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Abstract

Let p be a prime, q = pm and Fq be the finite field with q elements. In this paper, we will consider q-ary sequences of period
qn − 1 for q > 2 and study their various balance properties: symbol-balance, difference-balance, and two-tuple-balance properties.
The array structure of the sequences is introduced, and various implications between these balance properties and the array structure
are proved. Specifically, we prove that if a q-ary sequence of period qn−1 is difference-balanced and has the “cyclic” array structure
then it is two-tuple-balanced. We conjecture that a difference-balanced q-ary sequence of period qn − 1 must have the cyclic array
structure. The conjecture is confirmed with respect to all of the known q-ary sequences which are difference-balanced, in particular,
which have the ideal two-level autocorrelation function when q = p.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let p be an odd prime, and consider a p-ary sequence {s(t)} of period pn−1 with the ideal two-level autocorrelation
function. Here, the autocorrelation function is defined as

R(�)=
pn−2∑
t=0

ws(t+�)−s(t), (1)
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where w is a complex primitive pth root of unity. The sequence is said to have the ideal two-level autocorrelation
function [2–4] if

R(�)=
{

pn − 1, � ≡ 0 (mod pn − 1),

−1, � /≡ 0 (mod pn − 1).
(2)

Sequences with the ideal two-level autocorrelation function have been studied for long time and used in many practical
communication systems [3,17].

Let Fpn be the finite field with pn elements. Let n = em > 1 for some positive integers e and m. Then the trace
function Trn

m(·) is a mapping from Fpn to its subfield Fpm given by

Trn
m(x)=

e−1∑
i=0

xpmi

.

It is easy to check that the trace function satisfies the following: (i) Trn
m(ax + by) = a Trn

m(x) + b Trn
m(y), for all

a, b ∈ Fpm , x, y ∈ Fpn ; (ii) Trn
m(xpm

)= Trn
m(x), for all x ∈ Fpn ; and (iii) Trn

1(x)= Trm
1 (Trn

m(x)), for all x ∈ Fpn . See
[12,14] for the detailed properties of the trace function.

The p-ary m-sequences {s(t)} of period pn − 1 are well known to have the ideal two-level autocorrelation function.
They can be represented as [14,4]

s(t)= Trn
1(��t ) for t = 0, 1, 2, . . . , pn − 2,

where � ∈ Fpn is a primitive element and � ∈ Fpn can be assumed to be 1 without loss of generality. In one period of
{s(t)}, the symbol distribution is balanced. That is, the symbol zero appears pn−1−1 times, and every non-zero symbol
of Fp appears exactly pn−1 times. Furthermore, if we define, for a given ��=0(mod (pn−1)/(p−1)), and i, j ∈ Fp,

N(i, j)= |{t |(s(t), s(t + �))= (i, j), 0� t �pn − 2}|,
then, from the ideal two-level autocorrelation function and from the trace function representation of m-sequences, we
have N(0, 0)= pn−2 − 1, and N(i, j)= pn−2 for i, j not both zero.

If we let v = (pn − 1)/(p − 1) = pn−1 + pn−2 + · · · + 1, then �ivp = �iv , and hence �iv belongs to Fp for
i = 0, 1, 2, . . . , p − 2. Since � ∈ Fpn is primitive, the element �v = a ∈ F ∗p must be primitive in Fp, and we have the
“array structure” given as

s(t + iv)= Trn
1(�t+iv)= aiTrn

1(�t )= ais(t). (3)

Note that ai �= aj for i �= j (mod p− 1). All of the above properties of p-ary m-sequences will be generalized in detail
in this paper.

Section 2 contains a comprehensive discussion on (symbol) balance and “difference-balanced” properties of general
q-ary sequences of period qn− 1 as well as the “array structure” and the “cyclic array structure” of the sequences, and
investigates various implications between all these conditions. We present a conjecture in Section 2 that balanced and
difference-balanced sequences must have the cyclic array structure. Section 3 introduces “two-tuple-balance” property,
and proves that a difference-balanced sequence must be two-tuple-balanced if it has the cyclic array structure. Some
relations of the main results of this paper with those of [15,10,7] are described in detail whenever it is appropriate as
Remarks. Section 4 gives a summary figure showing the hierarchy of various classes of balanced q-ary sequences of
period qn − 1.

2. Balance, difference-balance, and array structure properties

Let q = pm where p is a prime and m�1 is an integer. We use the notation that Fq is the finite field with q elements
and F ∗q = Fq\{0}. In the remaining of the paper we assume that q > 2. Following is a generalization of the balance
property and the two-level ideal autocorrelation function property of p-ary m-sequences. Note that the period of a
sequence is always the “minimum” period of the sequence in this paper.

Definition 1. A q-ary sequence {s(t)} of period qn − 1 is said to be balanced if zero appears qn−1 − 1 times and
any non-zero element of Fq appears qn−1 times in one period. It is said to be difference-balanced [15,16] if, for any
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non-zero � mod qn − 1, in the differences s(t + �) − s(t) as t runs from 0 to qn − 2, the value zero occurs qn−1 − 1
times and each of the non-zero values of Fq occurs qn−1 times.

When m= 1 and hence q = p > 2 is an odd prime, the difference-balancedness of a p-ary sequence implies and is
implied by the ideal two-level autocorrelation property of the sequence. See Lemma 4 in [15]. The following is obvious:

Proposition 2. If a q-ary sequence {s(t)} of period qn−1 is difference-balanced, then each of the following sequences
is also difference-balanced: (i) (constant multiple) {as(t)} for any a ∈ F ∗q , (ii) (affine shift) {s(t)+ b} for any b ∈ Fq ,
(iii) (cyclic shift) {s(t + c)} for any c= 0, 1, 2, . . . , qn − 2, and (iv) (decimation) {s(dt)} for any d which is relatively
prime to qn − 1.

Suppose the sequence {s(t)} is balanced. Then, except for (ii), all of the above are also balanced. For (ii), the symbol
b appears qn−1 − 1 times and each of all the other symbols of Fq appears qn−1 times in one period.

Following is a generalization of the array structure (3) of p-ary m-sequences.

Definition 3. Let v = (qn − 1)/(q − 1). A q-ary sequence {s(t)} of period qn − 1 is said to have the array structure
if, for any i = 0, 1, 2, . . . , q − 2, there exists ai ∈ Fq such that

s(t + iv)= ais(t) for t = 0, 1, 2, . . . , v − 1. (4)

The array structure of the sequence {s(t)} can best be seen by the following array representation of the sequence,
with a0 = 1, a1, a2, . . . , aq−2 in Fq :

⎛
⎜⎜⎜⎜⎜⎜⎝

s(0) s(1) s(2) · · · s(v − 1)

s(v) s(v + 1) s(v + 2) · · · s(2v − 1)

s(2v) s(2v + 1) s(2v + 2) · · · s(3v − 1)
... · · · ...

s((q − 2)v) s((q − 2)v + 1) s((q − 2)v + 2) · · · s((q − 1)v − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

s(0) s(1) s(2) · · · s(v − 1)

a1s(0) a1s(1) a1s(2) · · · a1s(v − 1)

a2s(0) a2s(1) a2s(2) · · · a2s(v − 1)
... · · · ...

aq−2s(0) aq−2s(1) aq−2s(2) · · · aq−2s(v − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
a1
a2
...

aq−2

⎞
⎟⎟⎟⎟⎟⎟⎠

s, (5)

where s is the row vector (s(0), s(1), . . . , s(v − 1)). It is well known that q-ary m-sequences of period qn − 1 and all
of its cyclic shifts have the array structure. We generalize this into the following:

Lemma 4. Let v = (qn − 1)/(q − 1). Assume that a q-ary sequence {s(t)} of period qn − 1 has the array structure
as defined in Definition 3. If all the cyclic shifts of {s(t)} also have the array structure, then there exists a primitive
element � ∈ Fq such that ai = �i for any i and for any cyclic shift of {s(t)}.

Proof. Recall that the period is preserved by the cyclic shift operation, and we assume that qn − 1 is the period of
{s(t)}. Suppose ai = 0 for some i. Then the ith row of the array in (5) must be all zero. By taking the cyclic shift so that
it now becomes the top row of the array, we can conclude that the sequence is all zero, which is impossible because the
all-zero sequence has period 1. Therefore, all ai are non-zero and {s(t)} is not an all-zero sequence. Hence, there is t0
such that s(t0) �= 0 for 0� t0 �qn−2. Now, we consider the cyclic shift {s′(t)} of {s(t)} by t0 so that s′(0)= s(t0) �= 0.
Assumption implies that {s′(t)}and all of its cyclic shifts have the array structure. Let a0 = 1, a1, . . . , aq−2 ∈ F ∗q be

the constants in the array structure of {s′(t)}. Since its cyclic shift by 1 also has the array structure, we see that ai = ai
1

for i = 0, 1, 2, . . . , q − 2. It is now easy to show that they must all be distinct, with a1 = � being a primitive element
of Fq , because otherwise the sequence will have a subperiod lv for some 0 < l < q − 1. Then we have s(t + v)= �s(t)

for all t, and this relation is satisfied by any cyclic shifts of {s(t)}. �
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The conclusion of the lemma implies that in the two-dimensional array representation of the sequence the (i + 1)st
row is a constant multiple of the ith row for all i = 0, 1, 2, . . . , q − 2, where i + 1 is taken mod q − 1 and where the
constant is a primitive element of Fq . Furthermore, this property is satisfied by any cyclic shift of the original sequence.

Definition 5. Let v=(qn−1)/(q−1).A q-ary sequence {s(t)} of period qn−1 is said to have the cyclic array structure
if there exists a primitive element � of Fq such that, for any cyclic shift {s′(t)} of {s(t)}, and for any i=1, 2, . . . , q−2,
the following is true:

s′(t + iv)= �i s′(t) for t = 0, 1, 2, . . . , v − 1. (6)

The cyclic array structure of the sequence {s(t)} can be seen by the following array representation of the sequence,
where � is primitive in Fq :

⎛
⎜⎜⎜⎜⎜⎜⎝

s(0) s(1) · · · s(v − 1)

s(v) s(v + 1) · · · s(2v − 1)

s(2v) s(2v + 1) · · · s(3v − 1)
... · · · ...

s((q − 2)v) s((q − 2)v + 1) · · · s((q − 1)v − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
�
�2

...

�q−2

⎞
⎟⎟⎟⎟⎟⎟⎠

s, (7)

where s is the row vector (s(0), s(1), . . . , s(v − 1)). Note that the cyclic array structure implies that s(t + v)= �s(t)

for all t. In fact, the cyclic array structure in the above definition is equivalent to the “projective cyclic equivalence
relation” (with a multiplier being a primitive element � ∈ Fq ) between {s(t)} and its cyclic shift {s(t + v)} according
to [14]. The following is obvious:

Proposition 6. If a q-ary sequence {s(t)} of period qn − 1 has the cyclic array structure, then (i) {as(t)} for any
a ∈ F ∗q has the cyclic array structure; (ii) {s(t)+ b} for each b ∈ F ∗q does NOT have the array structure (and hence
does NOT have the cyclic array structure either); (iii) {s(t + c)} for any c = 0, 1, 2, . . . , qn − 2 has the cyclic array
structure; and (iv) {s(dt)} for any d which is relatively prime to qn − 1 has the cyclic array structure.

Lemma 7. Assume that a q-ary sequence {s(t)} of period qn − 1 has the cyclic array structure. If it is difference-
balanced then it is balanced, but the converse is not true in general.

Proof. Assume that {s(t)} has the cyclic array structure. If we use �= v, then

s(t + �)− s(t)= s(t + v)− s(t)= �s(t)− s(t)= (�− 1)s(t).

Since � − 1 �= 0, the difference-balance property implies the balance property. The falsity of the converse is
obvious. �

Remark 8. J.S. No has essentially obtained the above result. See Lemma 1 in [15]. He started from the assumption
that the sequence comes from a d-homogeneous function f from Fqn to Fq , as s(t)= f (�t ), where d is relatively prime
to q − 1 and � is a primitive element of Fqn [15,10]. Then the cyclic array structure of the sequence follows. Finally,
the balance property follows from the condition that the sequence is difference-balanced.

Conjecture 9. If a q-ary sequence {s(t)} of period qn − 1 is difference-balanced, then there exists a unique b ∈ Fq

such that the q-ary sequence {s′(t)} defined by s′(t)= s(t)+ b for all t has the cyclic array structure.

Remark 10. From Proposition 6, if {s(t)} has the cyclic array structure, then none of its “affine shifts” s′(t)= s(t)+b

where b ∈ F ∗q has the array structure. The above conjecture indicates there is a unique affine shift of {s(t)} that has
the cyclic array structure if the sequence is difference-balanced. The above conjecture can be written as the following
simpler form: if a q-ary sequence {s(t)} of period qn − 1 is balanced and difference-balanced, then it has the cyclic
array structure. Note that the balance property guarantees the right affine shift among the q possibilities.
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Remark 11. In terms of the terminology in [14], the conjecture states that if a q-ary sequence {s(t)} of period qn − 1
is balanced and difference-balanced, then it is projectively cyclically equivalent to {s(t + v)}.

Remark 12. In terms of d-homogeneous functions [15,10], the conjecture states that if a q-ary sequence {s(t)} of
period qn − 1 is balanced and difference-balanced, then there exist a d-homogeneous function from Fqn to Fq with d
relatively prime to qn − 1 such that s(t)= f (�t ) for all t where � is a primitive element of Fqn .

Remark 13. When we consider only the case where q =p > 2 is an odd prime, the above conjecture says that a p-ary
sequence with the ideal two-level autocorrelation function has a unique affine shift with the cyclic array structure. The
unique affine shift with the cyclic array structure among the q possibilities is the one that is balanced. But the balance
property has been proved in [13] only from the ideal two-level autocorrelation function in the case where q = p > 2 is
an odd prime without assuming the cyclic array structure.

It was confirmed in Introduction that p-ary m-sequences have the cyclic array structure. Similarly, one can easily
show that q-ary GMW sequences and all its generalizations [11,5] have the cyclic array structure. It is also not difficult
to show that q-ary d-form sequences and all its generalizations [10,15] have the cyclic array structure. Recently, two
families of p-ary sequences with the ideal two-level autocorrelation function were explicitly constructed [7]. We will
show in the following that both families constructed in [7] have the cyclic array structure. This confirms that the
conjecture is true for all the known p-ary sequences with the ideal two-level autocorrelation function.

Two families of sequences in [7] can be written as

s(t)= Trn
1(f (�t )), t = 0, 1, 2, . . . , pn − 2, (8)

where the function f (x) over Fpn satisfies some conditions, and � is a primitive element of Fpn . Two examples of f (x)

are explicitly specified that result in {s(t)} with the ideal two-level autocorrelation function. These are

f1(x)=
m∑

l=0

ulx
(q2l+1)/2, (9)

and

f2(x)=
m∑

l=0

um−lx
(q2l+1+1)/(q+1), (10)

for some ul ∈ Fp and where q = pk and n/k = 2m+ 1 must be odd [7].

Lemma 14. The sequences given in (8) using (9) or (10) have the cyclic array structure for any ul ∈ Fp.

Proof. Note that v= (pn − 1)/(p− 1) implies that �v ∈ Fp, and in fact that �v = a is a primitive root mod p. For the
case of f1(x), consider the element of ith row and jth column in its two-dimensional array of size (p − 1)× v. Here,
Trn

1(·) is a trace map from Fpn to Fp.

s(iv + j)=
m∑

l=0

ul Trn
1(�(iv+j)(q2l+1)/2)

=
m∑

l=0

ula
i(q2l+1)/2 Trn

1(�j (q2l+1)/2)

= ai
m∑

l=0

ul Trn
1(�j (q2l+1)/2)= ais(j),

where we use the fact that

(q2l + 1)/2 ≡ 1 (mod q − 1) ≡ 1 (mod p − 1), l = 0, 1, 2, . . . , m.
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Similarly for f2(x), one can easily check using the fact that

(q2l+1 + 1)/(q + 1) ≡ 1 (mod q − 1) ≡ 1 (mod p − 1), l = 0, 1, 2, . . . , m. �

3. Two-tuple-balance property

Definition 15. Let {s(t)} be a q-ary sequence of period qn − 1, and let v = (qn − 1)/(q − 1). We define, for a given
integer � with 0 < � < qn − 1, and for x, y ∈ Fq ,

N(x, y)= |{t |(s(t), s(t + �))= (x, y), 0� t �qn − 2}|. (11)

Then, {s(t)} is said to be two-tuple-balanced if we have N(x, y)= qn−2 for (x, y) �= (0, 0) with N(0, 0)= qn−2 − 1
when � /≡ 0(mod v), and N(x, y)= qn−1 for (x, y) �= (0, 0) with N(0, 0)= qn−1 − 1 when � ≡ 0 (mod v).

Remark 16. The balance property in Definition 1 is in fact one-tuple-balance property. In general, one can consider
k-tuple-balance property. For example, for k = 3, we can define 3-tuple-balance property of sequences as follows:
defining, for a given pair of integers 0 < � < � < qn − 1,

N(x, y, z)= |{t |(s(t), s(t + �), s(t + �))= (x, y, z), 0� t �qn − 2}|, x, y, z ∈ Fq ,

a q-ary sequence {s(t)} of period qn − 1 is 3-tuple-balanced if N(x, y, z) = qn−3 for (x, y, z) �= (0, 0, 0) with
N(0, 0, 0) = qn−3 − 1 when both � /≡ 0 (mod v) and � /≡ 0 (mod v), and N(x, y, z) = qn−2 for (x, y, z) �= (0, 0, 0)

with N(0, 0, 0) = qn−2 − 1 when either � ≡ 0 (mod v) or � ≡ 0 (mod v) (but not both), and N(x, y, z) = qn−1 for
(x, y, z) �= (0, 0, 0) with N(0, 0, 0)= qn−1 − 1 when both � ≡ 0 (mod v) and � ≡ 0 (mod v).

Proposition 17. If a q-ary sequence {s(t)} of period qn − 1 is two-tuple-balanced, then it is balanced and also
difference-balanced. Furthermore, if it is (k + 1)-tuple-balanced, then it is k-tuple-balanced, for all k�1.

Proof. For any element x ∈ Fq , counting the pair (x, y) for all y ∈ Fq gives the balance property. Similarly for the
difference-balance property. �

For binary sequences, it is easy to see that the balance and difference-balance properties together imply the two-
tuple-balance property. For non-binary sequences, we need an additional condition which is the cyclic array structure.
If Conjecture 9 will turn out to be true, then they are difference-balanced if and only if they are two-tuple-balanced.

Theorem 18 (Main). Assume that a q-ary sequence {s(t)} of period qn − 1 is difference-balanced and has the cyclic
array structure. Then it is two-tuple-balanced.

Remark 19. We would like to note that the main theorem of [15] has already calculated only the value N(0, 0) =
qn−2 − 1. The above theorem calculates N(x, y) for all x, y ∈ Fq . The value N(0, 0) = qn−2 − 1 is essential in
order to construct a (v, k, �) cyclic difference set with Singer parameters [1,6,8,9,18], because we have the relation
that �=N(0, 0)/(q − 1) due to the cyclic array structure of the sequences. In the following proof, we proceed without
using the result of [15] that N(0, 0)= qn−2 − 1.

Proof (Theorem 18). We assume that {s(t)} is a q-ary sequence of period qn − 1, which is difference-balanced, and
has the cyclic array structure. We also assume that a non-zero integer � is fixed, where 0 < � < qn − 1. We note from
Lemma 7, then, that the sequence is balanced.

Recall that v = (qn − 1)/(q − 1) and � be a primitive element of Fq . Then the cyclic array structure implies that

s(t + iv)= �i s(t),

for t = 0, 1, 2, . . . , v − 1 and i = 0, 1, 2, . . . , q − 2. From this structure, the assertion on � ≡ 0 (mod v) is immediate.
So, in the following we only show the case for which � /≡ 0 (mod v).

Now, we use x, y as elements of Fq and consider the q × q array N = (N(x, y)) for x, y ∈ Fq , as defined in (11).
We use x, y = 0, 1, �, �2, . . . as the indices of the rows and columns of the array N and consider the various sums of
the entries of this array.
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First, the balance property implies the following:

∑
y∈Fq

N(0, y)= qn−1 − 1=
∑
x∈Fq

N(x, 0), (12)

and similarly,

∀x ∈ F ∗q ,
∑
y∈Fq

N(x, y)= qn−1 and ∀y ∈ F ∗q ,
∑
x∈Fq

N(x, y)= qn−1. (13)

Second, the difference-balance property implies the following:

∑
x∈Fq

N(x, x)= qn−1 − 1, (14)

∑
x∈Fq

N(x, x + y)= qn−1 ∀y ∈ F ∗q . (15)

Third, the cyclic array structure of the sequence shown in (7) implies the following:

N(x, y)=N(zx, zy), for x, y not both zero and for any z �= 0. (16)

This gives some further information on the array N: (i)N(x1, 0)=N(x2, 0) andN(0, y1)=N(0, y2) for allx1, x2, y1, y2 ∈
F ∗q ; (ii) N(x, x)=N(z, z) for all x, z ∈ F ∗q ; and therefore we have, in particular,

N(x, x)=N(x1, 0)=N(0, y1), (17)

for all x, x1, y1 ∈ F ∗q , since the row sums and the column sums of N except for the top row and the left-most column
are all the same, and since the sum of the top row is the same as that of the left-most column, which is again the same
as that of the main diagonal.

So far, we have considered the occurrences of pairs of symbols with the relative distance �, and we have analyzed the
relation between the entries of the array N = (N(x, y)). In order to show the two-tuple balance, we need to introduce
a set of arrays Nm = (Nm(x, y)), where N0 = (N0(x, y)) = (N(x, y)) = N . Here, we define Nm = (Nm(x, y)) to be
the q × q array for each m= 0, 1, 2, . . . , q − 1 and

Nm(x, y)= |{t |(s(t), s(t + �+mv))= (x, y), 0� t �qn − 2}|.

These are the occurrences of the pair (x, y) with the relative distance �+mv. Note that the same relations as in (12)–(17)
apply to each array Nm, and hence, exactly the same relations as those up to the previous paragraph hold for the entries
of Nm for each m, individually.

The final step of this proof is to show that, for any given x ∈ F ∗q , the entries in the positions (x, y) for y ∈ Fq

in N0 are all the same. We will show this by comparing the values of xth row in N0 and Nm. For this, we need to
observe the following. Since the two-dimensional array of the sequence shown in (7) has the property that every row
is a constant multiple of the row one above it, we have the pair (s(t), s(t + �)) = (x, �−my) with the distance � as
many as the pair (s(t), s(t + � + mv)) = (x, y) with the distance � + mv. This can seen from the following for the
case m= 1:

· · · x
distance �←→ �−1y · · · · · ·

· · · �x ←→ y · · · · · ·
...

...
...

... · · ·
· · · · · · x

distance �←→ �−1y · · ·
· · · · · · �x ←→ y · · ·
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B:    Balanced q-ary sequences of period q n-1

DB:  Difference-Balanced q-ary sequences

TB:   Two-Tuple-Balanced q-ary sequences

CA:  q-ary sequences with Cyclic Array Structure

B

TB

DBCA

Fig. 1. Hierarchy of balanced q-ary sequences of period qn − 1.

Therefore, we have for each x ∈ F ∗q ,

Nm(x, y)=N0(x, �−my) for y ∈ Fq . (18)

For y = 0, the relation (18) gives Nm(x, 0) = N0(x, 0), for all x ∈ F ∗q . This implies that the 3(q − 1) entries of Nm

and the corresponding entries of N0 in the top row, in the left-most column, and in the main diagonal, except for the
position (0, 0) are all the same, because of (17). Especially, we have

Nm(x, x)=N0(x, x) for all x ∈ F ∗q . (19)

For y = x, the relation (18) gives Nm(x, x)=N0(x, �−mx). This implies that, if we let z= �−mx, then

Nm(x, x)=N0(x, z) for all x ∈ F ∗q . (20)

Combining the two relations (19) and (20), we finally have the equality N0(x, x)=N0(x, z) for z= �−mx. As m runs
through the values from 0 to qn−2, the value �−m runs through all the non-zero elements of Fq , and so does z=�−mx

for any given x �= 0. Therefore, we have shown that the q entries of the xth row of N0 must be all the same for x ∈ F ∗q .
Since the row sum is qn−1, the individual entry must all be qn−2. This implies that all the entries of N0 must be the
same as qn−2 except for the position (0, 0), and N0(0, 0)= qn−2 − 1. �

4. Concluding remarks

In this paper, we have considered q-ary sequences of period qn − 1 (for q > 2) and studied their various balance
properties: (symbol or one-tuple) balance, difference-balance, and two-tuple-balance properties. The array structure
of the sequences was introduced, and various implications between these balance properties and the array structure
are proved. All these results can be summarized in Fig. 1. Our main theorem states that a difference-balanced q-ary
sequence of period qn − 1 is two-tuple-balanced if it has the cyclic array structure. We conjecture that a difference-
balanced q-ary sequence of period qn − 1 must have the cyclic array structure. With regard to Fig. 1, the conjecture
implies that the set DB–CA is empty. The conjecture is confirmed with respect to all of the known q-ary sequences
which are difference-balanced, in particular, which have the ideal two-level autocorrelation function when q = p is an
odd prime. Note that the set CA-DB in Fig. 1 is trivially non-empty. This completes the classification of various classes
of two-tuple-balanced q-ary sequences of period qn − 1, for a prime or a power of a prime q greater than 2.
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