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A b s t r a c t - - C o n s i d e r  the difference equation 

Xn+l = f(xn), 

where xn is in R k and f : D --~ D is continuous where D C R k. Suppose that I : R k ~ R is a 
continuous invariant, that is, I ( f (x))  = I(x) for every x E D. We will show that if I attains an 
isolated minimum or maximum value at the equilibrium (fixed) point p of this system, then there 
exists a Liapunov function, namely :t=(l(x) - I(p)) and so the equilibrium p is stable. This result 
is then applied to some difference equations appearing in different fields of applications. @ 2000 
Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - I n v a r i a n t s ,  Stability, Lyness' equation. 

1. I N T R O D U C T I O N  

C o n s i d e r  L y n e s s '  e q u a t i o n  
a + X n  

Xn+l -- _ _  , 
X n - I  

w h e r e  a > 0 is a p a r a m e t e r  a n d  x - 1  > 0, x0 > 0. Recen t ly ,  th i s  e q u a t i o n  a t t r a c t e d  a lot  of  

a t t e n t i o n ,  see [1,2], a n d  i ts  s t a b i l i t y  has  b e e n  p r o v e d  showing  t h a t  i t  c a n  be  t r a n s f o r m e d  to  an  

a r e a  p r e s e r v i n g  m a p ,  see [3]. Also  K A M  t h e o r y  has  b e e n  app l i ed  to  p r o v i d e  a n o t h e r  p r o o f  of  

s t ab i l i ty ,  see [3]. H o w e v e r ,  no  L i a p u n o v  f u n c t i o n  has  b e e n  found  so far. H e r e  we wil l  c o n s t r u c t  

t h e  L i a p u n o v  f u n c t i o n  for t h i s  e q u a t i o n ,  us ing  t h e  w e l l - k n o w n  inva r i an t :  

( I(z,.zn_l)= 1+ 1 + - -  ( a + x ~ + Z n - 1 ) .  
Xn--I 

In  fac t ,  we wil l  s h o w  t h a t  t h e  L i a p u n o v  f u n c t i o n  V ( x ,  y)  is g iven  by  

(P + 1) 3 
V ( x , y )  = I ( x , y )  - I ( p , p )  = I ( x , y )  - - ,  

P 
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where 
1 =t= v/1 + 4a p =  

2 

is the equilibrium of this equation. 
One of the possible third-order generalizations of Lyness' equation is Todd's equation which 

has the form: 
a Zr Xn ~- X n _ l  

Xn+l  ~ 
X n - 2  

where a > 0 is a parameter  and x - l , X o , X l  > 0. Here we will construct the Liapunov function 
for this equation using well-known invariant: 

I ( x n , x n - l , X n - 2 ) =  ( 1 +  1 ) ( 1 +  X~--11 ) ( 1 +  Xn-21 ) (aZrx  n @-Xn-1-V Xn-2). 

In fact, we will show that  the Liapunov function V(x,  y, z) is given by 

V ( x , y , z )  = I ( x , y , z ) - I ( p , p , p ) - - I ( x , y , z )  (P + 1)4 
p2 , 

where p is the equilibrium of this equation. 

2. M A I N  R E S U L T  

For the sake of completeness, we provide the definition of stability that  will be used in this 

paper. 

DEFINITION. (See [4, p. 171].) Let u belong to R n and r > O. The open ball centered at u with 

radius r is the set 

B ( u , r )  = {v e a n :  I V -  u I < r } .  

Let p be a fixed point of f. Then p is stable provided that, given any ball B(p ,  ~), there is 

a b a l l B ( p , 6 )  so that i f u i s i n  B(p,e) ,  then fk(p)  is in B (p , e )  for k = 1 , 2 , . . . .  Here fk(p) 
denotes k th iterate of p. 

Our main result is the following. 

THEOREM. Consider the difference equation 

X n + l  ~--- f(Xn) 

w h e r e x n  is in R k and f : D --~ D is continuous, w h e r e D  C R k. Suppose that I : R k --* R 

is a continuous invariant that is I ( f (x ) )  = I (x)  for every x E D. I f  I attains an isolated local 

minimum or maximum value at the equilibrium (fixed) point p of this system, then there exists 

a Liapunov function equal to =t=(I(x) - I (p) )  and so the equilibrium p is stable. 

PROOF. Assume that  I attains a local isolated minimum at p. Then there exists some neigh- 
borhood Dp of p such that  I (x)  > I (p)  for every x E Dp. In view of this, we have 

(1) V(p) = I (p )  - I (p )  = 0, 
(2) V(x) = I (x)  - I (p)  > 0, for x in Dp, 
(3) (Yf)(x)  = I ( f (x ) )  - I (p)  = I (x)  - I (p )  = V(x),  

where in Point (3), we use the fact that  I is an invariant. Thus, all three conditions in [4, p. 177] 
are satisfied and so V is Liapunov function. Consequently, p is stable. 

The proof in the case where I attains its maximum follows immediately from the result that  
was just  proved by observing the simple fact that  negative of an invariant is also an invariant. 

REMARK 1. This theorem shows that  whenever certain conditions are satisfied, there exists a 
Liapunov function which is actually a special invariant of considered equation. As is well known, 



Invariants and Related Liapunov Functions 3 

see [5,6], the invariant is not uniquely determined, but rather if one invariant is given, then 
any ~ppropriate function (continuous, analytic) of this invariant is invariant itself. Furthermore,  

the difference equation can have several "independent" invariants (e.g., two invariants neither of 
which can be derived from the other through homeomorphic changes of variable), see [7]. As we 

will mention later, we have developed M a t h e m a t i c a  package that  can almost automatical ly :find 

the rational invariant for a given equation (if there is one) and using our result here construct 

the corresponding Liapunov function, if such function exists. 

REMARK 2. An important  question tha t  couht be raised here is what are the implications of this 

~heorem on the linearized stability theory for this difference equation. In particular, is it true 

hat all the eigenvalues of the linearized system (assuming that  f is differentiable) 

Yn+l = f '(P)Yn 

necessarily lie on the unit circle? The long standing conjecture is that  the difference equation 

Xn+ 1 = f ( X n )  

has an invariant if and only if the corresponding linearized equation has an invariant, which in 
turn is equivalent to the fact that  the matr ix  f ' (p )  does not have all eigenvalues inside or outside 

refit circle. 

3. A P P L I C A T I O N S  

Here, we will give several equations with known invariants and using the above result we will 
obtain the Liapunov function, and prove the stability of their equilibria. We note tha t  the positive 
definiteness of the Hessian at the critical point is verified by checking that  all the principal minors 

are positive. 

APPLICATION 1. Lyness'  equation (see [1,3]): 

a + :l:r~ 
X n + l  - -  

:Fn-- 1 

where a > 0 is a parameter  and xl > 0, x0 > 0. 

Invariant: ( l ( x , , , X n - 1 )  = 1 + 1 -4- - -  (a  
X n -  1 

Equilibrium: p = (1 + x/1 + 4a)/2 satisfies p2 _ p _ a = O. 

The necessary conditions for the ext remum give: 

o, ( 
Ox =- 1 +  1 - - -  

- 

which leads to x = y and to the equat ion  x 2 - x 

are exactly the equilibrium points. Now, we will 
p+ = (1 + vq- + 4a)/2,  which will be denoted as p 

H =  C ' 

wh(' l 'e 
0 2 I  2 p +  1 

(p, =: - - 7  > 0, A = 

- -  :L'n + X n -  1 )" 

:~2 ]=0,  

x + a )  
22 = O, 

- a = O. This shows tha t  the critical points 
check tile Hessian at a positive critic.al point 
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B _ 
021 p +  i 

OxOy (p' p) - p3 

and 
02I  p + 1 

C =  ~ (p,p) = 2 p3 

N o w  

d e t H  = A C  - B 2 - 
3(p + 1) 2 

p6 > 0 ,  

which implies t h a t  the invariant  I a t ta ins  its min imum at (p, p). Thus,  

m i n { I ( x , y ) :  (x ,y)  E D}  = I (p ,p )  - - -  
(p + 1) 3 

P 

and so by our  theorem V ( x ,  y) = I ( x ,  y) - (p + 1)3/p, which shows tha t  p is stable. 

APPLICATION 2. Todd ' s  equat ion (see [1]): 

Xn+ 1 = 
a + Xn  ~- X n - 1  

X n - 2  

where a > 0 is a parameter ,  and xl  > 0, x0 > 0, xl  > 0. 

Invariant :  

( 1)( 
I ( x n , X n - a , x n - 2 )  = 1 +  ~ 1 + - -  )(1+__ 

X n -  1 
1 ) (a+Xn+Xn- l+Xn-2 ) .  

X n - 2  

Equil ibr ium: p = 1 + ~/1 + a satisfies p2 _ 2p - a = 0. 

The  necessary condit ions for the  ex t remum give: 

: 0  

= 1 +  1 +  1 = 0 .  
Oz z 2 

This leads to x = y -- z, and to the  equat ion x ~ - 2x - a = 0, which shows tha t  the  critical 

points  are exact ly  the  equilibrium points. Now, we will check the Hessian at a positive critical 
point  (p, p, p) where p = 1 + x/1 + a. 

H =  A B , 

B A 

where 

and 

Now, 

D 
02I  02I  02I  p + 12 

A = ~ (p,p)  = --Oy 2 (p,p) = ~ (p,p) = 2 p3 > 0  

B = 02I  - -02I  - 02I  - P + 12 

OxO---y (p' p) = OyOz (p' p) cOxcOz (p' p) p4 

d e t H i  = A > 0 ,  
(d  B) (p -1- 1) 4 

de t  H 2 = de t  B = ~-~ (4p  2 - 1) > 0, 
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and 

A B B )  
d e t H = d e t  B A B = ( A - B ) 2 ( A + 2 B ) = 2 x / I + a ( 2 / ) + I )  2 ( p + I / j  p t ~  > O, 

B B A 

which shows, that  the invariant I attains its minimum at (p, p,p). Thus, 

(p + 1) 4 
min{I(z, y, z) :  (x, y, z) E D} = I(p,  p, p) - f/2 

and so by our theorem V ( x ,  y, z) = I ( x ,  y, z) - (p + 1)4//) 2, which shows, that  p is stable. 

APPLICATION 3. ~7 + 2th-order Lyness' equation (see [1]): 

Xn+ 1 a q- z n q- X n _ l  q- ' " " +3;n- l ,"  

3 ; r z - k -  I 

where a > 0 is a parameter, and x _ k  > 0 , . . . , x _ l  > 0. 
Invariant: 

( 1)( 
I ( x n , X n - 1  . . . .  , X n - k - 1 )  = 1 + 1 + - -  

1) (1,__ 
X n -  1 

1) 
:l: n - k -  1 

(a + :c,~ + :c,~-I + . . .  + :r,,-a. 1). 

Equilibrium: p = (k + 1 :t: v/(k + 1) 2 q- 4a)/2 satisfies p2 _ (k + 1)p - a = 0. The necessary 
conditions for the extremum give: 

k+l / 
k+l o +  E :c,~_] 

OI 1-I ( 1 ) j:=o,,¢, 
- -  - 1 +  1 -  ,2 
OXn_. i X ~ _ j  Z n _  i ' j = O , j # i  

= 0 ,  i = l , . . . , k +  1, 

which gives 
k+l 

X2 " E n - , - a -  xn_ j = 0 ,  i =  1 , . . . , k + l .  
j = O , j # i  

Subtracting the consecutive equations we get x,, = xr~-1 . . . . .  x , -~: - i  = p, which shows that 
the critical point is (p, p , . . . ,  p). 

Now, we will check the Hessian at a positive critical point (p+, . . .  ,p+), which for simplicity 
will be denoted by (p , . . .  ,p). Computing the second order derivatives of I with respect to :c ..... : 
we get 

Ox,~_~ z a :c~_j 
j=O,j76i j=O,ja4,~ 

and k+l \ 
k+l a +  E z - . - p /  

0 2 I  ( 1 ) 1 1 p=O,p#*,j | 
1 - [  1 + - : t ' 

p=O,p~ki,j Xn- - i  Xn. j " n - - ~  n--.] [ 

/ 

i = 1 , . . . ,  k -4- 1 at the equilibrium ( p , p , . . .  ,p), we get 

02I  
A -  . ~  [ ( p , p , . . . , p ) =  2 (p+1)~'+1 

O X n _  i I )kq-2 
> 0 
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and 

B _ 
02I 

Oxn-iOxn-j 

Thus, the Hessian takes the form 

I (P,P, . . . ,P) - 
(p + 1) k+l 

pk+3 

H = 
A . . . 

• • .  

B ° . . 

Now, 

detH1 = A > 0 ,  

A B . . .  

B A . . .  
det Hm = det . . .. 

B B . . .  

(P + 1)(k+l)(k+2) 
p(k+3)(k+2) 

B 

B 
• = ( A -  B)m+tIA + ( m -  1)B] 

A 

(2p+ l)k+a (2 + x/(k + l)2 +4a)  > 0 ,  

where Hm is ruth-order principal minor of the Hessian H.  

This shows tha t  the invariant I at tains its minimum at ( p , p , . . . , p ) .  Thus, 

min{I(x~,x ,~_l , . . .  , xn-k-1)  : ( X n , X n - 1 , . . .  , X n - k - 1 )  C D}  -~- I (p ,p , . . .  ,p) - (p+ 1)k+3 pk+l 

and so, by our theorem 

V(Xn ,Xn-1 , . . . ,Xn-k -1 )  = I (Xn ,Xn-1 , . . . ,Xn-k -1)  (P + 1)k+3 pk+l 

which shows, tha t  p is stable. 

Obviously, for k = 0 and k = 1 we get Lyness'  and Todd 's  equation, respectively, and so this 
example generalizes the Examples  1 and 2. Another generalization of Lyness'  equation is given 
in the following example. 

APPLICATION 4. Generalized Lyness'  equation (see [1,2,8]): 

ax~ + b 

X n + l  : (CXn Jr- d)x~-a'  

where a, b, c, d are positive parameters  and x-1  > 0, X0 > 0. 
Invariant: 

I(x,~,X~_l) - Xn-lxna----~b + (a2 + bd) ( lxn- + --xn-11) 
+ ad ( Xn-1 + Xn ) 

\ Xn Xn-1 

+ (ac + d 2) (Xn + xn-1) + cdxn-lXn. 

Equilibrium: p satisfies cp 3 + d p  2 - ap - b = 0. Obviously, this equation has at least one positive 
solution and we will investigate the stability of this equilibrium. The necessary conditions for 
the ex t remum give: 

0I  ab a 2 + bd 
= - -  + cdy OX x2y x 2 - -  + a d  x2 + ac  + = 0  
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a n d  
OI ab a 2 + bd 

+ cdx 
Oy x y  2 y2 

+ ad = + a c +  = 0, y2 

which after some manipula t ions  leads to x = g and to the equat ion 

cd.T 4 _t_ ((1,('-~- d 2)  x 3 - ( a  2 ÷ bd) 3; - ab : :  (d2g-a a)(c32 3 ~I- (],72 2 - ct3: - b ) : :  (). 

This shows tha t  the critical points are exact ly the equilibrium points. Now, we will ('hc('k tim 
Hessian at a positive critical point (p+,p+) which will be denoted simply as (p, p): 

H =  B 

where 

and 

A = °2I (p, p) = y2 + (,2 + bd) p + > o 

021 cdp 4 - 2adp 2 + ab 
B - (p,p)  = 

OxOy p4 

] [cdp 4 ÷ 2 (a 2 -- bd) ])n- 3ab] E ,  det H =  A 2 - B 2 = ( A -  B ) ( A  + B)  -- 

where by using the equilibrium equat ion 

E = - c d p  4 + 4adp 2 + 2 (a 2 d- bd) p + ab = d2p 3 4- 3adp '2 + 2a2p + ab > O. 

which shows tha t  the Hessian H is positive definite at the point  (p,p), which means tha t  tim 

mvariant  I a t ta ins  its min imum at (p,p). Thus,  

m i n { I ( x , y )  : ( x , y )  E D }  = I ( p , p ) ,  

and so by our  theorem V ( x ,  y) = I ( x ,  y) - I (p ,  p) which shows tha t  p is stahle. 

APPLICATION 5. Gumovski -Mira  equat ion (see [5,6,9]): 

2ax.a 
32n+1 - -  ! @ 2/, 2 X . n - l ,  

where a > 1 is a parameter .  

Inv~triant: 

I ( x n , x n - 1 )  = Xn2Xn-12 + X~f + a:,~_l '~ -- 2ax,~xn_l .  

Equil ibrium: p = v/a - 1 > 0 satisfies p2 = a 1. 

The  necessary condit ions for the ex t remum give: 

0 I  

a x  
= 2xy  ~ + 2x - 2ag = 0  

a n d  
0 I  

=~ 2x2y + 2y - 2ax = 0 ,  
Oy 

which immedia te ly  leads to x = y = p. This shows tha t  the criticM point  is exact ly  t~he equil ibrimn 
point. Now, we will check the Hessian at a positive critical I)oilg (p, p). 

H =  B 
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where 

and 

02I  
A =0-~-ffx2(p,p) = 2p 2 + 2 > 0 

B = 
02 I  

OxOy (p' p) = 4p2 - 2a. 

Now, by using the equilibrium equation we get 

d e t H = A  2 - B 2 = (A  - B ) ( A  + B )  = 4 (a + l - p2) (3p2 + l - a) = 1 6 ( a - 1 ) > 0 .  

This shows that  the Hessian H is positive definite at the point (p,p) which means that  the 
invariant I attains its minimum at (p,p). Thus, 

m i n { I ( x , y ) :  (x,y) e D} = I ( p , p )  = - ( a -  1) 2 , 

and so by our theorem V ( x ,  y) = I ( x ,  y) + (a - 1) 2, which shows, that  p is stable. 

REMARK 3. It is worth mentioning that  all equations with their invariants were known, and 
that  we have proved the stability of the equilibrium point using our result. The result that  we 
have proved emphasizes the importance of the invariants and of finding some general methods 
for their construction. Especially we are interested in automatic construction of the invariants 
and corresponding Liapunov functions, (if they exist) that  can be implemented by using some 
of CAS (Computer Algebra System). In this regard, we have developed Mathemat i ca  package, 
see [10], which was successfully tested on all applications of this paper. More applications of this 
package will be presented in the coming communications. 
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