H
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If in addition ρ0 ∈ Lm with m > 6 and |xh|2ρ0 ∈ L2, then we get for every t � 0∥∥∇v(t)
∥∥

L∞ � Φ5(t); ‖v‖L̃∞
t H s + ‖ρ‖L̃∞

t H s−2 + ‖ρ‖L̃1
t H

s � Φ6(t).

Remark 4.7. We point out that we can extend the results of Proposition 4.6 to higher regularities
s � 3 but for the sake of simplicity we restrict ourselves here to the case of s < 3.

Proof. We localize in frequency the equation of the velocity. For q ∈ N∪{−1} we set vq := �qv

and ρq := �qρ.

∂tvq + v · ∇vq + ∇πq = ρqez − [�q,v · ∇]v.

Thus taking the L2-scalar product with vq and using the incompressibility of v and vq we get

d

dt

∥∥vq(t)
∥∥

L2 � ‖ρq‖L2 + ∥∥[�q,v · ∇]v∥∥
L2 .

Integrating in time we obtain∥∥vq(t)
∥∥

L2 �
∥∥vq(0)

∥∥
L2 + ‖ρq‖L1

t L
2 + ∥∥[�q,v · ∇]v∥∥

L1
t L

2 .

Thus we get

‖v‖L̃∞
t H s � ‖v0‖Hs + ‖ρ‖L̃1

t H
s + ∥∥(

2qs
∥∥[�q,v · ∇]v∥∥

L1
t L

2

)
q

∥∥
�2 .

We will use the commutator estimate, see for instance Lemma B.5 of [10],

∥∥(
2qs

∥∥[�q,v · ∇]v∥∥
L1

t L
2

)
q

∥∥
�2� C

t∫
0

∥∥∇v(τ)
∥∥

L∞
∥∥v(τ)

∥∥
Hs dτ.

Putting together these estimates and using Gronwall inequality yield

‖v‖L̃∞
t H s �

(‖v0‖Hs + ‖ρ‖L̃1
t H

s

)
e
C‖∇v‖

L1
t L∞

. (60)

Using the estimate (59) we get for q ∈ N

‖ρq‖L∞
t L2 + 22q‖ρq‖L1

t L
2 � C

∥∥ρq(0)
∥∥

L2 + ∥∥[�q,v · ∇]ρ∥∥
L1

t L
2 .

Therefore we find

‖ρ‖L̃∞
t H s−2 + ‖ρ‖L̃1

t H
s � ‖�−1ρ‖L1

t L
2 + ‖ρ0‖Hs−2 + ∥∥(

2q(s−2)
∥∥[�q,v · ∇]ρ∥∥

L1
t L

2

)
q

∥∥
�2

� Ct‖ρ0‖L2 + ‖ρ0‖Hs−2 + ∥∥(
2q(s−2)

∥∥[�q,v · ∇]ρ∥∥
1 2

) ∥∥
2 .
Lt L q �
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Since −1 < s − 2 < 1 then we have the estimate, see [10],

∥∥(
2q(s−2)

∥∥[�q,v · ∇]ρ∥∥
L1

t L
2

)
q

∥∥
�2 � C

t∫
0

∥∥∇v(τ)
∥∥

L∞
∥∥ρ(τ)

∥∥
Hs−2 dτ.

Consequently,

‖ρ‖L̃∞
t H s−2 + ‖ρ‖L̃1

t H
s � C0(1 + t) + C

t∫
0

∥∥∇v(τ)
∥∥

L∞
∥∥ρ(τ)

∥∥
Hs−2 dτ.

By Gronwall inequality

‖ρ‖L̃∞
t H s−2 + ‖ρ‖L̃1

t H
s � C0(1 + t)e

C‖∇v‖
L1

t L∞
. (61)

Combining this estimate with (60) gives the desired estimates.
Now to get a global bound for Lipschitz norm of the velocity we use the classical logarithmic

estimate: for s > 5
2

‖∇v‖L∞ � ‖v‖L2 + ‖ω‖L∞ log
(
e + ‖v‖Hs

)
.

Combining this estimate with the first result of Proposition 4.6 and Proposition 4.5

‖∇v‖L∞ � Φ4(t)

(
1 +

t∫
0

∥∥∇v(τ)
∥∥

L∞ dτ

)
.

It follows from Gronwall inequality that∥∥∇v(t)
∥∥

L∞ � Φ5(t).

Plugging this estimate into (60) and (61) gives

‖v‖L̃∞
t H s + ‖ρ‖L̃∞

t H s−2 + ‖ρ‖L̃1
t H

s � Φ6(t).

This ends the proof of the proposition. �
5. Proof of the main result

The proof of the existence part of Theorem 1.1 can be done in a classical way by smoothing
out the initial data as follows

v0,n = Snv0 = 23nχ
(
2n·) � v0, ρ0,n = Snρ0 = 23nχ

(
2n·) � ρ0

where Sn is the cut-off in frequency defined in the preliminaries. Since χ is radial then the
functions v0,n and ρ0,n remain axisymmetric. Moreover this family is uniformly bounded in the
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space of initial data: this is obvious in Sobolev and Lebesgue spaces but it remains to check the
uniform boundedness of the horizontal moment of the density. We will show that

sup
n∈N

∥∥|xh|2ρn,0
∥∥

L2 � C
(‖ρ0‖L2 + ∥∥|xh|2ρ0

∥∥
L2

)
. (62)

For this purpose we write

|xh|2
∣∣ρn,0(x)

∣∣ = |xh|2
∣∣∣∣ ∫
R3

χ
(
2n(x − y)

)
ρ(y)dy

∣∣∣∣
� 2

∫
R3

|xh − yh|2|χ |(2n(x − y)
)|ρ|(y) dy + 2

∣∣∣∣ ∫
R3

|χ |(2n(x − y)
)|yh|2ρ(y)dy

∣∣∣∣
� 2 2−2n

(
23nχ1

(
2n·) � ρ

)
(x) + 2

(|χ |(2n·) �
(|yh|2ρ

))
(x)

with χ1(x) = |xh|2|χ(x). From convolution laws we get∥∥|xh|2|ρn,0
∥∥

L2 � C2−2n‖ρ‖L2 + C
∥∥|xh|2ρ0

∥∥
L2 .

This achieves the proof of (62). Now, by using standard arguments based on the a priori estimates
described in Proposition 4.6, Proposition 4.5 and Proposition 4.2 we can construct a unique
global solution (vn, ρn) in the following space

vn ∈ C
(
R+;Hs

) ∩ L1(
R+;W 1,∞)

and ρn ∈ C
(
R+;Hs−2) ∩ L1(

R+;W 1,∞)
.

The control is uniform with respect to the parameter n. Therefore we can prove the strong conver-
gence of a subsequence of (vn, ρn)n∈N to some (v,ρ) belonging to the same space and satisfying
the initial value problem. It remains to prove the uniqueness problem. This gives the existence of
a solution.

The uniqueness will be proven in the following space

(v,ρ) ∈ X := (
C
(
R+;L2) ∩ L1(

R+;W 1,∞))2
.

Let (vi, ρi) ∈ X ,1 � i � 2 be two solutions of the system (1) with the same initial data (v0, θ0)

and denote δv = v2 − v1, δρ = ρ2 − ρ1. Then⎧⎨⎩
∂t δv + v2 · ∇δv + ∇Π = −δv · ∇v1 + δρez,

∂t δρ + v2 · ∇δρ − �δρ = −δv · ∇ρ1,

divvi = 0.

(63)

Taking the L2-scalar product of the first equation with δv and integrating by parts gives

1 d ∥∥δv(t)
∥∥2

L2 �
∥∥∇v1

∥∥
L∞‖δv‖2

2 + ‖δρ‖L2‖δv‖L2 .

2 dt L
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Consequently,

d

dt

∥∥δv(t)
∥∥

L2 �
∥∥∇v1

∥∥
L∞‖δv‖L2 + ‖δρ‖L2 .

Using the Gronwall inequality yields

e
−‖∇v1‖

L1
t L∞ ∥∥δv(t)

∥∥
L2 �

(
‖δv0‖L2 +

t∫
0

e
−‖∇v1‖Lτ

t L∞ ∥∥δρ(τ)
∥∥

L2 dτ

)
.

By the same computations we get

∥∥δρ(t)
∥∥

L2 � ‖δρ0‖L2 +
t∫

0

∥∥∇ρ1(τ )
∥∥

L∞
∥∥δv(τ )

∥∥
L2 dτ.

It suffices now to put together these estimates and to use the Gronwall inequality.

Appendix A. De Giorgi–Nash–Moser estimates for convection–diffusion equations

We intend to prove some dispersive estimates for a parabolic equation. We use De Giorgi–
Nash–Moser method similarly to [6].

Lemma A.1. Consider the equation

∂tf + u · ∇f − �f = ∇ · F + G, t > 0, x ∈ R
3, f (0, x) = f0(x). (64)

Consider p,q,p1, q1,∈ [1,+∞], r ∈ [2,+∞] with

2

p
+ 3

q
< 1,

2

p1
+ 3

q1
< 2.

There exists C > 0 such that for every smooth divergence free vector field u and every T > 0, if
F ∈ L

p
T Lq and f0 ∈ Lr , the solution of (64) satisfies the estimate:

∥∥f (T )
∥∥

L∞ � C

(
1 + 1

T
3
2r

)
‖f0‖Lr + C

(
1 + √

T
1−( 2

p
+ 3

q
))‖F‖L

p
T Lq

+ C
(
1 + √

T
2−( 2

p1
+ 3

q1
))‖G‖

L
p1
T Lq1 . (65)

Proof. Since the equation is linear, we can study separately the three problems{
P f = ∇ · F,

f (0, x) = 0,

{
P f = G,

f (0, x) = 0,

{
P f = 0,

f (0, x) = f0(x),
(66)

where we have set P f = ∂tf + u · ∇f − �f .
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Let us start with the first problem in (66). We shall prove that there exists C > 0 such that for
every F with ‖F‖L

p
1 Lq � 1, we have the estimate

‖f ‖L∞
1 L∞ � C. (67)

Once this estimate, is proven, the estimate involving F in (65) will just follow by a scaling
argument.

The first step is to use the standard Lq a priori estimate (obtained by multiplying by P f by
|f |q−1sign f ). Since u is divergence free, we have that

d

dt

(
1

q

∥∥f (t)
∥∥q

Lq

)
+ (q − 1)

∫
R2

|∇f |2|f |q−2 dx � (q − 1)

∫
R3

|F ||∇f ||f |q−2 dx.

From the Young inequality and the Holder inequality (note that since 2/p + 3/q < 1, we neces-
sarily have that q > 3 and p > 2) this yields

d

dt

(
1

q

∥∥f (t)
∥∥q

Lq

)
� (q − 1)‖F‖2

Lq ‖f ‖q−2
Lq

and hence by integration in time, we obtain since q > 3 that

‖f ‖L∞
1 Lq � Cq

( 1∫
0

∥∥F(t)
∥∥2

Lq dt

) 1
2

� Cq‖F‖L
p
1 Lq � Cq (68)

where Cq depends only on q . To improve this estimate that is to go from the above Lq estimate
to an L∞ estimate, we shall follow the De Giorgi, Nash iteration argument. For M > 0 to be
chosen, let us take a positive increasing sequence (Mk)k�0 such that Mk � M and Mk converges
towards M . A good choice is for example

Mk = M

(
1 − 1

k + 1

)
, k � 0. (69)

We shall use the standard notation x+ = max(x,0). Since u is divergence free, we obtain the
level set energy estimate

d

dt

(
1

2

∥∥(f − Mk)+(t)
∥∥2

L2

)
+ ∥∥∇(f − Mk)+

∥∥2
L2 �

∫
f �Mk

|F ||∇f |dx

�
( ∫

|F |2
) 1

2 ∥∥∇(f − Mk)+
∥∥

L2
f �Mk
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where the last inequality comes from Cauchy–Schwarz. By using the Young inequality, we thus
obtain

Uk �
1∫

0

∫
f �Mk

|F |2 dx dt (70)

where

Uk = ∥∥(f − Mk)+
∥∥2

L∞
1 L2 + ∥∥∇(f − Mk)+

∥∥2
L2

1L
2 .

The main idea is to prove that the right-hand side of (70) can estimated by a power of Uk−1
strictly larger than 1. By using the Hölder inequality, we first get that

Uk �
1∫

0

∥∥F(t)
∥∥2

Lq mk(t)
1− 2

q dt � ‖F‖2
L

p
1 Lq

( 1∫
0

mk(t)
(1− 2

q
)(

p
p−2 )

dt

)1− 2
p

, (71)

where mk(t) = |{x,f (t) � Mk}|. To estimate mk(t), we note that if f (t, x) � Mk then

f (t, x) − Mk−1 � Mk − Mk−1 � 0

and thus we have

1f (t,x)�Mk
� (k + 1)2

M

(
f (t, x) − Mk−1

)
+. (72)

This yields

mk(t) � (k + 1)2m

Mm

∥∥(
f (t) − Mk−1

)
+
∥∥m

Lm (73)

for every m � 1. We shall choose m carefully below. By plugging this last estimate in (71), we
get

Uk � ‖F‖2
L

p
1 Lq

(
(k + 1)2

M

)m(1− 2
q
)
( 1∫

0

∥∥(
f (t) − Mk−1

)
+
∥∥m(1− 2

q
)(

p
p−2 )

Lm

)1− 2
p

. (74)

Now let us notice that if α � 1 and β ∈ [2,6] are such that 2
α

+ 3
β

� 3
2 then we have

∥∥(
f (t) − Mk−1

)
+
∥∥2

Lα
1 Lβ � Uk−1.

Indeed the control of Uk−1 gives a control of the L∞
1 L1 and the L2

1H
1 norm. By Sobolev em-

bedding this gives a control of the L2L6 norm and then the inequality follows by standard
1
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interpolation in Lebesgue spaces. Consequently, to achieve our program, we need to choose
m ∈ [2,6] such that

m

(
1 − 2

q

)
> 2, 2

1 − 2
p

m

(
1 − 2

q

) + 3

m
� 3

2
. (75)

The first constraint can be satisfied as soon as 2/(1−2/q) < 6 which is equivalent to q > 3 while
the second constraint can be satisfied as soon as

2

(
1 − 2

p

)
+ 3

(
1 − 2

q

)
� m

(
1 − 2

q

)
>

3

2
· 2 = 3

which is equivalent to

2

p
+ 3

q
< 1.

Consequently, since we have q > 3 and 2/p + 3/q < 1 by assumption we can choose m such
that the constraint (75) are matched. This yields that there exists γ > 1 such that

Uk � ‖F‖2
L

p
1 Lq

(
(k + 1)2

M

)m(1− 2
p

)

U
γ

k−1 �
(

(k + 1)2

M

)m(1− 2
p

)

U
γ

k−1, ∀k � 2.

If U1 is sufficiently small, this yields that limk→+∞ Uk = 0. Since, we have from (71), the
Tchebychev inequality and the energy inequality (68) that

U1 �
( 1∫

0

m1(t)
(1− 2

q
)(

p
p−2 )

dt

)1− 2
p

�
(4‖f ‖L∞

1 Lq

M

)q−2

�
(

4Cq

M

)q−2

,

we can indeed make U0 arbitrarily small by taking M sufficiently large and thus
limk→+∞ Uk = 0. From Fatou’s Lemma, we obtain that for every t ∈ [0,1]∫

R3

(
f (t, x) − M

)
+ dx � 0

and therefore that almost everywhere

f (t, x) � M.

By changing f into −f , we obtain in a similar way that f � −M almost everywhere and thus
(67) is proven. To obtain the part of estimate (65) involving F if T � 1 we can use a change
of scale argument. Let us set Kf̃ (τ,X) = f (T τ,

√
T X) for K > 0 to be chosen. Then we have

K‖f̃ ‖L∞
1 L∞ = ‖f ‖L∞

T L∞ and f̃ (τ,X) solves the equation

∂τ f̃ + ũ · ∇Xf̃ − �Xf̃ = ∇X · F̃
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where ũ is still divergence free and

F̃ (τ,X) =
√

T

K
F(τT ,

√
T X).

In particular, with the choice

K = √
T

1−( 2
p

+ 3
q
)‖F‖L

p
T Lq ,

we get that ‖F̃‖L
p
1 Lq = 1 and thus that

‖f ‖L∞
T L∞ = K‖f̃ ‖L∞

1 L∞ � MK = M
√

T
1−( 2

p
+ 3

q
)‖F‖L

p
T Lq .

This gives the part of the estimate (65) involving F .
Let us turn to the study of the second problem in (66) in order to get the part of the esti-

mate (65) involving G. The estimate can be deduced from the previous one when q1 < +∞
which is the interesting case (when q1 = ∞, the estimate is a direct consequence of the Maxi-
mum principle). Indeed, if G ∈ L

p1
T Lq1 , we can write G = ∇ · F with F ∈ L

p1
T W 1,q1 ⊂ L

p1
T Lq∗

1

by Sobolev embedding (where q∗
1 = 3q1

3−q1
) and moreover, we have

‖F‖
L

p1
T L

q∗
1

� ‖G‖
L

p1
T Lq1 .

Consequently, by using the estimate that we have already proven, we get that

‖f ‖L∞
T L∞ � M

√
T

1−( 2
p1

+ 3
q∗
1

)‖F‖
L

p1
T L

q∗
1

if 2/p1 + 3/q∗
1 < 1. This gives the claimed estimate.

It remains to study the third problem in (66) that is the problem with no source term but a
nontrivial initial data. Again, we shall first prove that there exists M > 0 such that for every
f0 ∈ Lr with ‖f0‖L2 � 1, we have the estimate

sup
t�1

∥∥f (t)
∥∥

L∞ � M. (76)

The standard energy estimate gives that

‖f ‖2
L∞L2 + ‖f ‖2

L2L2 � ‖f0‖L2 . (77)

To improve this estimate, we shall also use the De Giorgi–Nash iteration method. We take a
sequence Mk as previously, and we also choose a sequence of times Tk = 1 − 1

k+1 which tends
to 1. The energy estimate for (f − Mk)+ yields that for every t, s with t � Tk � s, we have

sup
t�Tk

∥∥(f − Mk)+(t)
∥∥2

L2 +
+∞∫ ∥∥∇(f − Mk)+)(τ )

∥∥2
L2 dτ � 2

∥∥(f − Mk)+(s)
∥∥2

L2
s
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and hence, by integrating in s for Tk−1 � s � Tk , we obtain that

Uk � 2(k + 1)2

+∞∫
Tk−1

∥∥(f − Mk)+(s)
∥∥2

L2 ds (78)

with

Uk = sup
t�Tk

∥∥(f − Mk)+(t)
∥∥2

L2 +
+∞∫
Tk

∥∥∇(f − Mk)+)(τ )
∥∥2

L2 dτ.

The aim is again to estimate the right-hand side of (78) by a power of Uk−1 strictly greater than 1.
By using the same notations as previously, we get from (72) that

Uk � 2(k + 1)2
(

(k + 1)2

M

) 4
3

+∞∫
Tk−1

∫
R3

(f − Mk−1)
10
3+ dt dx

� 2(k + 1)2
(

(k + 1)2

M

) 4
3

U
5
3
k−1. (79)

Since we have from (77) that U0 � ‖(f0)+‖2
L2 � ‖f0‖2

L2 , U1 can be made arbitrarily small by
taking M sufficiently large and hence we get from (79) that limk→+∞ Uk = 0. This proves that
f (t, x) � M for t � 1 and then we get (76) by changing f into −f . We have thus proven that
for every t � 1 the linear operator f 
→ f (t, ·) is bounded from L2 into L∞ with norm smaller
than M . Since by the standard maximum principle, it is also bounded from L∞ to L∞ with
norm 1, we get by interpolation that it also maps Lr to L∞ for every r � 2. To get the claimed
estimate in (65) for t � 1, it suffices to use again a scaling argument.

This ends the proof. �
Appendix B. Proof of Lemma 2.7

Proof. Set φ = F −1h, then we have by definition and from Taylor formula

[
h(D), f

]
g =

∫
Rd

φ(x − y)g(y)
(
f (y) − f (x)

)
dy

=
1∫

0

∫
Rd

g(y)Φ(x − y) · ∇f
(
x + t (y − x)

)
dy dt,

with Φ(x) = xφ(x). Let α,β ∈ ]0,1[ with α + β = 1. Using Hölder inequality and a change of
variables we get with Φt = t−3Φ(x )
t
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∣∣[h(D), f
]
g(x)

∣∣ �
1∫

0

∫
Rd

(∣∣g(y)
∣∣∣∣Φ(x − y)

∣∣α)(∣∣∇f
(
x + t (y − x)

)∣∣∣∣Φ(x − y)
∣∣β)

dy dt

�
( ∫

R3

(∣∣Φ(x − y)
∣∣∣∣g(y)

∣∣ 1
α
)
dy

)α
1∫

0

(∫
R3

∣∣Φt(y)
∣∣∣∣∇f (x − y)

∣∣ 1
β dy

)β

�
(|Φ| � |g| 1

α
)α

(x)

1∫
0

(|Φt | � |∇f | 1
β
)β

(x) dt.

Let p1,p2 ∈ [1,∞] such

αp1, βp2 � 1 and
1

p
= 1

p1
+ 1

p2
. (80)

Then by Hölder inequality

∥∥[
h(D), f

]
g
∥∥

Lp �
∥∥|Φ| � |g| 1

α

∥∥α

Lαp1

1∫
0

∥∥|Φt | � |∇f | 1
β
∥∥β

Lβp2
dt.

We choose p1,p2, α and β such that

αm � 1, βρ � 1, 1 + 1

αp1
= 1

r
+ 1

αm
and 1 + 1

βp2
= 1

r
+ 1

βρ
(81)

then the classical convolution laws give

∥∥[
h(D), f

]
g
∥∥

Lp � ‖Φ‖α
Lr ‖g‖Lm‖∇f ‖Lρ

1∫
0

‖Φt‖β
Lr dt

� ‖Φ‖Lr ‖g‖Lm‖∇f ‖Lρ

1∫
0

t3β(−1+ 1
r
) dt.

This last integral is finite provided that

β <
1

3

r

r − 1
. (82)

Now let us check that the set given by conditions (80), (81) and (82) is not empty. First for the
case r = 1 we choose p1 = m,p2 = ρ,α = 1

m
and β = 1 − α. Let us now discuss the case r > 1.

From (81)

α = r
(

1 − 1
)

.

r − 1 m p1
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To get α ∈ [ 1
m

,1[ we must choose p1 such that

1

p
− 1

ρ
<

1

p1
� 1

rm
. (83)

The condition βρ � 1 is equivalent, by the use of 1 + 1
p

= 1
m

+ 1
ρ

+ 1
r
, to

1

p
− 1

rρ
� 1

p1
. (84)

The condition αp1 � 1 is automatically satisfied from (83) since

αp1 � rαm � r � 1.

The condition βp2 � 1 is also a consequence of (83) and (84). Indeed, from the value of α and
1
p

= 1
p1

+ 1
p2

, this condition is equivalent to

1

p
− r

2r − 1

1

ρ
� 1

p1
.

This condition is weaker than (84). We can easily check that (83) and (84) are equivalent to

1

p
− 1

rρ
� 1

p1
� 1

rm
.

The set of p1 described by the above condition is nonempty if

1

rm
− 1

p
+ 1

rρ
� 0.

Using the identity 1 + 1
p

= 1
m

+ 1
ρ

+ 1
r
, this is satisfied under the condition p � r . The condition

(82) is equivalent to

1

p1
<

1

3
+ 1

p
− 1

ρ
.

Now there is a compatibility between this condition and (84) if

3

(
1 − 1

r

)
< ρ.

This ends the proof of Lemma 2.7. �
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