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ABSTRACT 

We investigate the connection between the dynamical Borel~Cantelli and waiting time results. We prove 
that if a system has the dynamical Borel~antelli  property, then the time needed to enter for the first 
time in a sequence of small balls scales as the inverse of the measure of the balls. Conversely if we know 
the waiting time behavior of a system we can prove that certain sequences of decreasing balls satisfies 
the Borel-Cantelli property. This allows to obtain Borel-Cantelli like results in systems like axiom A 

and generic interval exchanges. 

1. INTRODUCTION 

Let {An } be a sequence of subsets in a probability space (X,/z).  The classical Borel- 
Cantelli lemma states that: 

(1) If  ~ / z ( A . )  < ~ ,  then/z(l imsupA.)  = 0, that is, the set of  points which are 

contained in infinitely many A. has zero measure. 
(2) Moreover, if the sets An are  independent, then ~ l z ( A n ) =  CX) implies that 

#(lim sup A n )  = 1. 

Now, let us consider a dynamical system (X, T, #)  and suppose that T : X ~ X 
preserves/z. In this case, if the sets T-nAn are independent and ~ lZ (An)  = cO, 
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then the set of points such that Tnx E An infinitely many times as n increases has 
full measure. 

In a chaotic, mixing measure preserving dynamical system, sets of the form A 
and T-nA  tend to "behave" as independent in a certain sense, as n ~ c~. By this 
it is reasonable to ask if  a statement like point 2 above is valid. The answer is that 
it is not always valid. In [7] it is shown an example of a mixing system, where the 
BC property does not hold even for nice set sequences (decreasing sequences of 
balls with the same center). Hence some stronger requirements are needed (some 
stronger form of mixing or some stronger constraint in the sequence of sets). 

In this context a decreasing sequence An is said to be a Borel~Cantelli sequence 
(BC) if ~/z(An)  = o~ and #( l imsupT-nAn)  = 1 (here limsupSn is the set of 
points which belongs to infinitely many Sn). In a mixing dynamical system, thus, the 
"abundance" of BC sequences can be interpreted as an aspect of strong chaos and 
stochastic behavior of the system. Indeed is proved (see, e.g., [5,20,6,15,8,22,11]) 
that in many kind of (more or less) hyperbolic or "fast" mixing systems, various 
sequences of geometrically nice sets have the BC property. The kind of sets which 
are interesting to be considered in this kind of problems are usually decreasing 
sequences of balls with the same center (these are also called shrinking targets, 
this approach has relations with the theory of approximation speed, see [13,18]) or 
cylinders. 

Let us consider another concept which as we will see is closely related to the 
Borel-Cantelli property: the waiting time. Let A be a subset of X and 

"CA(X ) ~-min{n ~ N: Tn(x) E A} 

be the time needed for x 6 X to enter for the first time in A. It is clear that in an 
ergodic system (when A has positive measure) ra(X) is almost everywhere finite. 
Intuitively, when A is smaller and smaller, then rA(X) is bigger and bigger. If  the 
behavior of the system is chaotic enough, one could expect that for most points 
r a ( x )  "" ~-~A)" More precisely, let B(y, rn) be a sequence of balls with center y 
and radius r n . We say that x satisfies the waiting time problem (with respect to the 
sequence of sets B(y, rn)) if  

(1.1) lim lOgrB(y'rn)(X) = 1. 
n-->oo - -  log Iz(B(y, rn)) 

In this case if  the local dimension 2 of /z  at y is du(y), then the measure of balls 
dt~ (Y) scales, for small r as #(B(y ,  rn)) "~ rn and then 

(1.2) 15B(y,rn) (X) "" rn dtz(y). 

2 If  X is a metric space and # is a measure on X the upper local dimension at x e X is defined as 

d~(x) = l imsup log(/z(B(x,r))) _ l imsup - log( / z (B(x ,2 -k ) ) )  
r~0  log(r) k~N,k~.oo k 

The lower local dimension d~(x)  is defined in an analogous way by replacing lira sup with liminf. If  

d~(x) = du(x)  we denote with du(x) the local dimension at x. 
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A result of this kind has been proved in various kind of chaotic systems ([10,9, 
11,14]; see also [17] for cases where it does not hold). Moreover this problem is 
related to the distribution of return times (the property holds when the distribution 
of return times in small balls tends to be exponential, see [9]; see also [12] for other 
general relations between waiting time and recurrence time distribution). While in 

the literature results on Borel-Cantelli and Waiting time are somewhat similar (and 
sometime used together, as in [8]), as far as we know, no explicit general relations 

about these two concepts are stated. 
In this note we show that the Borel-Cantelli property and the waiting time 

problem are in general strictly connected: in Section 2 we show that in systems 
where decreasing sequences of balls have the BC property, then the waiting time 
problem is satisfied for almost all points of the space (Theorem 2.4 or in a different 
point of view, Theorem 2.7). In Section 3 we see that there are examples of systems 
where the waiting time problem is satisfied but certain decreasing sequences of 
balls does not satisfy the BC condition. This says that this kind of Borel-Cantelli 
condition is stronger than the one imposed by the waiting time problem. However, 
we see in Section 3 that if we impose further conditions on the sequences of balls we 
consider, making radius to decrease in a "controlled" way, then we have converse 
statements (Theorem 3.4 and following). This allows to use results on the waiting 
time problem to obtain Borel-Cantelli like results on certain decreasing sequences 
of balls in systems like axiom A and generic interval exchanges. 

2. B O R E L - C A N T E L L I  IMPLIES WAITING TIME 

We assume that T is a measure preserving transformation on a metric space 
(X,/z, d). We will prove a general result about the waiting time problem which 
generalizes an inequality between waiting time and measure of sets proved in [9], 
allowing sets which are not necessarily balls. Then we prove that in system where 
decreasing sequences of balls have the BC property the inequality becomes equality, 
and then in such systems the scaling behavior of the waiting time is the same as the 
scaling behavior of the measure of small balls (1.1). 

P r o p o s i t i o n  2.1. Let Bn be a decreasing sequence o f  measurable subsets in X with 

limn tz( Bn) = O. Then we have 

log rsn (x) 
liminf ~> 1 for a.e.x.  
n~c~ - log I~(Bn) 

Proof. Choose a subsequence ni as ni = min{n/> 1: #(Bn) < 2-i}. If  ni ~ n < 

ni+l, then we have rB,(x)/> 7:Bni(X) for every x and 2 -i > lz(Bni) >/#(Bn) ~/ 

2 -i-1 . Therefore, i fni  <~ n < ni+l, for every x 

log rBn (x) log rBni (x) - log #(Bni) log rB, i (x) i 

log/z(Bn) ~> log/L(Bni) -- log/z(Bn) > - -  -- --log#(Bni) i + 1 
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which implies that 

liminf log rB, i (x) _ liminf log rBn (X) 
i---~ - -  log #(Bni) n ~  - log #(Bn) 

Thus we may assume that #(Bn) <<. 2 -n. 
Let 

{ lOg rB, (X) } 
En= x: < 1 - - 3  

-- log#(Bn) 

for some 3 > 0. Then we have 

for every x. 

(2.1) #(En) =/~({x: VB.(X) </z(Bn)-(1-a)}) 

l <~ i <#(Bn)- ( l -a)  

Z "(r-isn) 
1 ~ i  <lX(Bn)-(1-3) 

<~ #(Bn)-(1-a)Iz(Bn) = #(Bn) ~ < 2 -n~. 

Hence )-]~n #(En) < oc and by the Borel-Cantelli lemma we have 

#(lim sup En) = O. 

Since 6 is arbitrary we have for almost every x 

liminf lOgrB,(X) ~> 1. [] 
n - -  log lz(Bn) 

Remark 2.2. In the above proof (in Eq. (2.1)), for each e > 0, we can replace 3 
(l+Ologn. The proof is still valid and we with a sequence 3n ---> 0 such that 3 n ~ -log/z(Bn) 

have an estimation on the "speed of convergence" to this limit inequality. Indeed 
we obtain that if  Bn is a decreasing sequence and tz(Bn) <~ 2 -n, typical points will 
eventually satisfy 

log rBn (X) (1 + ~) logn 
>1  

-- log #(Bn) - log lz(Bn) 

for each ~ > 0. This is interesting when waiting time is used to give numerical 
estimations on the local dimension of attractors. Indeed, by the above result, 
working like in (1.2) we see that in general systems the scaling behavior of the 
waiting time gives an upper bound to the local dimension. This can suggest a 
numerical method to estimate such a dimension (see [9,4]). This remark, hence, 
gives also an estimation on the speed this upper bound is approached. This is very 
general and does not require assumptions on the system we consider. 

A sequence of sets An is said to be strongly Borel-Cantelli if in some sense the 
preimages T -n An covers the space uniformly: 
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Defini t ion 2.3. Let 1A be the indicator function of  the set A. The sequence of  

subsets An C X is said to be a strongly Borel-Cantelli sequence (SBC) if for/z-a.e. 

x 6 X we have as N --+ OO 

N 
Y~m=l 1T-nAn (x) ~ 1. 

N 
Z n = l  #(An)  

As mentioned in the introduction, next theorem says that in Borel-Cantelli 
systems we have a relation between waiting time and scaling behavior of  the 

,~ r-d~z(Y)~ measure of  small balls (as in the waiting time problem 75B(y,rn)(X) n ) .  

T h e o r e m  2.4. Assume that there is no atom in X. 

(i) I f  every decreasing sequence o f  balls in X with the same center is BC, then for 
every y we have 

liminf lOgrB(y,r)(X) = 1 for a.e. x. 
r--+O - -  log #(B(y ,  r)) 

(ii) Suppose that B(y, r) = {x: d(x, y) <<, r} is the closed ball. I f  every decreasing 
sequence o f  balls in X with the same center is SBC, then for every y we have 

lim lOgrB(y,r)(X) = 1 fora .e .x .  
r---~0 -- log #(B(y,  r)) 

Proof. (i) Fix y 6 X. Since y is not an atom, we have lz(B(y, r)) $ 0 as r ~ 0. 

For each positive integer i define m(i) by the smallest positive integer such that 

1 
r > O" m(i) + l 

l} 
<<. #(B(y ,  r)) < 7 -7£ 0. 

Then m(1) ~< m(2) ~<... Choose r! as 
• l 

1 1 
m(i) + ~  <~ #(B(y ,  r:)) < m(i-~' i = 1,2 . . . . .  

" and if " Hence we have Then there is a sequence if such that m(i'k) = t k /> 2tk_ 1 . 

OO (X) 1 OO ' I  ' I  OQ ' I  

IZ B y , r  >~ m( i )  + 1 >~ - . 7 - - -  >~ ., 
i=l i=1 k=l tk + 1  = t k + l 

m m O O  . 

By the BC assumption for almost every x, Tix E B(y, r~) for infinitely many i's. 

Therefore, for almost every x we have rS(y,rl)(x) <<. i <. 1 /#(B(y ,  r~)) infinitely 
many i's. Hence for almost every x 

liminf lOgrB(y,r)(X) <~ 1 
r---~0 - 1 o g / z ( B ( y ,  r)) 

for infinitely many i 's. The other inequality is obtained by Proposition 2.1. 
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(ii) Suppose  that  there  is a y 6 X such that  

log Z B(y,r ) ( X ) 
l im sup > 1 

r ~ 0  - l o g # ( B ( Y ,  r)) 

for  x r ang ing  in a pos i t ive  measu re  set. Choose  m(i) as in (i). Then  there  is a s t r ic t ly  

inc reas ing  sequence  {in}n>~l such that  re(j) = in for  in-I < j <~ in. Let  

1 1 } i =  1,2, 
r n = i n f  r>O:i-~---n~ <<.lz(B(y,r))<i~ , . . . .  

N o t e  that  

{ 1 1} 
r > O: - -  ~< Iz(B(y ,r) )  < - -  

in+l in + 1 
= 0 .  

S ince  

B(y, r n ) = { x : d ( x , y ) < . r n } =  N B ( y ,  r n + I ) ,  
m>/1 

we have 

1 
Iz(B(y, r n ) ) = l i m l z  B y, rn+ >/ i n + l  

If  rn <~ r < rn-1, then  we have 

1 1 
in +-----~ <<"/z(B(y, rn)) <~ ~(B(y ,  r)) < --'tn 

Le t  Ak = B(y,  rl) for  k, 1 ~< k < i l  and  Ak = B(y,  rn) for  k = in, n --  1, 2 . . . . .  I f  

in < k < in+l for  s o m e  n ~> 1, let  

¢ 

I B(y,  rn) i f k  ~< in log(in+l/in), 
Ak 

I B(y,  rn+l) i f k  > in log(in+l/in). 

Then  for  l o g ( i n + l / i n )  < 1 we have 

in+ l~ in+ l~ in + l -- in in in + l 
z...,~ Iz(ak) = z..., ) Iz(B(Y', - rn+l)~-, < - -  - -  1 -- - -  < l o g -  (2.2) 

in+l in+l in k=in+l k=in+l 

and for  log(in+l/in) >/1 we have 
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(2.3) 
in+l 

Z /z(Ak) = 
k=in+l  

[in log (i n + 1 / in )J in + 1 

Z #(B(y,  rn))+ E 
k=in + 1 k= [in log(in+ 1 / in)] + 1 

(L J ) ' (  L i n + l  - -  in - -  + i n + l  - -  in log i n+ l  
< in log in in in 

~ < ( 1 - - i n  ~login+l <login+___~l 
in+l / in in ' 

Iz(B(y, rn+l)) 

j) l 
i n+ l  

where [tJ is the floor of t. 
On the opposite side, iflog(in+l/in) < 1, for any in < j <<. in+l we have 

(2.4) 
J 

E 
k=in + 1 

j - in 1 -- in/in+l in+l -- j 
IZ(Ak) >1 . 

ln+l + 1 -- 1 + 1/in+l in+l + 1 

1 - -  1 / e  in+l in+l - -  j 
> log 

1 + 1/in+l in i n + l  + 1 

( l l ) j in+l - j 
> 1 log - . 

e i n + l  tn i n+ l  "-}- 1 

The second inequality comes from (1 - 1/t) > (1 - I/e) logt for 0 < t < e. In case 

oflog(in+l/ in) >/1, for any j with in log(in+l/in) < j <~ in+l we have 

(2.5) Z 
k=in+l  

- in - -  lZ(ak)>/([inlog in+l ) i n + l  + -  
in A in A/in+l + 1 

( in in ) login+l in+l-- j  
>/ in + 1 in+l + 1 i~- in+l + 1 

( 1 1 )  log J__" i n + l - j  
> 1 in + 1 e~ in in+l + 1" 

Iflog(in+l/in) ~> 1 and i n < j <~ in l o g ( i n + l / i n ) ,  then we have 

J lz(Ak) >/ j - - i n  j / i n - - l  log(j/in) ( 1 )  j 
(2.6) - - - - - -  > - -  > 1 -  log--  

In -Jr- 1 1 + 1~in 1 + 1~in In 
k=in + 1 

Pick x as limsupr~0 lOgrB(y'r)(X) > 1. Then for some 8 > 0 we have infinitely 
- log#(B(y , r ) )  

many n's such that there exists an r with rn ~< r < rn-1 satisfying 

lOgrB(y,r)(X) > 1 + 8 .  

-- log bt (B(y, r)) 

As noticed above 

1 1 
in +----~ <~ Iz(B(y, rn)) ~ u(B(y, r)) < --~n for rn <~ r < rn-1. 
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We have 

1 + ~ < lOgZB(y,r)(X) <~ lOgrB(y,rn)(X) 
- log # (  B(y , r ) ) login 

which implies that rB(y,rn)(X) > in 1+8. Note that if ZAi n (x) = rB(y,rn)(X) > in 1+~, 
since the Aj are decreasing then TJx ¢ Aj  for in <<. j <<. in 1+~. Thus there are 
infinitely many n's such that 

(2.7) Sin (X) = SLi n i+8 / (x), 

where 

N N 

SN(X) = Z 1An 0 Tn(x) = Z 1T-nAn(X)" 
n=l n=l  

By the SBC assumption we have 

SN(X) 
(2.8) lim U A -- 1 a.e. 

U Z n = l # ( n )  

But we have by (2.2) and (2.3) 

n-1 in 1 ig+l in 
Z # ( A ~ )  < il-- + Z l o g  = log- -  + 1 

ll ie ll k=l /~=1 

and by (2.4), (2.5) and (2.6) for im < [inl+3J ~ im+l we have 

Lin 1+~/ m-I  ( 1 ! ) i e + l (  
/z(ak) > y ~ l  log + 1 

k=in+l ~=n it ie 

im+l -- lin l+6j 

im+l + 1 

( 1 ! ) l ° g  Linl+~j 
> 1 in i-----~ 1 

> ( 1 i l  n ! )@log in  L i n ~ + a ] ) - l '  

) Linl+~J 1 log 
im im 

which contradicts (2.7) and (2.8). By SBC assumption, the set of x contradicting 
(2.7) and (2.8) must have zero measure, hence limsupr__,0 l°g'CB(y'r)(X) _loglz(B(y,r)) ~ 1 for 
almost each x. Combining this result with Proposition 2.1 where the opposite 
inequality is proved, the proof is complete. [] 

Corollary 2.5. I f  every centered, decreasing sequence o f  balls in X is SBC. Then 
for  every y we have 

l iminf  l°grB(y'r)(x) - d u ( y ) ,  limsup lOgrB(y,r)(X) _d t z ( y  ) for  a .e .x .  
r~0 -- log r - r--,0 -- log r 
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I f  every decreasing sequence of  balls in X is BC and du(y) exists, then 

liminf l°grB(y'r)(x) - d ~ ( y )  for a.e. x. 
r~O - log r 

The waiting time describes the speed the orbit of a certain point x approaches 
another point y. Another way to consider this kind of questions is to consider the 
behavior of limits of the form liminfn~>l n ~ • d(y, Tn(x)). Under this approach, 
in [2], Boshemitzan showed the following quantitative recurrence theorem. 

Fact 2.6. Let (X, c~, #, d, T) be a metric measure preserving system. Assume that 

for some ot > O, the Hausdorff a-measure Ha is a-finite on X = (X,d). Then for 
almost all x ~ X we have 

1 
liminfn ~. d(x, Tn(x)) < oo, with ~ = - .  

n>/l Ol 

I f  moreover, Ha(X) = O, then for almost all x ~ X 

liminfn t~. d ( x , Tn ( x ) ) = O. 
n ) l  

By the BC properties of the balls we have an analogous quantitative approx- 
imation theorem for the waiting time. In [1], for general measure preserving 
transformations, it is proved that for #-almost all x c X one has 

1 
liminfn• " n > ~ l  d(Tnx'  y) = oc with fl > du(y---- ~ .  

In the case of Borel--Cantelli systems we have 

Theorem 2.7. Let (X, ~, #, d, T) be a metric measure preserving system. I f  every 
decreasing sequence of balls in X is BC, then for #-almost all x ~ X one has 

1 
liminfn/~ " n ~ > l  d(Tnx' y) = 0 with fl < du(y----)" 

Proof. Fix a y 6 X. By the definition ofdu(y),  if/~ < _,A__l, then there are infinitely 
a__ u (Y) 

many ni's such that for any C > 0 

1 
I z B y ,  >.-- .  

ni 

Assume that ni > 2ni-1. Then we have 

429 



~-~ l~ B y , -~ ) (hi 
n= l  i=1 

oo 

>/ ~--~(n/ 

i=1 

>1 

-ni-1)lz(B(Y,-~i))  

1 
-- ni-1)-- ni 

i=1 

The BC condition implies that Tnx 
have for any C > 0 

B(y, -~) for infinitely many n's. Hence, we 

liminfn #. d(Tnx, y) <<. C. [] 
n/>l 

3. WAITING TIME AND SHRINKING TARGETS 

In the previous section we supposed that sequences of  nested balls have the BC or 
SBC property and we have seen that this implies strong properties about waiting 
time behavior. In this section we will see that the two concepts are not equivalent 
and in some sense "waiting time is weaker than Borel~antell i  property". We also 
will see in which direction it is possible to weaken the BC property to have some 
converse implication. This direction is very natural: indeed we have to consider 
sequences of nice sets, as balls with the same center (shrinking targets) and such 
that the sequence of radii decreases in a controlled way. We remark that this kind of  
general philosophy (weaker mixing assumption, stronger requirements on the sets) 
is similar to the one which is present in the results of  [22]. This remark allows to 
use results on waiting time to obtain some Borel--Cantelli results in systems like 
typical Interval Exchanges or Axiom A systems. 

Definition 3.1. We say that a system (X, T,/z) has the shrinking target property 
(STP) if for any x0 E X any sequences of balls centered at x0 has the BC property. 
Moreover we say that a system has the monotone shrinking target property (MSTP) 
if any decreasing sequences of balls centered at xo has the BC property. 

In [7] (see also [19]) it is proved that no rotations on the d-dimensional torus have 
the STP property and moreover, only rotations having some particular arithmetical 
property have the MSTP. 

More precisely, let us introduce some notation: consider ot s R d, and consider the 
sup norm Iotl = sup(Iotl I . . . . .  Iotdl). Moreover, for ot ~ R let us consider the distance 
to the closest integer Ilotll = infp~z lot - Pl and its generalization on Rd: Ilotll = 

sup/Iloti II. 

Definition 3.2. Let d ~> 1, the set 

~d = {ot E Rd: 3C > 0 s.t. VQ E Z - {0}, II aotll/> ClOl-~ } 

is called set of  constant type vectors in R d. 
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Theorem 3.3. ([7]) Let T d be the d-dimensional toms. Let us consider the system 
(T d, Ta, tz) where Ta is the translation by a vector ot and lz is the Haar measure 
on T d. Then we have that Ya (T d, T~,/z) does not have the STP, moreover 

(T d, Ta, Iz) has the MSTP i f  and only i f  or is o f  constant type. 

It is known [17] that in dimension 1, for almost every ot we have 

lim Iog'cB(y,r )(x) = 1 for a.e. x ,  
r-+0 - -  log/z(B(y, r)) 

moreover for every oe 

liminf l o g  rB(y,r)(X ) 
r---~0 - l o g / x ( B ( y , r ) )  

= 1 fora.e.x.  

If 

(3.1) 

Theorem 3.4. Let {B(y, rn)} be a decreasing sequence o f  centered balls such that 

log rn 1 
limn___~ooSUp _ log-------~ < du (y------)" 

log "g B(y,r) ( X ) 
liminf -- d~ (y) 

r--+0 - -  log r - 

then x ~ lim sup T-n(B(y ,  rn)). 

We remark that condition (3.1) above is implied by the waiting time problem and 
if Eq. (3.1) holds for almost each x, then 

/z(limsup T - " ( B ( y ,  rn))) = 1 

and then such a {B(y, rn)} has the BC property. 

Proof. If  liminfr~o logrB(y,r)(X) du(y),  then there is a sequence Pn $ 0 such that 
- l o g  r - -  - -  

for each small E > O, 

x E U T- i (B(y ,  pn)) foreachn.  

i ~ p n  d-tz (y)-~ 
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Thus the converse of  Theorem 2.4 (in particular point (i)) does not hold, even if we 
restrict to decreasing families of  balls having the same centers, as in the shrinking 
targets framework. (See also [16].) 

One of  the reasons why not all translations have the STP is that the radii of the 
balls can decrease in any way. Putting some restriction on this decreasing rate the 
STP become equivalent to the waiting time problem. 



If limsuPn~o o-l°grn 1 1 then, when m is big enough rm >/m -1~(d-e) 
log n - -  J < ~ 

Therefore, if ¢ is small enough such that ¢ <~ (d - du)/2,  then pn ~< r -a.-E 
- ~p~ - j 

eventually, with respect to n. Hence, since rm is decreasing, we have 

U U 
-d~-~  

i<~p  n - m < ~ p n d - V  - E  

This is true for infinitely many n and thus x e lim sup T -n (B(y, rn)). [] 

Since in Axiom A systems it holds that (3.1) is verified for typical points [10], 
this implies that in such systems, decreasing sequences of  balls, verifying the 
assumptions in Theorem 3.4 have the BC property. This extend a result of  [6] 
(Theorem 7) which requires the invariant measure to have a smooth density (but 
has milder requirements on the hyperbolicity of  the system). 

We remark that if we have stronger assumptions on the behavior of  rS(y,r)(X) 
we can include other kind of  sequences r, and generalize the above theorem to the 
following 

Proposition 3.5. I f  for some x, y ~ X there is a sequence pn $ 0 such that 
rB(y,o,)(x) < f(Pn), with f : R  + ---> R + be invertible and both f and f - 1  are 
strictly decreasing. Then for each decreasing sequence rn with rn > f -  1 (n), it holds 
x ~ limsup T-n(B(y ,  rn)). 

Proof. The proof of  this proposition is similar to the above proof of  Theorem 3.4. 
Indeed we have that pn <~ f - l ( f ( P n ) )  < rlf(Pn)J and the proof follows as be- 
fore. [] 

Interval Exchanges are particular bijective piecewise isometrics which preserve 
the Lebesgue measure. We refer to [3] for generalities on this important class of  
maps. We only remark that Interval exchanges are not hyperbolic and never mixing, 
hence Borel-Cantelli results about this class of  systems cannot come from speed of  
mixing arguments, as in [22]. These results will come from arithmetic arguments 
like in the rotation case. Let T be some interval exchange. Let 3(n) be the minimum 
distance between the discontinuity points of  T n. We say that T has the property/5 
if it is ergodic and there is a constant C and a sequence n~ such that 3(nk)/> c .  

Lemma 3.6. (By [3].) The set o f  interval exchanges having the property P has full  
measure in the space o f  ergodic interval exchange maps. 

Now we can apply the above Proposition 3.5 to obtain the following: 

T h e o r e m  3.7. I f T  has the property P, (hence for typical interval exchanges) there 
K eventually when is a constant K such that i f  rn is a decreasing sequence and rn >~ 7 

n is big enough, then the sequence {B(y, rn)} has the BCpropertyfor  almost each 
y ~ [ 0 ,  l]. 

432 



Proof. In [10] (in the proof of  Theorem 9), it is proved that if  T has property 
4 ( C  is  the /5 it holds that there is a sequence pn -+ 0 such that rS~y,pn)(x) ~< 

constant in the definition of  property/5 and may depend on T) for x and y ranging in 
positive measure sets B and B I. We now remark that, if An is a decreasing sequence 
of  sets, then A = limsup T-n(An) is a forward invariant set, hence in an ergodic 
system this set has either zero or full measure. By Proposition 3.5 we have that 
if  y ~ B' and rn > ~nn eventually, then B C limsupT-n(B(y, rn)). This implies 
tz(limsupT-n(B(y, rn))) = 1 and that {B(y, rn)} has the BC property. Choosing 
K > 4 we have the result for y 6 B ~. 

K Let us consider a sequence rn such  that rn >/ 7 eventually and y such that 

T(y) ~ B t. Since rn is decreasing this implies that the sequence rn-I is such that 
rn-1 >/ K eventually (here we set r_l = 1) and then by what is proved above n 
{B(T(y), rn-1)} is a BC sequence. 

Now, if {B(T(y), rn-1)} is a BC sequence of decreasing balls and both y and 
T(y) are not discontinuity points then also {B(y, rn)} is a BC sequence. This is 
true because T -1 is an isometry from a small neighborhood of T(y) to a small 
neighborhood of  y. This proves the required result for each y E B' U T -1 (B') and 
the result follows by the ergodicity of T - l  . [] 

Hence not only in rotations (by the results cited at the beginning of  this section), 
but also in a full measure set of  interval exchanges we have that a large class of 
decreasing sequences of  centered balls have the BC property. 
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