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Abstract

The fourth-order differential equation

y(4)(t) − f (t, y(t), y′′(t)) = 0, 0 ≤ t ≤ 1,

with the four-point boundary value problem

y(0) = y(1) = 0,

ay′′(ξ1) − by′′′(ξ1) = 0, cy′′(ξ2) + dy′′′(ξ2) = 0

is studied in this work, where 0 ≤ ξ1 < ξ2 ≤ 1. Some results on the existence of at least one positive solution to the above
four-point boundary value problem are obtained by using the Krasnoselskii fixed point theorem.
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1. Introduction

It is well known that boundary value problems for ordinary differential equations can be used to describe a
large number of physical, biological and chemical phenomena. For example, the deformations of an elastic beam
in the equilibrium state can be described as a boundary value problem of some fourth-order differential equations.
This has resulted in an extensive study on diverse boundary value problems for second-order and higher order
differential equations via many methods ([1–10] and the references therein). Most of these studies are based upon
the Leray–Schauder degree theory [5], the fixed point theorem on a cone [2,3,6], or the lower and upper solutions
method [4], and mainly studied the multi-point boundary value problem for second-order ordinary differential
equations [5,6] or studied the two-point boundary value problem for higher order ordinary differential equations [2,3].
There are very few works on the multi-point boundary value problem for higher order ordinary differential equations.
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For this reason, we are going to investigate the fourth-order nonlinear ordinary differential equation

y(4)(t) − f (t, y(t), y′′(t)) = 0, 0 ≤ t ≤ 1 (1.1)

with the following four-point boundary value conditions:

y(0) = y(1) = 0,

ay′′(ξ1) − by′′′(ξ1) = 0, cy′′(ξ2) + dy′′′(ξ2) = 0,
(1.2)

where f ∈ C([0, 1] × [0, ∞) × (−∞, 0], [0, ∞)), and a, b, c, d are nonnegative constants, 0 ≤ ξ1 < ξ2 ≤ 1.
Problems (1.1) and (1.2) occur in beam theory such as for a beam with small deformation; a beam of a material

which satisfies a nonlinear power-like stress law; a beam with two-sided links which satisfies a nonlinear power-like
elasticity law; we refer the readers to the work of Zill and Cullen [1, pp. 237–243] for a brief and easily accessible
discussion and the physical interpretation for some of the boundary conditions associated with the beam equation.
Some existence and multiplicity results for positive solutions for (1.1) and (1.2) have been obtained for a = 1, b = 0,

c = 1, d = 0, ξ1 = 0, ξ2 = 1, for which the boundary value problems (1.1) and (1.2) describe the deformations of an
elastic beam both of whose ends are simply supported. The aim of the present work is to obtain a sufficient condition
for the existence of a positive solution, i.e., a solution u(t) of (1.1) and (1.2) such that u(t) > 0 on (0, 1) and u(t) > 0
on some interval in (0, 1).

The remainder of the work is organized as follows. In Section 2, we present some preliminaries and lemmas.
Section 3 is devoted to presenting and proving our main results.

2. Preliminaries

In this section, we shall give some preliminary considerations and some lemmas. Let E = {y ∈ C2
[0, 1]|y(0) = y

(1) = 0}. Then we have the following lemma.

Lemma 2.1. For y ∈ E, ‖y‖∞ 6 ‖y′
‖∞ 6 ‖y′′

‖∞, where ‖y‖∞ = supt∈[0,1] |y(t)|.
Thus, E is a Banach space when it is endowed with the norm ‖y‖ = ‖y′′

‖∞. For convenience we set

max f0 = lim
−v→0+

max
t∈[0,1]

sup
u∈[0,+∞)

f (t, u, v)

−v
,

min f0 = lim
−v→0+

min
t∈[0,1]

inf
u∈[0,+∞)

f (t, u, v)

−v
,

max f∞ = lim
−v→+∞

max
t∈[0,1]

sup
u∈[0,+∞)

f (t, u, v)

−v
,

min f∞ = lim
−v→+∞

min
t∈[0,1]

inf
u∈[0,+∞)

f (t, u, v)

−v
.

From the Lemma 2.1 of the reference [4] we have the following lemma.

Lemma 2.2. If α = ad + bc + ac(ξ2 − ξ1) 6= 0 and h(t) ∈ C[ξ1, ξ2], then the boundary value problem

u(4)(t) = h(t),

u(0) = u(1) = 0,

au′′(ξ1) − bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0

(2.1)

has a unique solution

y(t) =

∫ 1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ )h(τ )dτds,

where

G1(t, s) =

{
s(1 − t), 0 ≤ s < t ≤ 1,

t (1 − s), 0 ≤ t ≤ s ≤ 1
(2.2)
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and

G2(t, s) =


1
α

(a(s − ξ1) + b)(d + c(ξ2 − t)), s < t ≤ 1, ξ1 ≤ s ≤ ξ2,

1
α

(a(t − ξ1) + b)(d + c(ξ2 − s)), 0 ≤ t ≤ s, ξ1 ≤ s ≤ ξ2.

(2.3)

Lemma 2.3. Suppose α > 0; then the following results hold:
(1) G2(t, s) 6 G2(s, s), for t ∈ [0, 1], s ∈ [ξ1, ξ2],
(2) G2(t,s)

G2(s,s)
> 1

4 , for η1 6 t 6 η2, s ∈ [ξ1, ξ2], where η1 = ξ1 +
1
4 (ξ2 − ξ1), η2 = ξ2 −

1
4 (ξ2 − ξ1).

Proof. (1) If s < t , then G2(t, s) =
1
α
(a(s − ξ1) + b)(d + c(ξ2 − t)) 6 1

α
(a(s − ξ1) + b)(d + c(ξ2 − s)) = G2(s, s)

because 1
α
(a(s − ξ1) + b) > 0 and c > 0. In the same way we have G2(t, s) 6 G2(s, s) if s > t .

(2) From Eq. (2.3) we know immediately that

G2(t, s)

G2(s, s)
=


d + c(ξ2 − t)

d + c(ξ2 − s)
, s < t ≤ 1, ξ1 ≤ s ≤ ξ2,

a(t − ξ1) + b

a(s − ξ1) + b
, 1 ≤ t ≤ s, ξ1 ≤ s ≤ ξ2.

Because ξ1 ≤ s ≤ ξ2, η1 6 t 6 η2 and c, d are nonnegative, so when s < t we have G2(t,s)
G2(s,s)

=
d+c(ξ2−t)
d+c(ξ2−s) > d+c(ξ2−η2)

d+c(ξ2−ξ1)

> 1
4 . In the same way we have G2(t,s)

G2(s,s)
> 1

4 if s > t . This completes the proof of the lemma. �

We define the operator A : E → E by

Ay(t) =

∫ 1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ ) f (τ, y(τ ), y′′(τ ))dτds. (2.4)

Obviously, u(t) is a solution of the four-point boundary problems (1.1) and (1.2) if and only if u(t) solves the operator
equation Au(t) = u(t), where the operator A is defined above.

Lemma 2.4. Suppose α > 0 and −aξ1 + b ≥ 0, c(ξ2 − 1) + d ≥ 0; then A(K ) ⊂ K , where η1 = ξ1 +
1
4 (ξ2 − ξ1),

η2 = ξ2 −
1
4 (ξ2 − ξ1) and

K =

{
y ∈ E |y > 0, min

η16t6η2
(−y′′(t)) >

1
4
‖y‖

}
, (2.5)

which is obviously a cone in E.

Proof. For any y ∈ K , we know from (2.4) and Lemma 2.3(1) that

0 6 −(Ay)′′(t) =

∫ ξ2

ξ1

G2(t, s) f (s, y(s), y′′(s))ds 6

∫ ξ2

ξ1

G2(s, s) f (s, y(s), y′′(s))ds, (2.6)

which implies

‖ − (Ay)′′(t)‖∞ 6

∫ ξ2

ξ1

G2(s, s) f (s, y(s), y′′(s))ds. (2.7)

Thus from Lemma 2.3(2) and (2.7), we have

min
η16t6η2

(−(Ay)′′(t)) = min
η16t6η2

∫ ξ2

ξ1

G2(t, s) f (s, y(s), y′′(s))ds

>
1
4

∫ ξ2

ξ1

G2(s, s) f (s, y(s), y′′(s))ds

>
1
4
‖(Ay)′′‖∞.

Noting that G1(t, s) > 0 and G2(t, s) > 0, we can conclude that A(K ) ⊂ K . �
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The key tool in our approach is the following fixed point theorem.

Theorem 2.1 (Krasnoselskii). Let E be a Banach space, and K ⊂ E be a cone in E. Assume Ω1,Ω2 are open subsets
of E with 0 ∈ Ω1, Ω̄1 ⊆ Ω2 and let

A : K ∩ (Ω̄2 \ Ω1) → K

be a completely continuous operator such that either:

(i) ‖Au‖ 6 ‖u‖, u ∈ K ∪ ∂Ω1 and ‖Au‖ > ‖u‖, u ∈ K ∪ ∂Ω2; or
(ii) ‖Au‖ > ‖u‖, u ∈ K ∪ ∂Ω1 and ‖Au‖ 6 ‖u‖, u ∈ K ∪ ∂Ω2.

Then A has a fixed point in K ∪ (Ω̄2 \ Ω1).

3. Main results

We are now in a position to present and prove our main results. Throughout this section we assume that a, b, c, d
are nonnegative constants, 0 ≤ ξ1 < ξ2 ≤ 1 and α = ad + bc + ac(ξ2 − ξ1) > 0, −aξ1 + b ≥ 0, c(ξ2 − 1) + d ≥ 0.

Theorem 3.1. Assume that f ∈ C([0, 1] × [0, ∞) × (−∞, 0], [0, ∞)) and f is sublinear, i.e., min f0 = +∞ and
max f∞ = 0; then the boundary value problems (1.1) and (1.2) have at least one positive solution.

Proof. Since min f0 = +∞, then, for any ε satisfying 1
4ε

∫ η2
η1

G2(
1
2 (η1 + η2), s)ds > 1, we can choose ρ1 > 0 such

that

f (t, u, v) > ε(−v), for t ∈ [0, 1], u ∈ [0, +∞), 0 6 −v 6 ρ1. (3.1)

Set Ωρ1 = {y ∈ K |‖y‖ < ρ1}; then, for y ∈ ∂Ωρ1 , we can get from (2.5), (2.6) and (3.1)

−(Ay)′′
(

1
2
(η1 + η2)

)
=

∫ ξ2

ξ1

G2

(
1
2
(η1 + η2), s

)
f (s, y(s), y′′(s))ds

>

∫ η2

η1

G2

(
1
2
(η1 + η2), s

)
f (s, y(s), y′′(s))ds

> ε

∫ η2

η1

G2

(
1
2
(η1 + η2), s

)
(−y′′(s))ds

>
1
4
ε‖y‖

∫ η2

η1

G2

(
1
2
(η1 + η2), s

)
ds

> ‖y‖,

which implies

‖Ay‖ > ‖y‖, for y ∈ ∂Ωρ1 . (3.2)

Next, since max f∞ = 0, then, for any ε∗ satisfying ε∗
∫ ξ2
ξ1

G2(s, s)ds 6 1, there exists ρ∗ > ρ1 such that

f (t, u, v) 6 ε∗(−v), for t ∈ [0, 1], u ∈ [0, +∞), − v > ρ∗. (3.3)

We consider two cases:
Case(i): Suppose that f (t, u, v) is unbounded; then define a function f ∗(r) : [0, ∞) → [0, ∞) by

f ∗(r) := max{ f (t, u, v) : t ∈ [0, 1], 0 6 u 6 r, 0 6 −v 6 r}.

It is easy to see that f ∗(r) is nondecreasing and limr→+∞
f ∗(r)

r = 0, and

f ∗(r) 6 ε∗r, for r > ρ∗. (3.4)

Taking ρ2 > ρ∗, then, from (3.3) and (3.4) we can get

f (t, u, v) 6 f ∗(ρ2) 6 ε∗ρ2, for t ∈ [0, 1], 0 6 u 6 ρ2, 0 6 −v 6 ρ2. (3.5)
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On the other hand, for y ∈ K , and ‖y‖ = ρ2, from Lemma 2.1 we know that

‖y‖∞ 6 ρ2. (3.6)

Thus from (2.6), (3.5) and (3.6) and Lemma 2.4, we have for y ∈ K , and ‖y‖ = ρ2

−(Ay)′′(t) 6

∫ ξ2

ξ1

G2(s, s) f (s, y(s), y′′(s))ds 6 ε∗ρ2

∫ ξ2

ξ1

G2(s, s)ds 6 ρ2 = ‖y‖.

Case(ii): Suppose f (t, u, v) is bounded, i.e., there exists a positive constant L such that f (t, u, v) 6 L . Take
ρ2 > max{L

∫ ξ2
ξ1

G2(s, s)ds, ρ1}. For y ∈ K and ‖y‖ = ρ2, from (2.6) and Lemma 2.3 we can get

−(Ay)′′(t) 6

∫ ξ2

ξ1

G2(s, s) f (s, y(s), y′′(s))ds 6 L
∫ ξ2

ξ1

G2(s, s)ds 6 ρ∗

2 = ‖y‖.

Therefore, in either case, we can set Ωρ2 = {y ∈ K |‖y‖ < ρ2} such that

‖Ay‖ 6 ‖y‖, for y ∈ ∂Ωρ2 . (3.7)

On the other hand, it is easy to check by the Arzera–Ascoli theorem that the operator A is completely continuous.
Hence from (3.2), (3.7) and Theorem 2.1, A has a fixed point y in Ω̄ρ2 \ Ωρ1 , y is a positive solution of (1.1) and (1.2)
and satisfies ρ1 6 ‖y‖ 6 ρ2. �

Theorem 3.2. Assume that f ∈ C([0, 1] × [0, ∞) × (−∞, 0], [0, ∞)) and f is superlinear, i.e., max f0 = 0 and
min f∞ = +∞; then the boundary value problems (1.1) and (1.2) have at least one positive solution.

Proof. Since max f0 = 0, then for any ε satisfying ε
∫ ξ2
ξ1

G2(s, s)ds 6 1, we can choose ρ1 > 0 such that

f (t, u, v) 6 ε(−v), for t ∈ [0, 1], u ∈ [0, +∞), 0 6 −v 6 ρ1 (3.8)

Set Ωρ1 = {y ∈ K |‖y‖ < ρ1}. For y ∈ ∂Ωρ1 , we can get from (2.6) and (3.8)

−(Ay)′′(t) 6

∫ ξ2

ξ1

G2(s, s) f (s, y(s), y′′(s))ds

6 ε1

∫ ξ2

ξ1

G2(s, s)(−y′′(s))ds

6 ‖y′′
‖∞ = ‖y‖,

which implies

‖Ay‖ 6 ‖y‖, for y ∈ ∂Ωρ1 . (3.9)

Next, since min f∞ = +∞, then for any ε∗ satisfying 1
4ε∗

∫ η2
η1

G2(
1
2 (η1 +η2), s)ds > 1, there exists ρ2 > ρ1 such

that

f (t, u, v) > ε∗(−v), for t ∈ [0, 1], u ∈ [0, +∞), − v >
1
4
ρ2. (3.10)

Set Ωρ2 = {y ∈ K |‖y‖ < ρ2}. For y ∈ ∂Ωρ2 , since y ∈ K , we know that minη16t6η2(−y′′(t)) > 1
4‖y‖. Thus, for any

y ∈ ∂Ωρ2 , we have from (2.6) and (3.10)

−(Ay)′′
(

1
2
(η1 + η2)

)
=

∫ ξ2

ξ1

G2

(
1
2
(η1 + η2), s

)
f (s, y(s), y′′(s))ds

>

∫ η2

η1

G2

(
1
2
(η1 + η2), s

)
f (s, y(s), y′′(s))ds

> ε∗

∫ η2

η1

G2

(
1
2
(η1 + η2), s

)
(−y′′(s))ds



470 Y. Zhong et al. / Applied Mathematics Letters 21 (2008) 465–470

>
ε∗

‖y‖

4

∫ η2

η1

G2

(
1
2
(η1 + η2), s

)
ds

> ‖y‖,

which implies

‖Ay‖ > ‖y‖, for y ∈ ∂Ωρ2 . (3.11)

On the other hand, it is easy to check by the Arzera–Ascoli theorem that the operator A is completely continuous.
Hence from (3.9), (3.11) and Theorem 2.1, the operator A has a fixed point y in Ω̄ρ2 \ Ωρ1 , y is a positive solution of
(1.1) and (1.2) and satisfies ρ1 6 ‖y‖ 6 ρ2. �

4. Conclusions

A fourth-order ordinary differential equation with a four-point boundary condition is studied in this work. Some
new and simple sufficient conditions for the existence of at least one positive solution are obtained by using the
Krasnoselskii fixed point theorem.
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