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ABSTRACT 

Let (M, F) be a Finsler manifold. We consmact a 1-cocycle on Diff(M) with values in the space of 
differential operators acting on sections of some bundles, by means of the Finsler function F. As an 
operator, it has several expressions: in terms of the Chern, Berwald, Cartan or Hashiguchi connection, 
although its cohomology class does not depend on them. This cocycle is closely related to the conforrnal 
Schwarzian derivatives introduced in our previous work. The second main result of this paper is to 
discuss some properties of the conformally invariant quantizatinn map by means of a Sazald (type) 
metric on the slit bundle TM \ 0 induced by F. 

1. INTRODUCTION 

The notion of  equivariant quantization has been recently introduced by Duval, 
Lecomte and Ovsienko in the papers [11,12,17]. The aim is to seek for an equivari- 
ant isomorphism between the space of  differential operators and the corresponding 
space of  symbols, intertwining the action of  a Lie group G acting locally on 
a manifold M--see  also [3,6,10,14,18] for related works. The computation was 
carried out for the projective group G = SL(n + 1, IR) in [17], and for the conformal 
group G = O(p + 1,q + 1), where p -t- q = dimM, in [11,12]. It turns out that 
the projectively/conformally equivariant quantization maps make sense on any 
manifold, not necessarily flat, as shown in [4,6,12]. For instance, the conformally 
equivariant map has the property that it does not depend on the rescaling of  the 
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(not necessarily conformalty flat) pseudo-Riemannian metric. The existence of  such 
maps induces naturally cohomology classes on the group Diff(M) with values in 
the space of  differential operators acting on the space of  tensor fields on M of  
appropriate type. These classes were given explicitly in [5,7,8], and interpreted as 
projective and conformal multi-dimensional analogous to the famous Schwarzian 

derivative (see [5,7,8] for more details). 
A Riemannian metric is a particular case of  more general functions called 

Finsler functions.  A Finsler function, whose definition seems to go back to 
Riemann, is closely related to the calculus of  variation; it arises naturally in many 
context: Physics, Mathematical ecology . . . .  (see [1]). The first main result of  this 
paper is to extend one of  the two 1-cocycles introduced by the author in [5] 
as conformal Schwarzian derivatives, to the more general framework of  Finsler 
structures. The 1-cocycle can be built in terms of  the Chern, Berwald, Cartan or 
Hashiguchi connection. All of  these connections are considered as generalizations 
of  the well-known Levi-Civita connection for Riemannian structures, thereby the 
1-cocycle in question coincide with the conformal 1-cocycle introduced in [5] when 
the Finsler function F is Riemannian. This 1-cocycle, thus, can be exhibit in four 
ways accordingly to the used connection. This property contrasts sharply with the 
case of projective structures where the projectively invariant 1-cocycle has a unique 
expression (cf. [7]). 

The second part of this paper deals with the conformally invariant quantization 
procedure. As the Finsler function gives rise to a Riemannian metric, say m, on the 
slit bundle T M  \ 0, we shall apply the Duval-Ovsienko's quantization procedure 
through the metric m. That means that we associate with functions on the cotangent 
bundle of  the manifold T M  \ O, differential operators acting on the space of  )~- 
densities on T M  \ O. The second main result of this paper is to prove that, for almost 
all )~, this map cannot descend as an operator acting on the space of)~-densities on 
M even though the Finsler function is Riemannian. 

2. I N T R O D U C T I O N  TO FINSLER STRUCTURES 

We will follow verbatim the notation of  [2]. Let M be a manifold of  dimension n. 
A local system of  coordinates (xi), i = 1 . . . . .  n, on M gives rise to a local system 
of  coordinates (x i, yi)  on the tangent bundle T M  through 2 

i 0 i = 1 ,  . , n .  
Y = Y  Ox ~ ,  " 

Definition 2.1. A Finsler structure on M is a function F : T M  -+ [0, ec) satisfying 
the following conditions: 

(i) the function F is differentiable away from the origin; 
(ii) the function F is homogeneous of degree one in y, viz. F(x ,  )~y) = )~F(x, y) 

for all )~ > O; 

2 We will  use  the convent ion  o f  s u m m a t i o n  on  repea ted  indices.  
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(iii) the n x n matrix 

1 0 2 ( F 2 )  ' 
gij .-- 20y iOyj 

is positive-definite at every point of  T M  \ O. 

Example 2.2. (i) Let (M, a) be a Riemannian manifold. The function F : -  

~j~jy iy j  satisfies the conditions In this the Finsler function is called (i)-(iii). case, 

Riemannian. 
(ii) Let (M, a) be a Riemannian manifold, and oe be a closed 1-form on M. We 

F : =  ~ j y i y j  q_ otiyi. One can prove that F satisfies (i)-(iii) if  and only if put 

[lot. alia < 1 (see, e.g., [2]). In this case, F is Riemannian if  and only if  the 1-form 
o~ is identically zero. 

Denote by zr the natural projection TM \ 0 --+ M. The pull-back bundle of  T*M 
with respect to Jr is denoted by rr*(T*M). The universal property implies that one 
has a commutative diagram 

(2.1) T * ( T M \ O )  - u  >7r*(T*M) > T*M 

T M \ O  z~ > M 

The components gij in (iii) of  the definition above are actually the components of  a 
section of  the pulled-back bundle rc*(T*M) ® rc*(T*M). 

The geometric object g in (iii) is called fundamental tensor; it depends on x and 
on y as well. The fundamental tensor is nothing but the Riemannian metric if  F is 
Riemannian. 

The tensor 

(2.2) A :-= AUk dx i @ dx j @ dx k, 

where AUk := F/2 .  Ogij/Oy k, is called Cartan tensor. It is symmetric on its three 
indices, and defines a section of  the pulled-back bundle (zr*(T*M)) ®~. The Cartan 
tensor measures whether the Finsler function F is Riemannian or not. 

The tensor 

(2.3) co := co i dx i , 

w h e r e  09 i := 0 F/Oy i , is called Hilbert form; it defines a section of the pulled-back 
bundle 7r* (T* M). 

Throughout this paper, indices are lowered or raised with respect to the funda- 
mental tensor g. For instance, the tensor whose components a r e  AIj stands for the 

tensor whose components a r e  Aijkg kl. 
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We will also use the following notation: on the manifold T M  \ O, the index i runs 
with respect to the basis dx  i or O/Ox i , and the index 7 runs with respect to the basis 
dy  i or O/Oy i . 

3. THE SPACE OF DENSITIES,  THE SPACE OF LINEAR DIFFERENTIAL OPERATORS AND 

THE SPACE OF SYMBOLS 

Let M be an oriented manifold of dimension n. Some backgrounds are needed here 
to present our results. A thorough description of the forthcoming definitions can be 
found in [11,12]. 

3.1. The space of densities and the space of linear differential operators 

Let (E, M) be a vector bundle over M of rank p. We define the space of)~-densities 
of (E, M) as the space of sections of the line bundle ] A p E[ ®z. Denote by 5Cz(M) 
the space of ;.-densities associated with the bundle T * M  -+ M and denote by 
5cz(~r*(T*M)) the space of )~-densities associated with the bundle zr*(T*M) -+ 

T M  \ 0 (see (2.1)). Both Sex(M) and 5cz(zr*(T*M)) are modules over the group 
of  diffeomorphisms Diff(M): for f c Diff(M), ¢ 6 3Cz(M) and ~0 e 5cz(zc*(T*M)), 
the actions are given in local coordinates (x, y) by 

(3.1) 

(3.2) 

f * ¢  = ¢ o f - 1 .  ( j f _ l ) z ,  

f 'q)  = ~0 o f - 1 .  ( j f_ l )L ,  

where f is a lift o f f  to T M  and J f  = [Df /Dx[  is the Jacobian o f f .  
It is worth noticing that the forml~e above do not depend on the choice of the 

system of coordinates. 
By differentiating these actions, one can obtain the actions of the Lie algebra of 

vector fields Vect(M). 
Consider now 7)(5c~ (M), ~c/~ (M)), the space of linear differential operators 

(3.3) T : Fz(M) --+ .T'~ (M). 

The action of  Diff(M) on D(.Yz(M) ,  .~~(M)) depends on the two parameters )~ and 
#; it is given by the equation 

(3.4) fx,~(T) = f* o T o f , - 1 ,  

where f* is the action (3.1) of Diff(M) on 5Cz(M). 
Denote by D2()Cz(M), SOu(M)) the space of second-order linear differential 

operators with the Diff(M)-module structure given by (3.4). The space 7)2(U~ (M), 
9c, (M)) is in fact a Diff(M)-submodule of D(SCz(M), 5c~(m)). 

d 2 Example 3.1. The space of  Sturm-Liouville operators ~-j + u(x)  : .~_1/2(S 1) 
2 1 .T3/2 (S 1) on S 1 , where u(x)  ~ ~2(S 1) is the potential, is a submodule of7~_1/2,3/2(S ) 

(see [20]). 
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Likewise, we define D(.T'z(rr*(T*M)), Uu(zr*(T*M))), the space of linear differ- 
ential operators 

(3.5) U: 5z (rr* (T'M)) --+ .T'u(zr*(T*M)), 

with the action 

(3.6) fz,~(U) = f*  o U o f , - 1 ,  

where f*  is the action (3.2) of Diff(M) on 5cz(rr*(T*M)). 
By differentiating the actions (3.4), (3.6), one can obtain the actions of the Lie 

algebra Vect(M). 
The formulae (3.4) and (3.6) do not depend on the choice of the system of 

coordinates. 

3.2. The space of symbols 

The space of symbols Pol(T*M) is defined as the space of functions on the 
cotangent bundle T*M that are polynomial on fibers. This space is naturally 
isomorphic to the space @p>~O SF(TM®p) of symmetric contravariant tensor fields 
on M. 

We define a one parameter family of Diff(M)-modules on the space of symbols 
by 

Pol,(T*M) := Pol(T*M) ® 5c, (M). 

For f 6 Diff(M) and P 6 Pol~(T*M), in local coordinates (xi), the action is defined 
by 

(3.7) f~(P) = f ' P -  (Jf-1) ~, 

where Jf = IDf/Dxl is the Jacobian of f ,  and f* is the natural action of Diff(M) 
on Pol(T*M). 

We then have a graduation of Diff(M)-modules given by 

oo 

Pols(T*M) = @ Pol~(T*M), 
k=0 

where Pol~ (T* M) is the space of polynoms of degree k endowed with the Diff(M)- 
module structure (3.7). 

Remark 3.2. As Diff(M)-modules, the spaces Pol~ (T'M) and 79(Uz (M), 5t'~(M)) 
are not isomorphic (cf. [11,12]). 

4. SCHWARZIAN DERIVATIVE FOR FINSLER STRUCTURES 

Let (M, F) be a Finsler manifold of dimension n. 
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4.1. The Chern connection 

There exists a unique symmetric connection D:P(zr*(T*M)) -+ F(zr*(T*M) N 
T*(TM \ 0)) whose Christoffel symbols are given by 

Yij= ~g \ Oxj + -  
_ks{ J A + - - ' f f - A m s j - - -  Ogsj Ogij ~ um N m 

OX i OX s ] - -  g ~- - f f - i~-msi  
NmF Asij), 

where Aijk a r e  the components of the Cartan tensor (2.2), gij are the components 
of the fundamental tensor and the components Nm k are given by 

(4.1) Ark'--4Oy m \  \OxJ + OT Ox s yjyi . 

This connection is called Chern connection and has the following properties (see 
[2]): 

(i) the connection 1-forms have no dy dependence; 
(ii) the connection D is almost g-compatible, in the sense that Ds(gij) = 0 and 

D~(gij) = 2Aijs; 
(iii) in general, the Chern connection is not a connection on M; however, the Chern 

connection can descend to a connection on M when F is Riemannian. In that 
case, it coincides with the Levi-Civita connection associated with the metric g. 

4.2. A 1-cocycle as a Schwarzian derivative 

Since the connection 1-forms of the Chern connection have no dy dependance, the 
difference between the two connections 

(4.2) ~(f)  := f* v - Y, 

where f 6 Diff(M), transforms under coordinates change as a section of the bundle 
zr*(r*M) ®2 ® :rr*(rM). From the construction of the tensor (4.2), one can easily 
seen that the map 

f ~ g( f -1)  

defines a non-trivial 1-cocycle on Diff(M) with values in SF(rc*(T*M) ®2) ® 
P (zr* (r M) ). 

Our main definition is the linear differential operator A ( f )  acting from SF(TM ®2) 
® 5a(M) to I'(7r* (TM)) ® 5a0r*(T*M)) defined by 

(4.3) ,A(f)kij : = / , - 1  (gSkgijDs) _ gSkgijDs 

( ~ij - -l symi,j3~ig'(f)ttj) + ( 2 - 3 n )  £( f )  n 

kl s + g (Symi,j gsjB, i - agijB[t ) 

_ f - l *  (gkl (Symi,j gsj Bl~ -- agij Bit)) 
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1 k -1' t t ))  
-- - Symi,j 3 i ( f  Bjt - Bjt , - (2 - an) f - l * B k  Bkij -- n 

where we have put 

B/~ := (Aki r :.oj + Ajkr co, -- Ab c°r - Arj c°k - --,s--jAl5 Asr 

s. + ArukA~j)u o dr(log F), -- AjsA i 

to avoid clutter; D is the Chern connection, AUk are the components of the Caftan 
tensor (2.2), coi are the components of the Hilbert form (2.3), g,(f)kij are the 
components of the tensor (4.2) and u is the map as in (2.1). 

Theorem 4.1. (i) The map f ~-+ A(f-1) ,  defines a 1-cocycle on Diff(M), non- 
trivial for all a # 2 / n, with values in the space D( SF ( T M ®2) ®Sa (M), lP (re* ( T M ) ) 
® 5Ca(:r*(r*M))); 

(ii) The operator (4.3) does not depend on the rescaling o f  the Finsler function F 
by any non-zero positive function on M; 

(iii) I f  M := JR n and F is Riemannian such that the metric g is the flat metric, this 
operator vanishes on the conformal group O(n + 1, 1). 

Proof. Let us first explain how the contraction between the tensor D(P) and 
the tensor g-1 is permitted, for all P ~ SF(TM ®2) ® 5Ca(M). Indeed, the tensor 
D(P) should take its values in SF(TM ®2) ® 5Ca(M) ® F(T*(TM \ 0)), from the 
definition of the Chern connection. But taking into account that the tensor P 
lives in SF(TM ®2) ® 5Ca(M), the components Dg(P ij) = 0, and the components 
Ds(P ij) behave under coordinates change as components of a tensor in F(TM ®2) ® 
5C~ ( M) ® F (7r* (T'M)) .  It follows therefore that the contraction between Ds ( PiJ) 
and gSk makes a sense. 

To prove (i) we have to verify the 1-cocycle condition 

.A((f o h) -1) = f*A(h  -1) + .A(f -1) for all f ,  h E Diff(M), 

where f* is the natural action on 

>(s r ( r  M ®2) ® (M), M)) ® ( :  (r'M))). 

This condition holds because, in the expression of the operator (4.3), ~ is a 1-cocycle 
and the rest is a coboundary. 

Let us proof that this 1-cocycle is not trivial for 6 # 2In. Suppose that there is a 
first-order differential operator Akij = ,k Uij Ds + 1)kj such that 

(4.4) ,A(f -1) = f * A  - A. 

It follows, by a direct computation, that 

• k ( 1Symi,ja~£(f-1)ttj ) : Vu- b=(2-an  e(:-%-; 
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+ gkt(Symi,ygsjB{i -8gijBft) - f*(gkl(Symi,j gsjB{i -6gijBtlt)) 

(2_an)( , 1 ) - f B i j - B ~ - n S y m i , j a i ( f  B j t -B} t )  • 

The right-hand side of this equation depends on the second jet of the diffeomor- 
phism f ,  while the left-hand side depends on the first jet of f ,  which is absurd. 

For a = 2/n, one can easily see that the 1-cocycle (4.3) is a coboundary. 

Let us prove (ii). Consider a Finsler function F = ~/~.  F, where 7r is a non-zero 
positive function on M. Denote by A ( f )  the operator (4.3) written by means of 
the function F. To prove that A(f )  = A( f )  we proceed as follows: we write down 
the tensors D(P) and [ ( f )  associated with the Finsler function F in terms of the 
tensor D(P) and £ ( f )  associated with the Finsler function F, then by replacing their 
expressions into the explicit formula of the operator (4.3) we show that the constants 
arising in the expression of the operator (4.3) will annihilate the non-desired terms. 

Let us first compare the Chern connections associated with the functions F and 
• ~, namely 

1 k 
(4.5) ~k.tj = E.k.tj ÷ ~ ( ~ i ~ j  ÷ ~jaki -- ~tgtkgij) 

+ r ,j + r ,i - A b o ,  r ~ r  k A k  ~ S ~  
- -  l-lijO) - -  l - l i s a  j ¢ 

__ A k A s r  rk u --as-~ ÷ au Aij)~r, 

where ~r = OaP/Ox r. 
From (4.5), a direct computation gives 

1 "S m mi j (4.6) L)kpiJ=Dkpij +~-~( y i,jP (aPm3k--~tgtjgkm)+(Z--n3)pij~pk), 

+ S y m i , j  p s J C ~ s  . ~ l o i j ~ t  - -  ~ ,_  V.tk,  

-1"//  1 ~rtgtkgij)) 
/ 

1 r - ~ * C  k. - C~,  2~ (Symi,j ~ia~ - ~,gtkgij) + ,  --,a 

where we have put 

1 
Aij¢ '°  - i s - - j  j s - - i  + Au A i j ) ~ r '  C k : =  -~-~(Aki rOaj ÷ Z krcOi akj¢.o r - -  r k a k a s r  A k a s r  rk u 

to avoid clutter; where p i j  a re  the components of  the tensor P ~ SP(TM ®2) ® 
Ua(M). By substituting the formulae (4.6) into (4.3) we get by straightforward 
computation that A ( f )  = A( f ) .  

us prove (iii). Suppose that F is Riemannian, namely F = ~ j y i y j .  Let In that 

case, the Caftan tensor A is identically zero. The Chern connection D can descend 
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to a connection on M and coincides with Levi-Civita connection associated with g. 
It follows that the operator (4.3) turns into the form 

(4.7) ,A(f)kj := f*- l(gskgijDs) -- ~kgijDs 

+ (2--Sn)(g(f)kij  -- lsymi,jSkig.(f) t t j) .  

As the Chern connection and the fundamental tensor has no y dependance, the 
operator (4.7) will take its values in F(TM) ® 5C~(M), instead of F(zr*(TM)) N 
.T~(zr*(T*M)). The operator (4.7) is nothing but one of the conformally invariant 
operators introduced in [6]. If, furthermore, M is R n and g is the flat metric then 
the operator (4.7) vanishes on the conformal group O(n + 1, 1) (cf. [6]). [] 

Remark  4.2. (i) When the Finsler function F is Riemannian, the formula (4.7) 
assures that the 1-cocycle A defined here coincides with one of the conformally 
invariant operators introduced in [5] as multi-dimensional conformal Schwarzian 
derivatives. We refer to [5,7,8] for more explanations and details concerning the re- 
lation between the classical Schwarzian derivative and the projectively/conformally 
invariant operators introduced in [5,7,8]. 

(ii) The tensor whose components are B~ r coming out in the formula (4.3) is only 

identically zero for Finsler functions that are Riemannian. Indeed, if  Bikf -- 0 then a 

contraction by the inverse of the Hilbert form will give the equality nA~ij -- O. 

Now, how can we adjust the 1-cocycle A in order to take its values in the space 
~(Sr(TM ®2) e 7~(M), F(TM) @ .Ta(M)), as for the projectively/conformally 
invariant 1-cocycles of [5,7,8]? A positive answer to this question can be given 
by demanding an extra condition on the topology of M. More precisely, suppose 
that M admits a non-zero vector fields--which is true when the Euler characteristic 
of M is zero (cf. [9]). One has 

Proposition 4.3. Let A" be a fixed non-zero vector fieM on M and denote by f~(f)  
the operator obtained by substituting the vector fields 2( into ~4(f) on the vertical 
coordinates (namely y). The map 

f ~ A ( f - ' ) ,  

defines a 1-coeycle on Diff(M) with values in the space 7)(SF(TM ®2) ® 5C~(M), 
I '(TM) ® 5~(T*M)). 

Proof. Since the connection 1-forms of the Chern connection do not depend on 
the direction o fdy ,  the evaluation by the vector fields does not affect the 1-cocycle 
condition. [] 

Remark 4.4. As a 1-cocycle, the cohomology class of .,~ does not depend on the 
chosen vector fields. However, one has a family of operators indexed by a family of 
non-vanishing vector fields on M. 
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4.3. The 1-cocycle ¢4(f) in terms of  the Berwald connect ion 

There exists another connection on the bundle rc*(TM) --~ TM \ 0 called Berwald 
connection. Its Christoffel symbols are given, in local coordinates, by 

(4.8) b~,j k = ON} 
Oyk ' 

where the components N} are given as in (4.1). Like the Chern connection, this 
connection has no torsion (see [19]). 

As in Section 4.2, we define the following object 

(4.9) ~e(f) = f ,by  _ by, 

where f 6 Diff(M). As the connection 1-forms of the Berwald connection have 
no dy dependance, this object is actually a section of the bundle zr*(T*M) ®2 ® 
rc*(T M). 

The 1-cocycle A ( f )  can be expressed in terms of  the Berwald connection as 
follows. 

(4.10) 

b A ( f ) k j ; = f * - l ( g s k g i j b O s ) _ _  sk ( 1 kL' t )  g gij bDs + (2 - 6n) ~g.(f)kj _ Symi,j 6 i 'g(f)tj 

_t_g~l(Symi, jgsjbB]i_3gij~B[t) -1" kl ~ s  -- f (g (Symi,jgsj Bli--3gijbB[t)) 

~ n ) (  -l*bBk b k 1 k -l*b t OBtt) ~ - (2 - f ij -- Bij - - Symi,j ~i ( f  Bit , n - J ]  

where we have put 

k Bij :=CD](A~r)F + A~ r coj + 2Af%i)u odr(logF), 

to avoid clutter; ~D is the covariant derivative associated with the Berwald connec- 
tion, Aijk are the components of the Cartan tensor (2.2), wi are the components of 
the Hilbert form (2.3), ~g.(f)kij are the components of the tensor (4.9) and u is the 
map as in (2.1). 

Theorem 4.1 still holds for the operator ~A(f). For the proof we proceed as in 
Theorem (4.1). Part (i) is obvious form the construction of the operator. Part (ii) 
lead us to compare the Berwald connections associated with the Finsler function 
F and v@-F, respectively. The proof then is a direct computation. Part (iii) results 
from the fact that, as for the Chern connection, the Berwald connection coincides 
with the Levi-Civita connection associated with a Riemannian metric when F is 
Riemannian. 

It is worth noticing that, viewed as operators, the operator A( f )  and ~A(f) are 
not equal; however, they can be compared via the following definition. 
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Definition 4.5 (see [2]). A Finsler manifold is called a Landsberg space if the 
tensor whose components 

02N[ 
Aijk : ' =  - -~Yl  OyJOy k' 

where the components N[ are as in (4.1), is identically zero. 

Proposition 4.6. I f  the Finsler manifold is a Landsberg space, the operators 

A ( f )  -- ~A(f), 

for all f ~ Diff(M). 

Proof. The proof results from the fact that the Berwald connection and the Chern 
connection coincides when the Finsler manifold is a Landsberg space (cf. [2, 

191). [] 

Remark 4.7. An obvious example ofa  Landsberg space is a Riemannian manifold. 
More general examples of Finsler manifolds that are Landsberg spaces but not 
Riemannian are provided in [2]. Proposition 4.6 shows that the operator .A(f) and 
~4(f) does not coincide only for Riemannian manifolds but also for some manifolds 
little more general. 

4.4. The 1-cocycle .A(f)  in terms of the Cartan connection 

There exists another connection on the bundle :r*(TM) --> TM \ 0 called Cartan 
connection. Its Christoffel symbols are given, in local coordinates, by 

(4.11) ~yjk=V i i N~ . ASk . --~ 
jk+a,, F % -  F % ' ~ F ~ 

where yj~ are the Christoffel symbols of the Chern connection, the components N 5 

are as in (4.1) and A i. are defined in the Section 2. In contradistinction with the jt 
Chern or Berwald connection, this connection has the properties (cf. [19]): 

(i) it has torsion; 
(ii) the connection 1-forms do depend on the direction of dy. 

As in Section 4.2, we define the following object 

(4.12) Re(f) = f*~v - qg, 

where f is a natural lift of f c Diff(M). This obj ect takes its values in P (7r* (T M) ® 
T*(TM \ O) ® T*(TM \ 0)), in contrast with the previous object g(f)  defined by 
means of the Chern or Berwald connection. One takes the image of  ~g(f) by the 
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map Id ® u ® u, where Id is the identity map and u is the map defined in the diagram 
(2.1). Let us still denote this tensor by ~£(f). 

The 1-cocycle A ( f )  can be expressed in terms of  the Cartan connection as 
follows. 

(4.13) ~A(f)kij := f*-l(g~kgiju o bDs) -- gSkgiju o ~Ds 

+ (2-- (]n)(~g(f)kj -- lSymi, j6~g(f) t t j  ) 

+ gkl (Symi, j gsj ~B{i - 8 gij hB[t) 
- 1 '  kl ~ s 

- f  (g (Symi,jg# B l i - - ~ g i j ~ n [ t ) )  

- - (2-6n)( f - - l*~B~-~Bki j - -  1- Symi,jak. [ f-l*~Rt. _ ~B}t)) 
l't 

where we have put 

kr ~B k := (Aj o9i- Arjco k Ak.A s.r rk u -- --sj--I + A u Aij)u o dr(log F),  

to avoid clutter; ~D is the covariant derivative associated with the Caftan connection, 
AUk a r e  the components of  the Caftan tensor (2.2), wi are the components of  the 
Hilbert form (2.3), O£(f)~j are the components of  the tensor above and u is the map 
as in diagram (2.1). 

Theorem 4.1 still holds for the operator ~A(f). 

Remark  4.8. (i) The operator ~A(f) written by means of  the Cartan connection 
coincides with the operator A ( f )  written by means of  the Chern connection only 
and only when the Finsler function F is Riemannian. Indeed, the Christoffel 
symbols of  the Caftan connection as defined in (4.11) coincide with the Chfistoffel 
symbols of  the Chern connection only and only when the components ASk -- 0. 

(ii) The operator ¢4 can be expressed in terms of  the Hashiguchi connection as 
well. We omit here its explicit expression. Its worth noticing that the operator A 
written by means of  the Cartan connection coincides with the operator A written 
by means of  the Hashiguchi connection when the Finsler manifold is a Landsberg 
space. 

5. CONFORMALLY INVARIANT QUANTIZATION BY MEANS OF SAZAKI TYPE METRIC 

5.1. Conformally invariant quantization 

Let (N, a) be a Riemannian manifold of  dimension m. Denote by V the Levi-Civita 
connection associated with the metric a. We recall the following theorem. 

Theorem 5.1 [12]. For m > 2 and for all 8 :=/z  - )~ ~ {2/m, (m + 2)/(2m), (m + 
1)/m, (m + 2)/m}, there exists an isomorphism 

Q~,~: Pol2(T*N) -+ 7~(f 'z(N),  F~(N)), 
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given as follows: for all P ~ PolZ(T*N), one can associate a linear differential 
operator given by 

(5.1) Q~,~(P) = p i J v i v j  + ( f i lVie  ij -t-fi2aiJVi(aklpl:l))vj 

q- f i 3 V i V j P  ij -}- f l4aS tVsVt (a i jP  i j )  q- f i5Ri jP ij if- f l6Rai jP  ij , 

where pij are the components of  P and Rij (respectively R) are the Ricci tensor 
components (respectively the scalar curvature) of  the metric a; constants fil . . . . .  f 16  

are given by 

2(mk + 1) 
f i l -  2 + m ( 1  - 3 ) '  

m(2k + 3 - 1) 

(2 + m(1 - 3))(2 - m3) '  

m)~(mk + 1) 
/33 = 

(1 -h m(1 - 3))(2 + m(1 - 3)) '  

(5.2) mk(m2#(2  - 2k - 3) + 2(m)~ ÷ 1) 2 - m(m + 1)) 
/34= 

(1 + m(1 - 3))(2 + m(1 - 3))(2 + m(1 - 23))(2 - m3) '  

m2)~(X q- 3 - 1) 
/35 = 

(m - 2)(1 + m(1 - 3)) '  

(m3 - 2) 
/36 = /35-  

(m - 1)(2 + m(1 - 23)) 

The quantization map Q~,~ has the following properties: 

(i) it does not depend on the rescaling of  the metric a; 
(ii) i f  N = •m and it is endowed with a flat conformal structure, this map is unique, 

equivariant with respect to the action of  the group O(p + 1, q + 1) C Diff(Rm), 

where p + q = m. 

5.2. A Sazaki type metric on TM \ 0 

Let (M, F)  be a Finsler manifold o f  dimension n. The Finsler function F gives rise 
to a Sazaki (type) metric m on the manifold TM \ O, given in local coordinates 
(x i ' yi) by 

s t s NIX)" ~ U. 
gls F2 dy (5.3) m :=  gij -t- gst-ff- ~ - )  dx i ® dx j + _L i @ dx j 

NS . _ g i j  . i 
+ gis ~ dxJ ® dY i 5- ~ ay ® dy j, 

where gij are the components o f  the fundamental tensor and Nj are given as in (4.1). 

R e m a r k  5.2. Let us emphasize the difference between the geometric objects m 
and g. The metric m is a Riemannian metric on the bundle T M  \ O, whereas g 
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defines a section of  the bundle rc*(T*M) ® zr*(T*M).  When (and only when) F 
is Riemannian, g has no y dependence and can then descend to a metric on the 
manifold M. 

L e m m a  5.3. Any tensor P on S I ' ( T M  ®2) can be extended to a tensor on 
S F ( T ( T M  \ 0)®2), given in local coordinates (x i, yi) by 

(5.4) 0 0 p i t N  / 0 0 p j s N ~ _ _  - 
-~ p i j  Ox i Ox j Ox i OyJ 

[ pst  Ni NJ  -1- piJ F2) 0 0 
-t- ~ s t Oy i OyJ ' 

0 0 
Oy i OX j 

where p i j  are the components o f  the tensor P and N} are given as in (4.1). 

Proof. The objects N}, O/Ox i and O/Oy i, behave under coordinates change as 

follows: for local changes on M, say (x i) and their inverses (xi),  one has 

(5.5) 

~. Ox t 02 i 02 i 0 2 X  t ~ 

N) -- 02J Ox s N[ + Ox t 02s02~ yS, 

0 Ox p 0 02x j 0 

02 ~ -- 02 ~ OxP t- ~ O y j ,  

0 Ox p 0 

Oy i 0.~ i OyP' 

By substituting these formulas into (5.4) we see that the geometrical object 
behaves under coordinates change as a symmetric twice-contravariant tensor field 
on T M  \ 0 .  [] 

Lemma 5.4. The space Uz (M) can be identified with the subspace o f  Uz/2(T M \ 
O) with elements o f  the form 

(5.6) ¢ (x ) (dx  1 A . .. A dx  n/x dy  1 A . . . /x dyn) M2. 

Proof. The 1-forms dx  i and dy i behave under coordinates change in T M  \ 0 as 
follows: for local coordinates change on M, say (x i) and their inverses (2i), one 
has 

02 i 022 i 
d Y = o x  p d y p +  - Sdxt  OxSOxtY 

02 i 
d2 i = dx  p . 

OxP 

By substituting these formulas into (5.6) we see that the geometrical object (5.6) 
behaves under coordinates change as a tensor density of  degree )~/2 on T M  \ 0. [] 
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The second main result of  this paper is to give some properties of the conformally 
invariant quantization map (5.1) by means of the Sazaki (type) metric (5.3). Namely 

Theorem 5.5. For any lift o f  P ~ PoI~(T*M), the quantization map 

(5.7) Qzm~: Pol](T*(TM \ 0)) -+ 7)2(~'z(TM \ 0), f~(TM \ 0)), 

has the property that the operator Q~,~ ( P) cannot descend as an operator acting 
on the space o f  differential operators on tensor densities on M. However, when 

the Finsler function F is Riemannian, viz. F = ~/gijyiyj, three properties are 

distinguished: 

(i) I f  )~ # 0 and Iz # 1, the operator QI~,tz ( P) cannot descend; 

(ii) If; .  = 0 and tz # 1 (or)~ # 0 and/z = 1), the operator Q~,. ( P) can descend 
only i f  g is the Euclidean metric; 

(iii) I f  ()~,/z) = (0, 1), the operator Q~,I(P) can descend, given explicitly in terms 
o f  the metric g by 

pij gvi gvj -t- gvi (pij) gvj, 

for all P ~ Po122,(T*M). 

Proofi First, Lemmas 5.3 and 5.4 assure that the operator Q~,/z (P)l~-2x(M) is a well- 
defined operator. 

Suppose that F is not Riemannian. In that case, the metric m (5.3) depends, 
in any local coordinates (x i, yi), on x and on y as well. It is easy to see from 
the map (5.1) that Q~,~ (/~)]SC'2L(M) depends on y. The crucial point of the proof is 

when G,/z) = (0, 1). In that case, let us exhibit the operator Q~,I(P)I~0(M) in local 
coordinates (x i, yi), namely 

(5.8) Q~,I (/~)I~o(M) .= piJOxiOx j + (Oxipij _ pSjOy i (Ns))Oxj 

where the components N / are given as in (4.1). Since F is not Riemannian, the 
components Oyi (N~) still have y dependance. 

Suppose now that F is Riemannian. Let us prove (i) and (ii) simultaneously. 
Suppose, without lost of generality, that M = R n and g is the Euclidean metric. 
Namely, g := 6ij dx i ® dx j , where (x i) are local coordinates on R n. To achieve the 
proof, we will express the quantization map (5.7) in these local coordinates, and 
prove that it has y dependance. 
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In the coordinates mentioned above, the Christoffel symbols of  the Levi-Civita 
connection associated with the metric m (5.3) are given by 

(5.9) 

k i n  k m 
Fij =0 ,  F.: ~-0, tj 

k m [c m 
I'== =0 ,  Fij =0 ,  tj 

m ~ m 1 ~ c°i~ ~j o)kSij~,) r ;  = 0 ,  ri;  i + - 

w h e r e  (.o i are the components of  the Hilbert form (2.3). 
It follows that the contraction between the tensor P c Po18 (T* ( T M  \ 0)) with the 

Ricci tensor Ric of  the metric m is given by the equations 

(5.1o) 
Rij pij = O, 

Ri]P i] = 0, 

R~j p i j  = O, 

R~]P ij = (n - 2)coigo j pi j  + (2  - n)gij pi j ,  

where Rij a r e  the components of  the Ricci tensor Ric. 
A direct computation proves that the scalar curvature of  the metric m is equal to 

(5.11) 3n - n 2 -  2. 

Now we are in position to express the quantization map (5.7) in local coordinates. 
Using the explicit formulae of  the connection (5.9), the formulae (5.10) and (5.11), 
we will see that the quantization map Qz,u(P) restricted to 52z(M) turns out to be 
of  the form 

pst]n . pi j  Ox i Ox j + ( i l l  Oxi pij  + 2flzgjigst Ox i l UxJ 

+ 1330xi Ox j pij + 2/~4gij Ox~ Oxt pij  + ((3n - n 2 - 2)fl6 --}- (2 - n)fl5)gij pij 

-t- 3 n2)~(/z - 1) 
1 + 2 n  °)i°)jpij '  

where constants f l l  . . . . .  r6 are given as in (5.2). As the constant n2)~(lz - 1)/(1 + 
2n) does not vanish when )~ # 0 and/z  # 1, the quantization map still have y 
dependence, and then does not take its values in 5c2~(M). Part (i) is proven. 
To achieve the proof of  part (ii), let us consider a non-Euclidean metric g. In 
local coordinates (x i, yi), the operator Q~,~(P) restricted to 5c2z(M) will have a 
component of  the form 

u v ks ij (1-- f l l ) (~--~Oxj(Ns)Niguvg P )Oxk, 

which has y dependance. The constant 1 -/31 does not vanish under the condition 
)~ = 0 and/z # 1 (or)~ # 0 and/x = 1). Part (ii) is proven. 
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Let us prove part (iii). For ()~,/z) = (0, 1), the quantization map, written in any 
local coordinates (x i , yi), has the form 

(5.12) 
1 u v  ij "~ piJOxiOxJ q- (OxiP ij - ~g OxiguvP )OxJ. 

Using the following formula:: 

piJOxiOx j = pij gvi gvj  -k- gF}kPJk gvi, 

Oxi piJOxj = gvi pij gvj  + gF}kPJk gvi -t- pij gI"j gvi, 

we see that the formula (5.12) turns into the form 

pij gvi gvj  -]- gvi Pij gvj .  

The formula above has certainly no y dependance. Part (iii) is proven. [] 

Remark  5.6. Theorem above shows that the quantization map Q~,~(P)Ic=2z(M) 

does not reproduce the quantization map Qgz,2~(P) even if  F is Riemannian. 

6. OPEN PROBLEMS 

(1) Following [5], there exist two 1-cocycles on the group Diff(M), say Cl, C2, 
with values in 79 (SF (T M ®2 ) ® 5c~ (M), F (TM) @ .T'6 (M)) and 73 (SF (T M ®2 ) ® 
Ua(M),.T'~(M)), respectively, that are conformally invariant; namely, they 
depend only on the conformal class of  the Riemannian metric. These 1-cocycles 
were introduced in [5] as conformal multi-dimensional Schwarzian derivatives. 
In this paper, we have introduce the 1-cocycle A (see (4.3)) as the Fins- 
lerian analogous of the 1-cocycle Cl; however, the computation to extend the 
1-cocycle c2 seems to be more intricate. 

(2) We ask the following question: Is there a map 

Q:Pol(T*(TM \ 0))® 5rtz-z(zr*(T*M)) -+ 79(,~'x(rc*(T*M)),.Ut~(z*(T*M))), 

having the following properties: 
(i) it does not depend on the rescaling of the Finsler function by a non-zero 

positive function on M; 
(ii) it coincides with the Duval-Ovsienko's conformally invariant map when F 

is Riemannian? 

We believe that a positive answer to this question will probably produce the 
1-cocycle c2 discussed in part (1). It should be stressed, however, that the quan- 
tization map and the 1-cocycle c2 may not exist in the generic Finsler setting. 
Such a situation happened in Conformal Geometry where a large number of 
invariant differential operators do not generalize to arbitrarily "curved" manifolds. 
For example, the power of the Laplacian, A k, where k is an integer, are the unique 
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differential operators acting on the space of tensor densities of appropriate weights, 
that are invariant under the action of the conformal group (see [ 13,16]); however, 
their curved analogues do not exist when the dimension of the manifold dim M is 
greater than 4 and even, and k > dimM/2, as recently proven in [15]. 
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