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Abstract Deregulation of PTEN/Akt signalling has been re-
cently implicated in the pathogenesis of Alzheimer’s disease
(AD), but the effects on the molecular processes underlying AD
pathology have not yet been fully described. Here we report that
overexpression of PTEN reduces tau phosphorylation in CHO
cells. This effect was abrogated by mutant PTEN constructs with
either a catalytically inactive point mutation (C124S) or with
only inactive lipid phosphatase activity (G129E), suggesting an
indirect, lipid phosphatase-dependent process. The predominant
effects of PTEN on tau appeared to be mediated by reducing
ERK1/2 activity, but were independent of Akt, GSK-3, JNK
and the tau phosphatases PP1 and PP2A. Our studies provide
evidence for an effect of PTEN on the phosphorylation of tau
in AD pathogenesis, and provide some insight into the mecha-
nisms through which deregulation of PTEN may contribute to-
wards the progression of tauopathy.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Phosphatase and tensin homolog deleted on chromosome 10

(PTEN) is a tumour suppressor gene [1–3] encoding a dual

specificity phosphatase that dephosphorylates both lipid and

protein substrates [4]. As a lipid phosphatase PTEN dephos-

phorylates the inositol ring of the second messenger phospha-

tidylinositol (3,4,5)-triphosphate (PIP3), thus inhibiting cell

survival responses to PI3-kinase and Akt [5–7]. PTEN has
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been shown to modulate cell migration, growth, survival and

apoptosis [[8] for review] and as such its role as a tumour sup-

pressor is well-established [9]. More recent studies have shown

that PTEN is expressed in neurons in human [10], mouse [11]

and rat brain [12] and suggest a functional role for PTEN in

central nervous system (CNS) development. PTEN is an

important regulator of proliferation in neural stem cells [13]

and regulates neuronal migration [14], differentiation [11],

soma size [15,16] and apoptosis [12].

Our particular interest in PTEN stems from studies suggest-

ing that Akt is a vital promoter of neuronal survival in Alzhei-

mer’s disease (AD). PI3-kinase/Akt activation prevents

amyloid beta (Ab)-induced neurotoxicity in cells [17] and in

mouse models of AD [18]. Akt inhibits the enzyme glycogen

synthase kinase 3 (GSK-3), which is increasingly thought to

play a pivotal role in the regulation of both tau phosphoryla-

tion [19–22] and Ab production [23–25]. PTEN increases

GSK-3 activity by inhibiting Akt in cells [26,27] and would,

therefore, be predicted to promote tau and Ab pathologies

via this signalling mechanism.

The gene encoding PTEN locates to the region of chromo-

some 10 linked to late-onset AD [28], further suggesting a

functional role for PTEN in disease development. Several stud-

ies have reported increases in Akt activity in AD brain [29,30],

and more recent observations suggest that this may be due to

reductions in PTEN levels [31]. These findings suggest a poten-

tially complex effect of PTEN signalling on the molecular pro-

cesses underlying AD pathology. We aimed, therefore, to

further investigate the effect of PTEN on tau phosphorylation

using cell culture models and to establish the signalling mech-

anisms via which the relationship between PTEN and tau may

be mediated.
2. Materials and methods

2.1. Tau and PTEN plasmids
For expression in mammalian cells the cDNA coding for wild-type

tau 2N4R was subcloned into the pcDNA3.1/V5-His-TOPO vector
(Invitrogen, Paisley, UK), yielding a construct with C-terminal V5
and His tags. PTEN cDNA was cloned and inserted into the
pcDNA3.1+ vector (Invitrogen) and also into the EGFP-C2 vector
(Clontech). Inactive variants of PTEN were generated using the
quick-change site directed mutagenesis kit according to the manufac-
turers guidelines (Stratagene, La Jolla, USA), to produce a mutant
with a catalytically inactive point mutation (C124S) or a mutant
with only inactive lipid phosphatase activity (G129E). C124S-PTEN
was derived from WT-PTEN using the mutagenic oligonucleotide
blished by Elsevier B.V. All rights reserved.
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5 0-GCAGCAATTCACAGTAAAGCT-3 0. G129E-PTEN was derived
from WT-PTEN using the mutagenic oligonucleotide 5 0-GCA ATT
CAC TGT AAG GCT GGA AAG GAA CGG ACT GG-30. All
resulting cDNAs were sequenced for verification.
2.2. Cell culture and transfection
Chinese Hamster Ovary (CHO) cells were cultured in Ham-F12 med-

ium supplemented with 10% foetal calf serum, penicillin/streptomycin
(50 U/mL) and LL-glutamine (2 mM) and maintained at 37 �C in a
humidified, 5% CO2 atmosphere. CHO cells were transiently transfec-
ted with tau and PTEN cDNA plasmids using lipofectamine transfec-
tion reagent according to the manufacturer’s instructions (Invitrogen).
Cells were then cultured for 24 h in complete medium prior to cell lysis
in 2· Laemmli sample buffer containing b-mercaptoethanol and boiling
for 5 min. In some experiments cells were treated 24 h after transfection
with 100 nM okadaic acid in complete culture medium for 1, 3 or 5 h.

Primary mouse cortical neurons were cultured in Neurobasal med-
ium containing B27 supplement 2% (v/v), LL-glutamine (2 mM) and
penicillin/streptomycin (50 U/mL). For transfection of primary neu-
rons, cells were cultured on cover slips in 12-well plates (500000
cells/well) for 6 days before transfecting with GFP-tagged PTEN
cDNA using lipofectamine 2000 transfection reagent. Cells were cul-
tured for a further 24 h before analysis of endogenous tau phosphory-
lation by immunofluorescence.
2.3. Western blotting
Proteins were separated on 10% sodium dodecyl sulfate–polyacryl-

amide (SDS–PAGE) gels at 150 V for 1 h. Gels were then transferred
to Immobilon-P membranes (Millipore), incubated in a blocking solu-
tion containing 3% milk proteins in TBST for 1 h at room temperature,
then probed with primary antibodies overnight at 4 �C. The blots were
then washed three times with TBST and incubated for 1 h at room
temperature with horseradish peroxidase (HRP)-conjugated donkey
anti-rabbit IgG or sheep anti-mouse IgG secondary antibodies
(1:2000 dilution; Amersham Biosciences, UK Ltd.). Blots were devel-
oped using the enhanced chemiluminescence method (ECL; Amersham
Biosciences). The relative immunoreactivities of proteins were analysed
using a GS710 scanning densitometer and quantified using Quantity
One (BioRad, UK) software.
2.4. Immunofluorescence
Transfected cortical neurons were washed twice in ice-cold PBS,

fixed in 4% paraformaldehyde (PFA) in PBS for 20 min, then permea-
bilised in 0.1% Triton X-100 in PBS for 5 min. Cells were washed three
times in PBS, then incubated in blocking solution, PBS containing 1%
bovine serum albumin (BSA) and 0.05% Tween-20, for 1 h at room
temperature to reduce non-specific binding. Cells were incubated with
primary antibodies in blocking solution for 1 h, then washed three
times in PBS before being incubated for 1 h with blocking solution
containing secondary antibodies linked to Texas Red. Cells were
washed four times with PBS, and nucleic acids stained with Hoescht
in the final wash. Coverslips were mounted onto slides using mounting
fluid (Dako).

Immunofluorescence was visualised and captured using a Zeiss
LSM510 meta confocal microscope with pinhole settings at �1 airy
unit for all images. Images were processed using LSM5 image exam-
iner (Zeiss) and were assembled using Adobe Photoshop (Adobe,
USA).
2.5. Antibodies
The anti-tau polyclonal antibody (DAKO, UK) is phosphorylation

independent and recognises all tau isoforms. The monoclonal anti-
body PHF-1 recognises tau phosphorylated at epitope Ser396/404
and was kindly provided by Dr. P. Davies (Albert Einstein Col-
lege of Medicine, NY, USA). AT270 (Insight Biotechnology, UK)
recognises tau phosphorylated at residue Thr181. pS422, pS214,
and pT212 tau antibodies were purchased from Biosource, UK.
Monoclonal anti-GSK3a/b antibody (Stressgen) recognises total
GSK3-a/b. Phospho-GSK3a/b Ser21/9, Akt, phospho-Akt Ser473,
ERK1/2, phospho-ERK1/2 Thr202/Tyr204, c-jun N-terminal kinase
(JNK), phospho-JNK T183/Y185 and PTEN antibodies were pur-
chased from Cell Signaling Technology (Beverley, MA). PP1 (E-9)
and PP2A (C-20) catalytic domain antibodies were purchased from
Santa Cruz Biotechnology.
3. Results

3.1. PTEN reduces tau phosphorylation indirectly, by

mechanisms requiring its lipid phosphatase activity

Phosphorylation independent antibodies recognise multiple

bands of tau in non-neuronal cells transfected with cDNA cod-

ing for a single tau isoform indicating that endogenous kinases

at least partially phosphorylated tau in these cells. We first

examined the effects of PTEN on tau phosphorylation in

CHO cells co-transfected with wild type (WT) PTEN and

tau (2N4R) (Fig. 1). Overexpression of WT-PTEN resulted

in a small reduction in total tau protein levels (Fig. 1A) com-

pared with cells transfected with tau and vector. Phosphoryla-

tion of tau was measured using phospho-epitope specific

antibodies and normalised relative to the total tau immunore-

activity for each sample. WT-PTEN significantly reduced

phosphorylation of tau at several epitopes including S396/

404, T181 and S422 (Fig. 1B–D) in cells co-transfected with

tau and PTEN compared with those transfected with tau

and vector. Phosphorylation at the T212 site (Fig. 1E), how-

ever, was only moderately reduced and the S214 site was unaf-

fected by PTEN overexpression (Fig. 1F).

PTEN is a dual specificity phosphatase and can dephosphor-

ylate both lipids [5] and serine, threonine and tyrosine protein

residues [32]. To examine whether PTEN protein phosphatase

activity reduces tau phosphorylation directly, cells were co-

transfected with tau and lipid and protein phosphatase

negative mutants of PTEN. Mutation of the PTEN active-site

cysteine C124S completely disrupts phosphatase activity

against lipid and protein substrates whereas the G129E muta-

tion, found in the germ line of patients suffering from Cowden

disease, lacks lipid phosphatase activity but retains protein

phosphatase activity [33]. Both the C124S and G129E mutants

abolished the reduction in tau expression and in tau phosphor-

ylation seen with WT-PTEN (Fig. 1A–F). As both mutants

lack lipid phosphatase activity but the G129E mutant retains

protein phosphatase activity we conclude that the PTEN med-

iated reduction in tau phosphorylation and expression is via its

lipid phosphatase activity. We confirmed that the expression of

PTEN mutants and WT-PTEN was similar (Fig. 1A). These

results suggest that PTEN regulates the phosphorylation of

tau indirectly either by decreasing activity of tau kinases or

increasing activity of tau phosphatase enzymes.
3.2. PTEN reduces tau phosphorylation independently of GSK-3

activity, but possibly via inhibition of Akt and ERK1/2

Glycogen synthase kinase-3 (GSK-3) is well established to

play a major role in the phosphorylation of tau protein. The

activities of the two mammalian GSK3 isoforms, GSK3a
and GSK3b, are regulated by phosphorylation at serine 21 in

GSK-3a and Ser9 in GSK-3b, resulting in enzyme inhibition

[34]. Akt inhibits GSK-3 activity by enhancing phosphoryla-

tion at the Ser9 residue, and so PTEN would be predicted to

increase GSK-3 activity by inhibiting Akt. To confirm this

hypothesis, the activities of endogenous kinases were analysed

in CHO cells transfected with WT-PTEN, by Western blot-

ting using activity-dependent phospho-specific antibodies.



Fig. 1. Effects of PTEN on tau phosphorylation in CHO cells. Cells were transfected with pcDNA3.1 vector, tau and vector or co-transfected with
tau and WT, catalytically inactive C124S or lipid phosphatase negative G129E PTENs. (A) Total tau protein levels were normalised to actin and are
presented as arbitrary densitometry units. Tau phosphorylation was examined at several epitopes using phospho-specific antibodies (B) PHF-1 (S396/
404), (C) AT270 (T181), (D) pS422, (E) pT212 and (F) pS214. Phospho-tau levels were normalised to total tau protein for each sample, then
expressed as a percentage of the phosphorylation in samples transfected with tau plus vector. Statistical analysis was performed by ANOVA followed
by Tukey’s post hoc comparison, ***P< 0.001.
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Phosphorylation of Akt at S473 was reduced (Fig. 2A) in CHO

cells overexpressing WT-PTEN compared with cells transfec-

ted with vector alone, suggesting an inhibition of Akt activity

as predicted. A reduction in phosphorylation of GSK-3b at S9

was also observed, indicating that the PTEN-induced inhibi-

tion of Akt resulted in a moderate increase in GSK-3b activity

(Fig. 2B). PTEN, therefore, reduced tau phosphorylation at

known GSK-3b sites (S396/404, T181; Fig. 1B and C) despite

increasing GSK-3b activity. This result suggests that PTEN

regulates an independent pathway that overrides the effects

of GSK-3b on tau.

Recent studies have shown that tau contains an optimal con-

sensus site for Akt phosphorylation at S214 [35,36], and also

phosphorylates T212 in vitro. Reduced Akt activity could pos-

sibly explain the modest reduction in T212 phosphorylation

observed in WT-PTEN overexpressing cells. The optimal

Akt phosphorylation site S214 was unaltered by WT-PTEN,

however, suggesting that the predominant effects of PTEN

on tau phosphorylation are not mediated directly by Akt.

Akt regulates several downstream signalling pathways inde-

pendent of GSK-3 and so inhibition of this enzyme could still

potentially mediate the effects of PTEN on tau via some indi-

rect mechanism.

The mitogen-activated protein (MAP) kinase family, includ-

ing JNK, p38 and ERK1/2, have also been implicated as po-

tential tau kinases in vitro [37] in animal models [38–40] and
in Alzheimer’s and related tauopathies [41–44]. Studies have

also shown that PTEN inhibits activity of the extracellular reg-

ulated mitogen activated protein (MAP) kinase (ERK1/2), but

not JNK [45] via its protein phosphatase activity. In agreement

with these findings phosphorylation of ERK1/2 at T202/Y204

was moderately reduced by WT-PTEN overexpression

(Fig. 2C) suggesting kinase inhibition as predicted, but the

phosphorylation of JNK at T183/Y185 was unaltered. WT-

PTEN reduced tau phosphorylation most significantly at the

S422 epitope (Fig. 1D), which has been suggested to be prefer-

entially phosphorylated by MAP kinases [37]. This suggests

that ERK1/2 could play a significant role in mediating the ef-

fects of PTEN on tau phosphorylation in this system.
3.3. PTEN does not inhibit tau phosphorylation by increasing

activity of protein phosphatases

Protein phosphatases 1 and 2A (PP1, PP2A) have been impli-

cated in the dephosphorylation of tau in vitro and in vivo [[46]

for review]. To examine the effects of PTEN on phosphatase

activity, PP1 and PP2A catalytic domain levels were measured

by Western blotting (Fig. 3). Both PP1 and PP2A catalytic do-

main immunoreactivities were unaltered in cells overexpressing

WT-PTEN compared with those transfected with vector alone

(Figs. 3A and B). Furthermore, treatment of WT-PTEN and

tau co-transfected CHO cells with 100 nM okadaic acid (IC50



Fig. 2. Effects of WT-PTEN on activity of potential tau kinases. Cells were transfected with pcDNA3.1 vector or WT-PTEN alone. Activities of the
endogenous kinases were then analysed by Western blotting using activity-dependent phospho-specific antibodies. (A) pS473 Akt activation-
dependent phosphorylation, (B) pS9 inhibitory GSK-3 phosphorylation, (C) pT202/Y204 ERK1/2 activation-dependent phosphorylation and
(D) pT183/Y185 JNK activation-dependent phosphorylation. Total protein levels were normalised to actin and are presented as arbitrary
densitometry units. Phospho-protein immunoreactivity was normalised to total protein reactivity for each kinase and is presented as a percentage of
the phosphorylation in samples transfected with vector alone. Data were analysed by Student’s t test, **P < 0.01, *P < 0.05.
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PP2A: 0.1 nM; IC50 PP1: 10–15 nM) did not reverse the effects

of PTEN on tau (Fig. 3C). These results suggest that PTEN

does not reduce tau phosphorylation by increasing the activities

of other potential tau phosphatases in CHO cells.

3.4. WT-PTEN reduces tau phosphorylation at S422 in primary

cortical neurons

To further examine the functional relevance of the effects of

PTEN on tau in AD, we measured tau phosphorylation by

immunofluorescence in primary mouse neurons transfected

with WT and mutant GFP-tagged PTEN constructs. Tau
expression and phosphorylation were assessed by examining

the fluorescent intensity in cells expressing GFP-tagged PTEN

compared with cells not expressing the transfected plasmids.

As the S422 epitope was most-affected by PTEN in CHO cells

we continued to study this site in neuronal cells. Total tau

expression was unaltered by overexpression of WT, C124S or

G129E PTEN (Figs. 4A–F). WT-PTEN, however, reduced

S422 phosphorylation in cell bodies and processes compared

with untransfected cells (Figs. 4G and J). In agreement with

our studies in non-neuronal cells the effects of PTEN on

S422 tau phosphorylation were abolished using C124S (Figs.



Fig. 3. PTEN does not reduce tau phosphorylation by upregulating
activity of potential tau phosphatases. (A and B) CHO cells were
transfected with pcDNA3.1 vector or WT-PTEN and catalytic domain
levels of protein phosphatases analysed by Western blotting. Total
protein levels were normalised to actin and are presented as arbitrary
densitometry units. (C) Cells were transfected with vector or WT-
PTEN, then treated with 100nM okadaic acid for 1, 3 and 5 h. Samples
were then analysed for tau phosphorylation by Western blotting.
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4H and K) or G129E (Figs. 4I and L) mutant PTEN con-

structs. These results suggest that our observations in CHO

cells are relevant to the neuronal setting.
4. Discussion

Our hypothesis that PTEN may alter tau phosphorylation is

derived from studies showing that activation of the PI3-kinase/

Akt signalling pathway can reduce tau phosphorylation in cells

[47] and animal models of AD [48]. We predicted that PTEN

overexpression would hyperphosphorylate tau by reducing

Akt activity and subsequently increasing the activity of

GSK-3, a well-established tau kinase. We confirmed that over-

expression of WT-PTEN leads to a reduction in Akt activity

and increased GSK3-b activity in CHO cells. However, con-

trary to our expectations we observed a reduction in tau phos-

phorylation at several sites. We postulated that PTEN, via its

ability to dephosphorylate protein residues, could possibly act

directly as a tau phosphatase. However, the protein phospha-

tase activity present in the G129E mutant PTEN, without the

presence of lipid phosphatase activity, was not sufficient to
mediate the effects of PTEN on tau. This suggests an indirect

mechanism that is dependent on the lipid phosphatase activity

of PTEN.

PP2A has been shown to override the effects of GSK-3 on

tau in starvation-induced mouse models of tau hyperphosph-

orylation [49]. Further analysis, however, revealed that the ef-

fects of PTEN on tau phosphorylation were not due to changes

in activity of key tau phosphatases. The most significant

PTEN-induced reduction in tau phosphorylation was observed

at the S422 epitope, which is preferentially phosphorylated by

MAP-kinases [37]. Consistent with this result PTEN reduced

activity of the extracellular regulated MAP-kinase ERK1/2,

but not JNK, in accordance with published results [45].

ERK1/2 may, therefore, play a significant role in mediating

the effects of PTEN on tau phosphorylation. Published data,

however, suggests that the effects of PTEN on ERK1/2 are

mediated by the protein phosphatase activity of PTEN acting

on upstream regulators of MAP-kinase, including the insulin

receptor substrate (IRS) [50]. Our observations that the effects

of PTEN on tau are predominantly lipid phosphatase-depen-

dent, raises the possibility that PTEN may alter other path-

ways downstream of PIP3 to regulate tau phosphorylation in

addition to MAP kinase inhibition.

PIP3 substrates include serine/threonine kinases (Akt and

PDK1), guanine nucleotide binding proteins (Rac and Rho)

and protein tyrosine kinases of the Tec family (TEC and Brun-

ton’s tyrosine kinase (BTK)). Of these Akt is best established

to be involved in the phosphorylation of tau. Recent studies

have shown that tau contains an optimal consensus site for

Akt phosphorylation at S214 [35,36], which together with

T212 comprises the AT100 epitope that is specific to paired

helical filaments (PHFs) found in AD and other tauopathies

[51]. We found that PTEN altered phosphorylation of these

epitopes modestly in respect to the other sites analysed, sug-

gesting that the predominant effects of PTEN on tau phos-

phorylation are not mediated directly by Akt. Akt has

several downstream substrates other than GSK-3 including

the forkhead family of transcription factors (FKHR),

p27Kip1, Bad and the mammalian target of rapamycin

(mTOR). Alterations in mTOR/p70S6 kinase signalling have

been described in AD [52–54], and have recently been shown

to alter tau phosphorylation in cells [55]. However we found

no change in pS2448 mTOR phosphorylation in WT-PTEN

overexpressing CHO cells (data not shown).

More recently, [56] have described a novel cross-talk be-

tween GSK-3 and ERK1/2 signalling pathways, whereby inhi-

bition of GSK-3 leads to increased ERK1/2 phosphorylation

and activity via protein kinase Cd (PKCd). It is tempting,

therefore, to speculate that the increased activity of GSK-3

in cells transfected with PTEN could result in reduced

ERK1/2 activity via similar mechanisms. Further studies are,

however, required to unravel the precise pathways connecting

PTEN and ERK1/2 in the context of tau phosphorylation.

Griffin et al. [31] provided the first evidence for aberrant

PTEN signalling in AD. It is possible that the reductions in

PTEN and increases in Akt activity seen in AD brain are indic-

ative of a survival response to neuronal injury. Indeed, inacti-

vation and downregulation of PTEN levels observed following

ischemic insults in neurons and mouse models of transient fo-

cal ischemia [57,58] have been suggested to promote neuronal

survival during toxic insults. On the other hand, a potentially

protective role for PTEN in neurodegenerative disease has



Fig. 4. Effects of PTEN on tau phosphorylation in primary neurons. Tau expression and phosphorylation were assessed by examining
immunostaining intensity in cells expressing GFP-PTEN constructs (green) compared with neighbouring cells not expressing the transfected
plasmids. (A–F) Total tau levels were measured using the Dako anti-tau antibody (A–C tau only, D–F merged). (G–L) Tau phosphorylation at
residue S422 was measured using a pS422 specific antibody (G–I phospho-tau only, J–L merged).
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been suggested by the observation that loss of PTEN is also

associated with a number of other neurological diseases.

Germline mutations in PTEN have been found in several

familial tumour syndromes, including Cowden’s disease, which

are associated with neural defects [59]. More recently, muta-

tions in PTEN-induced putative kinase 1 (PINK1) have been

associated with early-onset Parkinson’s disease (EOPD) [60]

and abrogate the protective effects of PINK-1 against neuronal

apoptosis [61].

Our results show that PTEN can actually prevent tau phos-

phorylation in cells, contrary to its expected effects on GSK-3,

and agree with the suggestion that reduced PTEN levels and

increased Akt activity may promote the development of neuro-

fibrillary changes in AD [31]. The precise role of PTEN in Alz-

heimer’s disease, however, requires further investigation in

light of more recent studies showing that PTEN activity is in-

creased in AD brain [62]. Nonetheless, our studies highlight

PTEN as a potential new target for the prevention of AD

and other tauopathies.
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