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Agriculture requires a second green revolution to provide

increased food, fodder, fiber, fuel and soil fertility for a growing

population while being more resilient to extreme weather on

finite land, water, and nutrient resources. Advances in

phenomics, genomics and environmental control/sensing can

now be used to directly select yield and resilience traits from

large collections of germplasm if software can integrate among

the technologies. Traits could be Captured throughout

development and across environments from multi-dimensional

phenotypes, by applying Genome Wide Association Studies

(GWAS) to identify causal genes and background variation and

functional structural plant models (FSPMs) to predict plant

growth and reproduction in target environments. TraitCapture

should be applicable to both controlled and field environments

and would allow breeders to simulate regional variety trials to

pre-select for increased productivity under challenging

environments.

Addresses
1 Division of Plant Sciences, Research School of Biology,

Australian National University, Australia
2 High Resolution Plant Phenomics Centre, Plant Industry, CSIRO, Australia
3 Photon Systems Instruments, Czech Republic
4 ARC Centre of Excellence in Plant Energy Biology, Australia

Corresponding author: Borevitz, Justin O (justin.borevitz@anu.edu.au)
5Co-first authors.

Current Opinion in Plant Biology 2014, 18:73–79

This review comes from a themed issue on Genome studies and

molecular genetics

Edited by Kirsten Bomblies and Olivier Loudet

For a complete overview see the Issue and the Editorial

Available online 16th March 2014

1369-5266/$ – see front matter, # 2014 The Authors. Published by

Elsevier Ltd.

http://dx.doi.org/10.1016/j.pbi.2014.02.002

Introduction
Global agricultural demand is expanding rapidly due to

increased consumption of food, feed, and fuel by a larger,

more affluent population. To meet projected global food
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demands in coming decades, global cereal production

must increase by 70% by 2050, a net annual increase in

productivity of nearly 40% over historic levels, every year

for the next 38 years [1]. At the same time, climates are

changing globally, shifting growing regions and reducing

climate predictability. Models predict even larger

changes in critical growing regions [2]. These pressures

are leading to increased plantings on marginal lands,

displacement of natural ecosystems and intensification

of existing agricultural practices. Consequently, a better

understanding of how to breed for increased yield and

yield stability in the face of shifting climates is of utmost

economic and social importance.

Plant physiology research is progressing from detailed

studies of a few different genotypes at a time, to high

throughput, quantitative, phenomic studies on populations

with fully sequenced genomes. These modern techniques

provide the potential for plant scientists to identify heri-

table traits and the complex regulatory networks under-

lying adaptive phenotypic variation [3,4�,5,6]). The current

challenges are: first, to weave these new techniques into a

package that can be implemented across phenomics plat-

forms on different plant species and second, to bridge the

gap between lab and field studies. Quantification of phe-

notypes combined with genetic analysis allows the identi-

fication and prediction of heritable traits. By incorporating

growth models that include genetic and environmental

variation, phenotypic predictions can be made for different

growing regions to pre-select specific genotypes for local

field trials.

High throughput phenotyping, phenomics,
and environmental control
High throughput phenotyping (HTP) can record time-

series data on plant functional traits as well as top down

and 3D models of plant growth and development. This

comprehensive, multi-dimensional phenotyping allows

specific hypotheses about genotypic and/or environmental

effects to be tested across hundreds or thousands of plants

and then to associate it with whole genome sequence

variation. New plant phenomics facilities are opening

worldwide (plant-phenotyping.org) and many smaller labs

are developing their own systems [7�]. Integrating HTP

and genome wide association studies (GWAS) [8��] has the

potential to revolutionize the rate of trait discovery and

vastly improve phenotypic predictions.
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74 Genome studies and molecular genetics
New hardware enables new research
Commercial HTP phenomics platforms such as the

Trayscan (psi.cz) can provide image data from standard

visible color spectra cameras (RGB), thermal cameras,

and fluorescence for hundreds of plants per plants run

(Figure 1d). Real-time analysis enhances experimental

resolution, for example, image analysis settings can be

optimized to improve the genetic association. Further-

more, additional image acquisition can be performed at

critical time points to further explore genetic associations

while redundant observations can be eliminated, increas-

ing throughput.

For lower cost and continuous phenotyping that incorpor-

ates environmental variation, specialized growth chambers

can remove weather noise from the field while maintaining

appropriate climate signals. For example, we are develop-

ing the SpectralPhenoClimatron (‘SPC’ [9,10��]) to extend

standard growth chamber conditions beyond fixed on/off

lighting and high/low temperatures. The SP

C can provide diurnal and seasonal control of light color

via multi-band LED lights (Heliospectra AB, Göteborg,

Sweden) and intensity, temperature and moisture. The

SPC chambers also include high resolution time-lapse

cameras integrated with automated phenotyping software

for real-time developmental analysis. SolarCalc control

software [11] allows regional and future climates to be

simulated. For field applications it is becoming feasible to

set up a large, spatial and temporally distributed sensor

networks (phenonet.com [12]) with phenomics capacity
Figure 1
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(‘Phenomobile’ [13–15]). Finally, open-source and web-

based software allow phenomic data to be remotely

processed and easily shared.

Multitrait genome wide association studies
Genome-wide association studies have been a useful tool

to study the genetic basis of heritable phenotypes, pro-

vide valuable information for gene hunting, understand-

ing of biological processes, and plant and animal

breeding. GWAS have become widely adopted for gene

mapping in various plant studies such as Arabidopsis
thaliana [16�], barley [17], maize [19], tomato [20] and

rice [21]. GWAS can be computationally challenging,

however research efforts have been made to develop

computationally efficient algorithms [22–27]; additionally

several web tools that simplify GWAS are available (e.g.

GWAPP [28] and easyGWAS [29]).

High throughput phenotyping enables the extraction of

data for numerous phenotypes [4]. While multiple traits

are typically analyzed separately (unitrait analysis), joint

analysis of multiple traits (multitrait analysis) has long

been advocated in breeding and quantitative trait locus

(QTL) mapping. By taking advantages of the residual

correlation structure among the traits, multitrait analysis

potentially results in a higher statistical power, more

accurate estimation and a better control of false positives.

It can also formally test biological hypotheses such as

pleiotropy and genotype by environment interaction [30–
33]. However, application of multitrait analysis is limited

for a number of reasons. First, current practice generally
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Genomic and environment modelling with phenomics Brown et al. 75
does not facilitate the biological interpretation of results

as the model for multitrait analysis typically assumes the

putative QTL is associated with all of the traits. In reality,

however, it is very likely that some of the traits are

influenced by the QTL whereas the rest are not and

therefore it is highly desirable to know which traits are

which. Second, one of the main motivations to employ

multitrait analysis is to increase statistical power for QTL

detection but multitrait analysis is not always more

powerful than unitrait analysis [30,34]. New statistical

methodologies can address these limitations allowing

multitrait GWAS to be more useful [35].

Functional structural plant models
Functional structural plant models (FSPMs, Figure 2)

have traditionally been used in an agricultural context to

simulate aspects of plant response and growth as gov-

erned by physiological processes which are in turn driven

by local environmental conditions at the plant organ level

[36,37]. These models incorporate 3D developmental

modelling and mechanistic physiological models. In-

cluding plant 3D architectural information is particularly

relevant for photosynthetic growth responses because

light quantity and quality inputs vary with the spatial

structure of a plant [38]. Although the FSPM approach

has given us very sophisticated tools for predicting crop
Figure 2
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yield, the often significant impact that plant genetics can

have on yield outcomes has yet to be fully integrated into

these models. Typically, plant genetic variation is treated

as ‘noise’ in FSPMS because the intent of these models is

to understand how a generalized plant of a given species will

respond under specific climatic conditions. By contrast, in

lab phenotyping experiments environmental variation is

usually considered noise that limits trait discovery and the

intent is typically to identify specific genotypes and under-

stand how they vary. In the real world of course, environ-

ment and genetics interact together to determine a plant’s

actual phenotypic characteristics in the field (and hence

resilience, yield, etc.). It is thus necessary to integrate both

the FSPM and the genetics to better predict yield of

particular genotypes across typical growing regions.

New work has shown that FSPMs can integrate genetic

information from QTL studies [39��]. There is potential

to streamline this method using controlled but dynamic

growing conditions such as those enabled by the SPC

which simulates regional seasonal climates [40,10��]. The

growth and environmental data allows parameterization

of FSPMs that include major genetic effects. This would

be an important test case before attempting similar

studies under field conditions. In addition, advanced

GWAS analysis would fit QTL that interact with the
tercepted PAR computation
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environment such that degree days would have different

effects on growth for different genotypes. Creation of

FSPMs that incorporate the effects of genotype and

environment would permit the prediction of phenotypes

for sets of genetic variants across many environments

using only in silico approaches. This approach enables

‘virtual plant breeding’ where both potential germplasm

and field site/environmental combinations can be evalu-

ated computationally. Such virtual plant breeding would

allow one to determine optimal genotypes at existing

locations and to predict high yielding genotypes under

future climate change scenarios.

Challenges to HTP
Despite ongoing advances in computational and imaging

technologies, reliably extracting quantitative traits from

time-series imagery of thousands of plants remains a

challenge. A typical HTP experiment might involve

imaging 900 Arabidopsis plants for three weeks in three

growth chambers with different growth conditions in each

chamber, resulting in a million or more images at the pot

level. Image analysis is challenging for many reasons from

variations in soil coloration to pots being moved during

watering or sampling to effectively managing the huge

number of images. Image analysis for phenotyping is a

very active area of research and many solutions exist, but

most of them require supervised algorithms (e.g. [41])

that do not easily scale to large datasets. HTP of root

growth and architecture has been more successful per-

haps because it is easier to standardize backgrounds and

lighting conditions so they are more amenable to auto-

mated [42] or manual image analysis [43]. Although large

commercial or federally funded projects have developed

large-scale software pipelines for high throughput phe-

notyping, the community still lacks widely usable open-

source tools for HTP of thousands of samples for multiple

traits. Consequently there is a need for easy to use, widely

used open source tools to identify, map, and predict

genetically heritable traits.

High throughput trait capture pipeline
We are working to develop an open-source software

pipeline (‘TraitCapture’) that will integrate the

approaches described above to facilitate wider application

of these techniques. Web-based visualization tools will

allow real-time graphing of environment data with associ-

ated plant growth in time-lapse. Cloud-enabled GWAS

on plant growth variation can be performed during an

experiment allowing for real time results. This feedback

allows a user to tune the phenotyping and image analysis

to improve QTL detection. When QTL are identified, a

user can resort plants based on alternative genotype

classes to look for pleiotropic effects on growth, devel-

opment, and physiology. Finally, published results should

include links to the datasets and analysis protocols

expanding on projects like the Phenomics Ontology

Driven Data repository [9,44]. This will allow new and
Current Opinion in Plant Biology 2014, 18:73–79 
previously cryptic traits to be identified. Importantly,

standardized seed sets, growth protocols, phenotyping

and analysis tools, will allow replication of experiments

between different labs.

A brief list of experiments enabled by TraitCapture

includes:

� Iterative QTL identification and tests of pleiotropy.

� Heritability of potential spectral indices using hyper-

spectral cameras.

� Spatial and temporal distribution of fluorescent pig-

ments under environmental stress.

� Light and temperature interactions on transpiration

using Infrared (IR) cameras.

� Genetic basis of photosynthetic activity and efficiency

using chlorophyll fluorescence cameras.

� Integration of 2.5D and 3D quantification of plant

growth with stereo imaging [45�].

Pipeline details
Here we present typical pilot experiments to set up and

validate components of the pipeline that would sub-

sequently be integrated.

Capture heritable traits
Plant traits are heritable phenotypes detected at unique

developmental time points and under specific environ-

ments. Thus, several correlated phenotypes may better

measure and describe the same pleiotropic plant trait. To

optimize detection and characterization of these plant

traits a design is needed to quantify and separate the

genetic signal from the biological noise that exists among

inbred lines. A simple experimental design with repli-

cates of several inbred lines provides a novel solution to

this challenge because signal to noise ratio thresholds can

be optimized [7]. Real time phenotyping is then per-

formed in standard or dynamic growth chamber con-

ditions using imaging techniques described above.

Initial image analysis functions that identify and count

plant pixels can quantify relative growth and spectral

properties. Whole plant 3D architecture is interpolated

using stereoscopy [45�]. At a predetermined time point an

environmental stress is applied to alter phenotypes and

measure the emergence of heritable differences in

response to the stress. The resulting data will contain

information about the variation between accessions in the

timing and nature of their responses to abiotic stress

including the accumulation of photoprotective pigments,

ability to maintain leaf water potential, and the ability to

alter life strategy by early flowering to avoid stress.

Heritability can be analyzed for each of the hundreds

of specific phenotype measures at thousands of time

points. Subsequently, clustering of time points could

identify key developmental stages and the timing of

transitions between them. A genetic correlation matrix
www.sciencedirect.com



Genomic and environment modelling with phenomics Brown et al. 77
among raw phenotypes could be hierarchically clustered

into composite traits that can be used for multi-trait

mapping [35]. This will guide optimization to iteratively

improve trait identification and characterization.

Genetic dissection and prediction using
GWAS
The next step is to identify the causal genetic basis of

complex traits by phenotyping large sequenced mapping

populations (e.g. 1001genomes.org). A diverse subset of

lines (300–600) should be selected to increase genetic

variation, mapping resolution and to balance population

structure [9,46�]. Specific genotype datasets could be

preloaded into TraitCapture software as is currently done

in EasyGWAS and GWAPP. Selecting among multiple

phenotypes for multi-trait GWAS is then performed and

empirical genome wide thresholds are set by permu-

tations [24,35]. Once major QTL are identified they will

be jointly fit with a full model to estimate major QTL and

background effects as ‘best linear unbiased predictors’

(blups). The blups allow phenotypes to be predicted from

genotypes which is important for fitting functional struc-

tural plant models.

Environmental effects and phenotypic
prediction using functional structural plant
models
Controlled conditions are ideal for mapping of complex

traits, but are limited in their ability to translate genetic

effects to the field. To overcome this, dynamic growth

chamber conditions can be used to parameterize plant

models with environment (radiation, temperature, water,

etc.) and known genetic effects [7,39��]. For example,

plants can be grown under simulated conditions or in

locations spanning the native range limits of a species

(e.g. temperate to subtropical and coastal to inland) and

could include cyclic drought stress [47]. Specialized phe-

nomics equipment or field level irrigation and remote

sensing (e.g. Trayscan or Scanalyzer) can record light,

temperature, humidity and soil moisture which are then

input values to FSMPs. The models can then be para-

meterized to allow prediction of phenotypic outcomes for

other sets of climate values [48�]. Joint modelling across

multiple growing conditions allow fits of the environmen-

tal parameter estimates and accuracy can be estimated by

cross validation. Lastly, incorporating genetic variation in

FSPMs [39��] will allow prediction of phenotypes from

genotypes in a range of environments. To improve pre-

dictions, deviations between model results and obser-

vations can be used as a residual phenotype in GWAS

to identify new components and further improve the

model [3].

Conclusion
Independently, Granier and Vile [49] in this issue argue

for many of the same computational advances as we do

here. Multiple skill sets are needed to integrate advanced
www.sciencedirect.com 
imaging equipment, feature detection from image data,

genomic analysis of complex traits (GWAS) and FSPMs.

Such a pipeline is here described as TraitCapture
(Figure 1). The data generated by this work will address

the gap between controlled conditions and the field by

incorporating genetic and environmental effects into

functional structural plant models. The biological inno-

vation comes from associating multiple phenotypes as a

single trait, or trait locus, gives mechanistic insight into

the biological function of the underlying gene and regu-

latory pathway. Furthermore, a TraitCapture system

would be open source and incorporate a modular, scalable

design to be used by phenomics facilities, smaller labs,

and field sites with remote sensing.
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