

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 255-266

www.elsevier.com/locate/disc

An equivalence relation in finite planar spaces $\stackrel{\text{tr}}{\sim}$

Sveva Freni

Dipartimento di Matematica, Seconda Università degli Studi di Napoli, Via Vivaldi, 43, Caserta, Italy

Received 30 November 2004; received in revised form 12 February 2006; accepted 27 November 2006 Available online 2 June 2007

Abstract

This paper is concerned with quasiparallelism relation in a finite planar space S. In particular, we prove that if no plane in S is the union of two lines quasiparallelism relation between planes is an equivalence relation. Moreover, three-dimensional affine spaces with a point at infinity and three-dimensional affine spaces with a line at infinity are characterized. © 2007 Elsevier B.V. All rights reserved.

MSC: 51A45; 51A15; 05B25

Keywords: Quasiparallel lines; Quasiparallel planes

1. Introduction

A *linear space* **S** is a pair (P, L), where P is a non-empty set of *points* and L is a family of proper subsets of P, called *lines*, such that any two distinct points x and y belong to a unique line xy, every line contains at least two points and there are at least two lines. We denote by v the number of its points and by b the number of its lines.

A subspace X of S is a subset of P such that the line joining any two distinct points of X is already contained in X. It is easy to see that the empty set, a point, a line and P are subspaces. Moreover, the intersection of any family of subspaces is a subspace. Thus, any subset Y of P spans the subspace $\langle Y \rangle$, intersection of all the subspaces containing Y.

An *independent set* Z is a set of points such that for each $z \in Z$, $z \notin \langle Z \setminus \{z\} \rangle$. A *generator* of **S** is a subset G such that $\langle G \rangle = P$ and a basis of **S** is an independent subset of the points of **S** which generates **S**. Moreover, the *dimension* of **S** is the integer dim **S** = min(|B| : B is a basis for **S**)-1 (see [1]).

Let $\mathbf{S} = (P, L)$ be a finite linear space. The *length* of a line *l* is the number |l| of points on *l*. Every line of maximal size will be called a *long* line. All other lines will be called *short* lines. The *degree* of a point *x* is the number b_x of lines on which it lies. If $n + 1 = \max(b_x, x \in P)$, then the integer *n* is called the *order* of \mathbf{S} . Let *X* be a subspace through *x*. We denote by $b_x(X)$ the number of lines through *x* on *X*. The integer $b_x(X)$ is the degree of *x* in *X*.

E-mail address: sveva.freni@unina2.it.

^{*} Work supported by National Research Project Strutture geometriche, Combinatoria e loro applicazioni of the Italian Ministero dell'Università e della Ricerca scientifica and by G.N.S.A.G.A. of C.N.R.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.11.039

A *planar space* **S** is a triple (P, L, P^*) , where (P, L) is a linear space and P^* is a non-empty family of subspaces, called *planes*, such that:

- every plane contains at least three non-collinear points;
- any three non-collinear points lie in exactly one plane and it is the smallest subspace containing them;
- there are at least two planes.

Let $\mathbf{S} = (P, L, P^*)$ be a finite planar space. If π is a plane of \mathbf{S} , we denote by $|\pi|$ the number of its points and by b_{π} the number of its lines. Consider the family L_{π} of lines on the plane π . The pair (π, L_{π}) is a finite linear space on $|\pi|$ points and b_{π} lines. If $n(\pi)$ denotes the *order* of linear space (π, L_{π}) , the integer $n = \max\{n(\pi) : \pi \in P^*\}$, is called *order* of the planar space.

The subspaces X and X' are *quasiparallel* if $|X \cap l| = |X' \cap l|$ for all lines $l \not\subseteq X \cup X'$ (see [9]). Let X and X' be two quasiparallel subspaces in a finite linear space **S**. The following results hold (see [9]):

(i) $b_x = b_x(X) + |X'| - |X \cap X'|$ for every $x \in X \setminus X'$. (ii) |X| = |X'| if $X \cup X' \neq P$.

In the following we shall use the notation $X \sim X'$ to mean that the subspaces X and X' are quasiparallel.

In a plane π of **S** the relation of quasiparallelism for lines is an equivalence relation. In the following the equivalence class of quasiparallel lines which contains a line *l* will be denoted by [*l*]. An equivalence class [*l*] will be called a *singleton* if [*l*] contains the unique line *l*. Let **S** = (*P*, *L*) be a finite linear space. A family of pairwise intersecting lines, with at least three non-concurrent lines, will be called a *clique* of lines. A *pencil* of lines is a family of lines passing through a common point. Finally, a *spread* of lines is a family of pairwise disjoint lines. An equivalence class [*l*] of quasiparallel lines, with size at least 2, is one of the following (see [5]):

- (I) [*l*] is a clique, also called a *C*-class (or clique-class);
- (II) [*l*] is a pencil of centre *x*, also called a *P*-class (or pencil-class) of centre *x*;
- (III) [*l*] is a spread, also called a *S*-class (or spread-class).

In this paper we want to study quasiparallelism relation for planes in a finite planar space $S = (P, L, P^*)$ with the following property:

(A)
$$\forall \alpha \in P^*$$
, $\forall r, s \in L_{\alpha}$, $\alpha \neq r \cup s$.

In particular, we shall prove that for planes in a finite planar space fulfilling the condition (A) the quasiparallelism relation is an equivalence relation. Furthermore, three-dimensional affine spaces with a point at infinity and three-dimensional affine spaces with a line at infinity are characterized.

2. The equivalence relation

Let S be a finite planar space with property (A). In S the following condition holds

(B) $\forall \alpha, \beta \in P^*, P \neq \alpha \cup \beta.$

By Theorem 3.1 in [8] we have

$$\pi \sim \pi' \quad \Leftrightarrow \quad |\alpha \cap \pi| = |\alpha \cap \pi'| \tag{2.1}$$

for every plane α such that $\pi \neq \alpha \neq \pi'$. Consider a plane π in S. In [7] we denoted by (π) the subset of P^* which contains π and each plane π' such that $\pi \sim \pi'$. Furthermore, in [7] we showed that, if there exists in (π) a plane π' with $\pi \cap \pi' = \emptyset$, planes in (π) are pairwise disjoint and quasiparallel to each other. Moreover, in [8] we proved that, if π and π' are two quasiparallel planes which intersect in a line, planes in (π) are pairwise quasiparallel and any two distinct planes in (π) intersect in a line of constant length.

Proposition 2.1. If π' is a plane in (π) such that $\pi \cap \pi'$ is a point x, any two distinct planes in (π) intersect in point x.

Proof. Let π'' be a plane in (π) with $\pi \neq \pi'' \neq \pi'$. Since π and π'' are quasiparallel, by (2.1) we obtain

$$|\pi \cap \pi'| = |\pi'' \cap \pi'|.$$

Hence, π'' intersects π' in a point y. We suppose $y \neq x$. Every line of π' through x intersects π'' while the unique line on π' containing x and intersecting π'' is the line xy. This forces x = y and $\pi' \cap \pi'' = \{x\}$. Moreover, by $\pi \sim \pi'$ we deduce

 $|\pi \cap \pi''| = |\pi' \cap \pi''|$

and $\pi \cap \pi'' = \{x\}$. Hence, any two distinct planes in (π) intersect in point *x* and the proposition is proved. \Box

Proposition 2.2. Let π' and π'' two distinct planes of (π) . If π' intersects π in a point x, then π' and π'' are quasiparallel.

Proof. Let π'' be a plane in (π) , with $\pi \neq \pi''$. At once (B) and (ii) yield $|\pi| = |\pi'| = |\pi''|$. We want to show that π' and π'' are quasiparallel. In other words, we shall prove that $|\pi' \cap r| = |\pi'' \cap r|$ for every line $r \not\subseteq \pi' \cup \pi''$. By Proposition 2.1 we have $\pi \cap \pi'' = \pi' \cap \pi'' = \{x\}$. If r meets π' in x, r meets both planes, π' and π'' . Now, we suppose that r meets π' in a point y, with $y \neq x$. By (i) we deduce that the lines through y outside π' are $b_y - b_y(\pi') = |\pi| - 1$. On the other hand, the lines joining y to points which lie on $\pi'' \setminus \pi'$ are $|\pi''| - |\pi' \cap \pi''| = |\pi| - 1$. Hence, every line which meets π' in y, meets π'' , too. Analogously, if r is a line which intersects π'', r meets π' , too. The proof is complete. \Box

Now, we are ready to state our first result.

Theorem I. Let **S** be a finite planar space with property (A). For planes quasiparallelism relation is an equivalence relation.

Proof. Let π and π' be two quasiparallel planes in S. If $\pi \cap \pi' = \emptyset$, by Propositions 4.1, 4.2 and 4.3 in [7], planes in (π) are pairwise quasiparallel. Now, we assume that $\pi \cap \pi'$ is a point *x*. By Proposition 2.2 planes in (π) are pairwise quasiparallel. Finally, if π and π' intersect in a line, from Proposition 4.3 in [8] we deduce that planes in (π) are pairwise quasiparallel. Hence, the desired result follows. \Box

In the following the equivalence class of quasiparallel planes which contains a plane π will be denoted by $[\pi]$. An equivalence class $[\pi]$ will be called a *singleton* if $[\pi]$ contains the unique plane π . Moreover, a family of pairwise disjoint planes will be called a *spread*, a family of planes such that any two distinct planes intersect in a common point x will be called a *star* of planes of *centre* x. A *pencil* of planes *of axis* l is a family of planes with a common line l. A *clique of centre* x of planes is a family of planes such that point x lies on all planes of the family and any two distinct planes intersect in a line through x of constant length. Finally, a *clique* of planes is a family of planes such that any two distinct planes intersect in a line of constant length and there are at least three planes which have no common point. Therefore, the results in [7,8] and Propositions 2.1, 2.2 imply the following:

Proposition 2.3. Let **S** be a finite planar space having property (A). If π is a plane in **S**, the equivalence class of quasiparallel planes $[\pi]$ is one of the following:

- (a) $[\pi]$ is a singleton;
- (b) $[\pi]$ is a spread, also called a S-class (or spread-class);
- (c) $[\pi]$ is a star of centre x, also called a S^{*}-class (or star-class) of centre x;
- (d) $[\pi]$ is a pencil of axis *l*, also called a *P*-class (or pencil-class) of axis *l*;
- (e) $[\pi]$ is a clique of centre x, also called a C^{*}-class (or clique-star-class) of centre x;
- (f) $[\pi]$ is a clique, also called a *C*-class (or clique-class).

3. Planes which intersect in a line

Let S be a finite planar space fulfilling property (A). We state here the results concerning the intersection of two non-quasiparallel planes. In [7] we showed that if $[\alpha]$ and $[\beta]$ are two distinct S-*classes* of quasiparallel planes, every

258

plane in $[\alpha]$ has at least a point in common with every plane in $[\beta]$. Moreover, in [8] we proved that if $[\sigma]$ is a S-*class*, for every plane π with $\pi \notin [\sigma]$, either $\sigma \cap \pi = \emptyset$ or $\sigma \cap \pi$ is a line. Hence, every plane in $[\alpha]$ meets every plane in $[\beta]$ in a line. Furthermore, by Proposition 4.8 in [8] we see that if $[\sigma]$ is a S-*class* and $[\pi]$ is a C-*class* of quasiparallel planes, each plane σ' in $[\sigma]$ meets each plane π' in $[\pi]$ in a line of constant length.

Now, we state the following general results.

Proposition 3.1. Let $[\sigma]$ be a S-class of quasiparallel planes in **S**. If $[\pi]$ is a class of quasiparallel planes, with size at least two and $\sigma \notin [\pi]$, each plane σ' in $[\sigma]$ meets every plane π' in $[\pi]$ in a line of constant length.

Proof. By Proposition 4.7 in [8] either $\sigma \cap \pi = \emptyset$ or $\sigma \cap \pi$ is a line. First, we assume $\sigma \cap \pi = \emptyset$. Let *x* be a point in σ . From (B), (i) and (ii) we obtain

 $b_x = b_x(\sigma) + |\sigma|.$

Hence, the number of lines through x outside σ is $|\sigma|$. Since the number of lines joining x to points on π is $|\pi|$, we have

$$|\pi| \leqslant |\sigma|.$$

Now, we denote by *y* a point on π , with $y \notin \pi'$ and $\pi' \in [\pi]$. We infer

$$b_y = b_y(\pi) + |\pi| - |\pi \cap \pi'|$$
$$|\sigma| \leq |\pi| - |\pi \cap \pi'|.$$

Thus, we find

$$|\sigma| \leq |\pi| - |\pi \cap \pi'| \leq |\pi| \leq |\sigma|,$$

which implies $|\sigma| = |\pi|$ and $\pi \cap \pi' = \emptyset$. Therefore, $[\pi]$ is a S-*class* of quasiparallel planes, also. By Proposition 4.4 in [7] σ has at least a point in common with π , a contradiction. Hence, $\sigma \cap \pi$ is a line. Moreover, from Theorem 3.1 in [8] we obtain

$$|\sigma \cap \pi| = |\sigma \cap \pi'| = |\sigma' \cap \pi'| = |\sigma' \cap \pi|$$

and the proposition is proved. \Box

Proposition 3.2. Let $[\alpha]$ and $[\beta]$ be two distinct equivalence classes of quasiparallel planes in **S**, with size at least two. *Every plane* α' *in* $[\alpha]$ *meets every plane* β' *in* $[\beta]$ *in a line of constant length.*

Proof. If either $[\alpha]$ or $[\beta]$ is a S-*class* the desired result follows from Proposition 3.1. Now, we suppose that neither $[\alpha]$ nor $[\beta]$ is a S-*class*. Moreover, we suppose $\alpha \cap \beta = \emptyset$. We know that

$$b_{y} = b_{y}(\alpha) + |\alpha| - |\alpha \cap \alpha'| \tag{3.1}$$

with $\alpha' \in [\alpha]$ and $y \in \alpha \setminus \alpha'$. Analogously, if β' belongs to $[\beta]$ and z denotes a point on $\beta \setminus \beta'$, we infer that

$$b_z = b_z(\beta) + |\beta| - |\beta \cap \beta'|. \tag{3.2}$$

We see, also, that

 $|\alpha| - |\alpha \cap \alpha'| \ge |\beta|$ and $|\beta| - |\beta \cap \beta'| \ge |\alpha|$.

Hence,

$$|\beta| \leq |\alpha| - |\alpha \cap \alpha'| < |\alpha| \leq |\beta| - |\beta \cap \beta'| < |\beta|,$$

which is a contradiction. Thus, planes α and β have at least a point in common. We suppose $\alpha \cap \beta = \{x\}$. Since $|\alpha \cap \beta| = |\alpha' \cap \beta|$, α' and β intersect in a unique point x'. From $\alpha \sim \alpha'$ we deduce that each line through x on β contains x', also. This forces x = x'. Therefore, by using Theorem 3.1 in [8], we have $|\alpha \cap \beta| = |\alpha \cap \beta'|$. If x'' denotes the unique

point which is common to α and β' , from the foregoing, we obtain x = x' = x''. In order to show the proposition, we consider a point *y* on α , with $y \notin \alpha'$, and a point *z* on β , with $z \notin \beta'$. From (3.1) and (3.2) we infer that

$$\begin{aligned} |\alpha| - |\alpha \cap \alpha'| \ge |\beta| - 1 \quad \text{and} \quad |\beta| - |\beta \cap \beta'| \ge |\alpha| - 1, \\ |\alpha| - 1 \ge |\alpha| - |\alpha \cap \alpha'| \ge |\beta| - 1 \ge |\beta| - |\beta \cap \beta'| \ge |\alpha| - 1 \end{aligned}$$

which means that

$$|\alpha \cap \alpha'| = 1 = |\beta \cap \beta'|$$
 and $|\alpha| = |\beta|$.

Hence, the equivalence classes $[\alpha]$ and $[\beta]$ are S*-*classes of same centre x*. Furthermore, every line which meets α in a point *y* meets β , also, and each line which intersects β meets α . It follows that α and β are quasiparallel, a contradiction. We conclude that $\alpha \cap \beta$ is a line and by Theorem 3.1 in [8] every plane in $[\alpha]$ has a line of constant length $|\alpha \cap \beta|$ in common with each plane in $[\beta]$. \Box

4. Three-dimensional affine spaces with a point at infinity

A linear space of dimension two is called an *affine-projective plane* [11] or *linearly h-punctured projective plane* if it is a projective plane deprived of h collinear points. In particular, an *affine plane* of order n is obtained from a projective plane of order n by deleting one line l. The n + 1 points of l are called the *points at infinity* of the affine plane. An affine plane of order n ($n \ge 2$) is a finite linear space with every line of length n and every point of degree n + 1. An *affine plane with a point at infinity* of order n is a linear space which is obtained from a projective plane of order n by removing n collinear points. We know that an affine plane of order n with a point x at infinity has $n^2 + 1$ points and $n^2 + n$ lines, x has degree n, all the other points have degree n + 1, lines through x have length n + 1, lines which miss x have length n.

A three-dimensional affine space is a three-dimensional projective space deprived of a plane π . In an affine space **S** of order *n* all lines have the same length *n*. The points of π are called the *points at infinity* of the affine space **S**. A three-dimensional affine space **S** of order *n* with a point *x* at infinity is a three-dimensional projective space of order *n* deprived of a plane π passing through *x* together with its points different from *x*. All the planes through *x* are affine planes of order *n*. It is clear that planes through *x* are contained in n + 1 S*-classes of same centre *x* and planes, which miss point *x*, belong to n^2 S-classes.

Proposition 4.1. *There exists no finite linear space where there are two distinct P-classes of quasiparallel lines with same centre x.*

Proof. Let **S** be a finite linear space. We denote by [r] and [s] two distinct P-*classes* of quasiparallel lines in **S**, both *of centre x*. By Proposition 2.2 in [5] lines *r* and *s* have same length n + 1, each point *y* on *r*, with $y \neq x$, has degree n + 1 and each point *z* on *s*, with $z \neq x$, has degree n + 1. Thus, every line which meets *r*, intersects *s*, also and vice versa. Hence, *r* and *s* are quasiparallel and we have a contradiction. \Box

Now, we can state our result.

Theorem II. Let **S** be a finite planar space satisfying property (A) and such that there is at least a line l of length $|l| \ge 5$. If equivalence classes of quasiparallel planes in **S** are only S*-classes and S-classes, there are n + 1 S*-classes with same centre x and n^2 S-classes of quasiparallel planes and S is a three-dimensional affine space of order n with a point x at infinity.

Proof. We proceed in steps.

Step 1: Let $[\sigma_i]$ be a S-class of quasiparallel planes in S. If $[\sigma_j]$ denotes a S-class of quasiparallel planes, with $[\sigma_i] \neq [\sigma_j]$, all the planes in $[\sigma_j]$ intersect σ_i in quasiparallel disjoint lines which belong to a same equivalence S-class $[s_j]$ of quasiparallel lines in σ_i . Now, let $[\alpha_h]$ be a S*-class of quasiparallel planes, of centre x_h . By Proposition 3.1 all the planes in $[\alpha_h]$ meet σ_i in quasiparallel lines which are contained in a same equivalence class of quasiparallel lines in σ_i , $[a_h]$. If x_h lies on σ_i , $[a_h]$ is a P-class of centre x_h . Conversely, if $x_h \notin \sigma_i$, $[a_h]$ is a S-class. Let s be a line on σ_i .

We denote by β a plane through *s*, with $\beta \neq \sigma_i$. By hypothesis, equivalence class [β] is either a S-*class* or a S*-*class*. Hence, the equivalence class [*s*] of quasiparallel lines in σ_i is either a S-*class* or a P-*class*. By Proposition 2.9 in [5] and Proposition 4.1 there exists at most one P-*class* in plane σ_i . Therefore, either each class of quasiparallel lines in σ_i is a S-*class* and σ_i is an affine plane (see Theorem 2 in [5]) or there exists a unique P-*class* and σ_i is an affine plane with a point at infinity [5, Theorem 5]. In particular, if centre x_h of a S*-*class* [α_h] belongs to σ_i , σ_i is an affine plane with point x_h at infinity. Furthermore, *each plane in a* S-*class of quasiparallel planes is either an affine plane or an affine plane with a point at infinity*.

Step 2: Let $[\sigma_i]$ be a S-class of quasiparallel planes in S. There are two distinct cases to be considered.

Case 1: We assume that σ_i is an affine plane of order n with point x_h at infinity, where x_h is centre of a S*-*class* $[\alpha_h]$. The lines through x_h on σ_i have length n + 1 and are long lines of σ_i . Instead, the lines on σ_i which miss x_h have length n and are short lines. Let σ'_i be a plane of order p in $[\sigma_i]$, with $\sigma_i \neq \sigma'_i$. By (B) and (ii) we have $|\sigma_i| = |\sigma'_i|$. Hence, if σ'_i is an affine plane, we obtain $n^2 + 1 = p^2$, a contradiction. Therefore, every plane in $[\sigma_i]$ is an affine plane of order n with a point at infinity. Moreover, since σ_i and σ'_i are disjoint, σ'_i has a point x_k at infinity, with $x_h \neq x_k$. From the foregoing, we see that x_k is centre of a S*-*class* $[\alpha_k]$ of quasiparallel planes. The plane α_h meets σ_i in a long line of length n + 1. Since σ_i and σ'_i are quasiparallel planes, by Theorem 3.1 in [8] we deduce that $\alpha_h \cap \sigma'_i$ is a long line of length n + 1, also. Furthermore, since long lines on σ'_i pass through x_k , we obtain that x_k lies on α_h . Let α'_h be a plane in $[\alpha_h]$, with $\alpha_h \neq \alpha'_h$. By Theorem 3.1 in [8] we have that the lines $\alpha'_h \cap \sigma_i$ and $\alpha'_h \cap \sigma'_i$ have length n + 1. Therefore, x_k belongs to α'_h and α_h meets α'_h in the line $x_h x_k$, a contradiction.

Case 2: We assume that σ_i is an affine plane of order *n*. All the planes in $[\sigma_i]$ are affine planes of order *n*. Let $[\sigma_j]$ be a S-*class* of quasiparallel planes, with $[\sigma_i] \neq [\sigma_j]$. From the foregoing, all the planes in $[\sigma_j]$ are affine planes. Moreover, $\sigma_i \cap \sigma_j$ is a line of length *n*. Hence, any plane σ_i which belongs to a S-class of quasiparallel planes is an affine plane of order *n* and no centre of a S^{*}-class lies on σ_i .

Step 3: Let $[\alpha_h]$ be a S*-class of quasiparallel planes of centre x_h . Planes in $[\sigma_i]$ intersect α_h in disjoint quasiparallel lines of length n, which belong to a S-class. Let $[\alpha_k]$ be a S*-class of centre x_k such that $\alpha_h \notin [\alpha_k]$. By Proposition 3.2 planes in $[\alpha_k]$ meet α_h in quasiparallel lines which belong to an equivalence class $[a_k]$. Furthermore, if x_k lies on α_h , $[a_k]$ is a P-class. Conversely, if $x_k \notin \alpha_h$, $[a_k]$ is a S-class. Since in a plane there exists at most one P-class, α_h is either an affine plane or an affine plane with a point x_k at infinity. Let α_h be an affine plane of order p with a point x_k at infinity, where x_k is centre of a S*-class $[\alpha_k]$. The long lines on α_h have length p + 1 and pass through x_k . The short lines have length p and miss x_k . If σ_i is an affine plane in a S-class of quasiparallel planes, we have $x_k \notin \sigma_i$ and $\sigma_i \cap \alpha_h$ is a short line of length p = n. Hence, α_h has order n. Therefore, every plane in a S*-class $[\alpha_h]$ of quasiparallel planes is either an affine plane of order n or an affine plane of order n with a point x_k at infinity, where x_k is centre of a S*-class $[\alpha_k]$ of quasiparallel planes.

Step 4: We suppose that each plane in **S** is an affine plane of order *n*. Moreover, any line has length *n*. By hypothesis we have $n = |l| \ge 5$ and **S** is a three-dimensional affine space of order *n* (see [2]). Therefore, each equivalence class of quasiparallel planes is a S-class [7, Theorem II]), a contradiction. Thus, there is at least a plane which is an affine plane with a point at infinity.

Step 5: Let α_h be an affine plane of order *n* with a point x_k at infinity. Since $|\alpha_h| = |\alpha'_h|$ for each plane $\alpha'_h \in [\alpha_h]$, every plane α'_h is an affine plane of order *n* with a point x'_k at infinity. We know that $|\alpha_k \cap \alpha_h| = |\alpha_k \cap \alpha'_h| = n + 1$. Thus, the line $\alpha_k \cap \alpha'_h$ contains point at infinity x'_k of α'_h . Let α'_k be a plane in $[\alpha_k]$, with $\alpha_k \neq \alpha'_k$. From $|\alpha_k \cap \alpha'_h| = |\alpha'_k \cap \alpha'_h|$ we have that α'_k meets α'_h in a long line which contains the point x'_k . Hence, both planes α_k and α'_k pass through both points x_k and x'_k . Since α'_k belongs to S*-class $[\alpha_k]$ we infer that $x_k = x'_k$. Therefore, points x_h and x_k belong to both planes α_h and α'_h . Thus, $x_k = x'_k = x_h$. We conclude that every plane in $[\alpha_h]$ is an affine plane with a point at infinity of order *n* and the point at infinity is the centre x_h of $[\alpha_h]$. Moreover, α_h does not contain a centre x_k of a S*-class $[\alpha_k]$, with $x_k \neq x_h$.

Step 6: Let $[\alpha_k]$ be a S*-class of centre x_k , with $[\alpha_h] \neq [\alpha_k]$. We suppose that α_k is an affine plane of order *n*. The line $\alpha_h \cap \alpha_k$ is a short line and centre x_k of $[\alpha_k]$ does not lie on α_h . Let *y* be a point on $\alpha_h \cap \alpha_k$. Using a plane α'_h which is quasiparallel to α_h and a plane α'_k which is quasiparallel to α_k , from (i), (ii) and (B) we have

$$b_y = b_y(\alpha_h) + |\alpha_h| - 1 = n + 1 + n^2 + 1 - 1,$$

$$b_y = b_y(\alpha_k) + |\alpha_k| - 1 = n + 1 + n^2 - 1,$$

a contradiction. Hence, all the planes in S*-classes are affine planes of order n with a point at infinity.

Step 7: Let $[\alpha_h]$ of centre x_h and $[\alpha_k]$ of centre x_k be two different S*-*classes*. Since planes in $[\alpha_h]$ are affine planes with x_h at infinity and planes in $[\alpha_k]$ are affine planes with x_k at infinity we have either $x_h \notin \alpha_k$ and $x_k \notin \alpha_h$ or $x_h = x_k$. First, we suppose $x_h \neq x_k$. Therefore, we find $x_h \notin \alpha_k$ and $x_k \notin \alpha_h$. Consider a plane γ through the line $x_h x_k$. Plane γ is not an affine plane of a S-*class* of quasiparallel planes because γ contains x_h . Therefore, plane γ is an affine plane with a point at infinity and $[\gamma]$ is a S*-*class* of quasiparallel planes. From the foregoing we deduce that γ contains a centre of a S*-*class* which is different from centre of S*-*class* $[\gamma]$. This contradiction proves that *all the S**-*classes of quasiparallel planes have the same centre x*.

Step 8: All the lines of length n + 1 contain x. Moreover, we have $n \ge 4$ because in **S** there exists a line of length at least 5. Hence, since any plane of **S** is an affine-projective plane of order $n \ge 4$, **S** is obtained from a projective space **P** of order n by removing a part of a plane π of **P** (see [11]). Let s' be the line $\alpha_h \cap \sigma_i$. If we denote by z a point on s', using a plane σ'_i which is quasiparallel to σ_i , we obtain

$$b_z = b_z(\sigma_i) + |\sigma_i| = n + 1 + n^2.$$

The unique line through z of length n + 1 is the line xz. Hence, we have

$$v = |P| = n + 1 + (n^2 + n)(n - 1) = n^3 + 1.$$

Thus, **S** is a three-dimensional projective space **P** of order *n* which $n^2 + n$ coplanar points have been deleted from. Hence, **S** is space **P** deprived of a plane π passing through *x* together with its points different from *x*. All the planes through *x* belong to n + 1 S*-*classes* of quasiparallel planes *with same centre x*, all the planes which miss *x* belong to n^2 S-*classes* of quasiparallel planes. This completes the proof. \Box

5. Three-dimensional affine spaces with a long line at infinity

A generalized projective plane is a two-dimensional linear space in which any two distinct lines have a common point. In particular, a *near-pencil* on v points is a finite linear space with one line of length v - 1 and v - 1 lines of length 2. Furthermore, a *projective plane* of order n, with $n \ge 2$, is a finite linear space with every line of length n + 1 and every point of degree n + 1. It is easy to see that projective planes are generalized projective planes without lines of length two and near-pencils are generalized projective planes with lines of length 2.

A three-dimensional affine space **S** of order n with a long line at infinity is a three-dimensional projective space **P** of order n deprived of a plane π , together with its lines but one, say l, and its points except those of l. It is clear that planes through l belong to a unique P-class of quasiparallel planes of axis l. Therefore, each plane which misses l belongs to a S^{*}-class of centre on l.

Proposition 5.1. Let **S** be a finite linear space. If *l* is a line such that every line *r* in **S**, with $r \neq l$, meets *l* in a point x_i and *r* belongs to a pencil of quasiparallel lines of centre x_i , all the lines in **S** are quasiparallel each other and **S** is a generalized projective plane.

Proof. The class [r] of quasiparallel lines is neither a S-class nor a singleton. Thus, [r] is either a P-class of centre x_i on l or a C-class (see [5]). It is clear that there exists at least a line s which misses x_i and intersects l in a point x_j , with $x_i \neq x_j$. The class [s] is either a P-class of centre x_j or a C-class. If [r] and [s] are two P-classes, by Proposition 2.9 in [5], there exists in **S** a singleton [p] such that either $x_i \in p$ and $x_j \notin p$ or $x_i \notin p$ and $x_j \in p$. Since points x_i and x_j lie on l and each line which is distinct from l, does not belong to a singleton, we have a contradiction. By Proposition 2.1 in [5], there exists at most one C-class in **S**. Moreover, by Proposition 2.8 in [5], a linear space **S**, with both equivalence classes of quasiparallel lines, a C-class and a P-class, does not exist. Hence, r and s are quasiparallel lines and class [r] = [s] is a C-class. Furthermore, all the lines which are distinct from l belong to unique C-class [r]. By Proposition 2.2 in [6], there exists no linear space with only one C-class and one singleton. Hence, lines in **S** are pairwise quasiparallel and **S** is a generalized projective plane (see [5]). \Box

Theorem III. Let **S** be a finite planar space satisfying property (A). If there is a long line of length $k \ge 5$ and equivalence classes of quasiparallel planes in **S** are only one *P*-class of axis a line *l* of length n + 1 and S^* -classes of centres on *l*, **S** is a three-dimensional affine space of order *n* with line *l* at infinity.

Proof. We proceed in steps.

Step 1: Let $[\pi]$ be the P-class of axis l. If $[\alpha_h]$ is a S*-class of centre x_h on l, from Proposition 3.2 we deduce that all the planes in $[\alpha_h]$ intersect π in quasiparallel lines through x_h . Furthermore, the planes of each S*-class intersect π in quasiparallel lines through a point on l. Let r be a line on π which misses x_h . A plane β through r, which is distinct from π , belongs to a S*-class $[\alpha_k]$ of centre $x_k \neq x_h$. Hence, each line r in π , which is distinct from l, meets l and belongs to a pencil of quasiparallel lines of centre on l. By Proposition 5.1, π is a generalized projective plane.

Step 2: First, we suppose that π is a near-pencil and l is the long line on π . The planes in $[\alpha_h]$ intersect π in lines of the same length through x_h . So, we have a contradiction. Now, we suppose that l is a line of length 2. Let s be the long line on π . We denote by x the point $l \cap s$ and by α a plane through s, distinct from π . The class $[\alpha]$ is a S*-*class* and planes in $[\alpha]$ meet π in quasiparallel lines of the same length, which is a contradiction. This implies that π is a projective plane. Furthermore, *each plane in* $[\pi]$ *is a projective plane and all the planes in* $[\pi]$ *have the same order n*.

Step 3: Let $[\alpha_h]$ be a S*-class of centre x_h on l. We consider a point y in S, with $y \notin \pi$, and a line t on π which misses x_h . It is clear that x_h does not lie on the plane $\langle t, y \rangle$. Thus, there exists at least one S*-class $[\alpha_k]$ of centre $x_k \neq x_h$, such that $\langle t, y \rangle \sim \alpha_k$. Since two planes of $[\alpha_h]$ intersect in the point x_h , there exists at most a plane α'_h in $[\alpha_h]$ such that $l \subset \alpha'_h$. We may assume $l \not\subset \alpha_h$. By Proposition 3.2 planes in $[\pi]$ meet α_h in quasiparallel lines of length n + 1, which belong to a pencil of centre x_h . If $[\alpha_k]$ is a S*-class of centre $x_k \neq x_h$, planes in $[\alpha_k]$ meet α_h in quasiparallel disjoint lines. Finally, let $[\alpha_i]$ be a S*-class of centre x_h , such that $[\alpha_i] \neq [\alpha_h]$. The planes in $[\alpha_i]$ meet α_h in quasiparallel lines through x_h . By Proposition 4.1 equivalence classes of quasiparallel lines in α_h are one P-class of centre x_h and S-classes. By Theorem 5 in [5], α_h is an affine plane with point x_h at infinity. Since the line $\pi \cap \alpha_h$ of length n + 1 is a long line of α_h , α_h has order n. Hence, if $l \not\subset \alpha_h$, α_h is an affine plane of order n with point x_h at infinity.

Step 4: Let α'_h be a plane in $[\alpha_h]$, with $\alpha'_h \neq \alpha_h$. By (ii) we have $|\alpha_h| = |\alpha'_h| = n^2 + 1$. If $l \not\subset \alpha'_h, \alpha'_h$ is an affine plane of order *n* with x_h at infinity. Now, we suppose $l \subset \alpha'_h$. Each plane in $[\pi]$ has line *l* in common with α'_h . Planes in $[\alpha_k]$ meet α'_h in quasiparallel lines through x_k . Let *g* be a line in α'_h , with $g \neq l$. We denote by γ a plane through *g*, with $\gamma \neq \alpha'_h$. Since γ does not belong to $[\pi]$, $[\gamma]$ is a S*-class of centre a point x_i on *l*. Thus, *g* meets *l* in x_i and belongs to a pencil of quasiparallel lines of centre x_i . By Proposition 5.1 α'_h is a generalized projective plane. First, we suppose that α'_h is a near-pencil. Since *l* lies on the projective plane π , *l* is long line of α'_h . By $|\alpha_h| = |\alpha'_h| = n^2 + 1$, we have a contradiction. Now, we suppose that α'_h is a projective plane of order *n*. From $|\alpha_h| = |\alpha'_h| = n^2 + 1$, we obtain a contradiction. Thus, $l \not\subset \alpha'_h$. Each plane in $[\alpha_h]$ is an affine plane of order *n* with x_h at infinity. Furthermore, all the planes in S*-classes are affine planes of order *n* with a point at infinity on *l*.

Step 5: Since there is a long line of length $k \ge 5$, each plane has order $n \ge 4$. Furthermore, each plane is affineprojective. By a result in [11] we deduce that **S** is a projective space which a part of a plane has been deleted from. Let z be a point on π such that $z \notin l$. We denote by δ a plane through z, distinct from π . Plane δ belongs to a S*-class of centre p on l. All the lines through z on δ , distinct from line pz, have length n. Let π' be a plane in $[\pi]$ with $\pi' \neq \pi$. By (i) we have

$$b_z = b_z(\pi) + |\pi'| - |\pi \cap \pi'|,$$

$$b_z = (n+1) + (n^2 + n + 1) - (n+1).$$

Hence, there exist $n^2 + n + 1$ lines through z, n + 1 of length n + 1 and n^2 of length n. Thus, we obtain

$$v = |P| = 1 + (n+1)n + n^2(n-1) = n^3 + n + 1.$$
(5.1)

Finally, we denote by **P** the three-dimensional projective space from which **S** has been obtained by deleting a part of a plane τ . It is clear that $\mathbf{P} \setminus \tau$ is an affine space and each plane in $\mathbf{P} \setminus \tau$ is an affine plane. Since in **S** a plane α_h (α_k) is an affine plane with a point x_h (x_k) at infinity, in **P** the points x_h and x_k lie on τ and $l \subset \tau$. Furthermore, by (5.1) we delete exactly n^2 points from τ . Hence, since line *l* has length n + 1 we obtain **S** deleting $\tau \setminus l$ from **P**. **S** is a three-dimensional affine space of order *n* with line *l* of length n + 1 at infinity.

6. Three-dimensional affine spaces with a short line at infinity

A *punctured projective plane* is a projective plane deprived of a point. In the following if r is a line, we denote by i(r) the number of lines which have at least a common point with r and by ext(r) the number of lines which miss line r.

Proposition 6.1. There exists no finite linear space \mathbf{S} such that the equivalence classes of quasiparallel lines in \mathbf{S} are only one C-class, one S-class and one singleton.

Proof. On the contrary, we suppose that S is a finite linear space such that equivalence classes of quasiparallel lines are exactly one C-class [r], one S-class [s] and one singleton [l]. If each line in [r] has length n + 1, by Proposition 2.5 in [5], each line in [s] has length n and each point has degree n + 1. Let x be a point on r which does not lie on l. There exists at most one line s' of [s] such that x belongs to s'. By counting points on lines through x, we have

$$n^2 + n \leqslant v \leqslant 1 + (n+1)n. \tag{6.1}$$

By Proposition 2.5 in [5], each line in [s] meets every line in [r]. Therefore, since $b_y = n + 1$ for each point y in S, l meets each line in [r] and we obtain

$$b = i(r) = n^2 + n + 1.$$
(6.2)

If $v = n^2 + n + 1$, S is a generalized projective plane and there exists a unique equivalence class of quasiparallel lines, a contradiction. Now, we assume $v = n^2 + n$. By Theorem 1.2 in [10] S can be embedded into a projective plane of order n. Since $v = n^2 + n$, S is a punctured projective plane and there exists no singleton. So, we have a contradiction. \Box

Proposition 6.2. There exists no finite linear space whose equivalence classes of quasiparallel lines are only one *P*-class of centre x, one singleton [l], with $x \in l$, and S-classes.

Proof. On the contrary, we suppose that S is a finite linear space such that equivalence classes are exactly one P-class [r] of centre x, h S-classes $[s_1], \ldots, [s_h]$ and one singleton [l], with $x \in l$. Let n + 1 be length of r. By (ii) all the lines in [r] have length n + 1. Each point y on r, with $y \neq x$, has degree n + 1 (see [5]). From Proposition 2.6 in [5] each line in a S-class [si] (i = 1, ..., h) has length n and every point on a line in a S-class has degree n + 1. The n + 1 lines through *y* are the line *r* and *n* lines in *n S*-classes. Thus, we have $h \ge n \ge 2$ and

$$v = n + 1 + n(n - 1) = n^2 + 1.$$
(6.3)

Let z be a point on l, with $z \neq x$. Each line g through z, with $g \neq l$, is a line in a S-class. Hence, z has degree n + 1and we obtain:

$$v = |l| + n(n-1) = n^2 - n + |l|.$$
(6.4)

By (6.3) and (6.4) we find:

$$|l| = n + 1.$$
 (6.5)

From a result of Erdös et al. [4] we deduce

$$b \ge n^2 + n. \tag{6.0}$$

By Propositions 2.4 and 2.6 in [5], each line s_i of a S-class of quasiparallel lines meets r. Hence, we have

$$b = i(r) = n^2 + b_x \ge n^2 + n.$$

If $b_x > n + 1$, all the lines through x, which are distinct from l, belong to [r] and we obtain

$$v = 1 + b_x \cdot n = n^2 + 1,$$

a contradiction. Hence, either $b_x = n$ or $b_x = n + 1$. First, we suppose $b_x = n + 1$. There exist at least three lines through x of length n + 1, l and two lines in [r]. If n = 2, we find v = 1 + 3n, a contradiction. If $n \ge 3$, we have:

$$v \ge 1 + 3n + (n - 2)(n - 1) = n^2 + 3$$

a contradiction. Hence, we deduce $b_x = n$, each line through x has length n + 1 and $b = n^2 + n$. From Lemma 2.6 in [10] S can be embedded in a projective plane π of order *n*. Since $v = n^2 + 1$ and $b = n^2 + n$, we obtain S by deleting

from π *n* points p_1, \ldots, p_n and one line. Thus points p_i $(i = 1, \ldots, n)$ are collinear and **S** is an affine plane with a point at infinity. Furthermore, there exists no *singleton* in **S**. So, we have a contradiction.

Proposition 6.3. Let **S** be a finite linear space such that there exists a unique singleton [l] and, if there exist *P*-classes of quasiparallel lines, each centre of a *P*-class lies on *l*. **S** is linearly *h*-punctured projective plane of order *n* $(2 \le h \le n-1)$, equivalence classes are one *C*-class [r], *h S*-classes and one singleton [l], with |l| = |r| - h, and there exists no *P*-class.

Proof. First, we suppose that in **S** there exist P-*classes* of centres on *l*. By Proposition 4.1 two distinct P-*classes* of quasiparallel lines have distinct centres. From Proposition 2.9 in [5] we deduce that if there are two distinct P-*classes* $[t_i]$, $[t_j]$ of centres x_i, x_j , there exists a singleton [g] such that either $x_i \in g$ and $x_j \notin g$ or $x_i \notin g$ and $x_j \in g$. Since there is a unique singleton [l] with $x_i \in l$ and $x_j \in l$, there exists at most one P-*class* [t] in **S**. By Proposition 2.8 in [5] there exists no C-*class* in **S**. If equivalence classes are only [t] and [l], all the lines belong to a pencil. So, we have a contradiction. Hence, there are S-*classes* of quasiparallel lines. By Proposition 6.2 there exists no finite linear space with only one P-*class*, one singleton or there exist at least n + 1 singletons. So, we have a contradiction. Finally, we suppose that there exists a C-*class* [r]. By Proposition 2.1 in [5], [r] is the unique C-*class*. If there exists a class [s] of quasiparallel lines, with $[r] \neq [s] \neq [l]$, [s] is a S-*class*. Therefore, if there exists no S-*class* in **S**. We suppose that equivalence classes are exactly one C-*class* and one singleton. By Proposition 2.2 in [6], the number of singletons is at least k > |r|. So, we have a contradiction. Thus, there is at least one S-*class* in **S**. We suppose that there are the exist are h S-*classes*, with $h \ge 2$. By Theorem 4 in [5], **S** is a linearly *h*-punctured projective plane of order *n*, with |r| = n + 1 and |l| = n + 1 - h ($2 \le h \le n - 1$).

Let **S** be a three-dimensional affine space of order $n \ge 4$ with a line *l* of length $|l| \le n$ at infinity. It is clear that equivalence classes of quasiparallel planes are only one P-class of axis *l*, S*-classes of centres on *l* and S-classes and there exists at least one line of length at least 5.

Theorem IV. Let **S** be a finite planar space with property (A). If there is at least one line of length at least 5 and equivalence classes of quasiparallel planes are only one *P*-class of axis a line *l*, S^* -classes of centres on *l* and at least one *S*-class, **S** is a three-dimensional affine space of order $n \ge 4$ with line *l* at infinity. Moreover, if *k* is the number of *S*-classes, |l| = n + 1 - k and the number of S^* -classes is n + 1 - k.

Proof. We proceed in steps.

Step 1: Let $[\sigma_h]$ be a S-class of quasiparallel planes. We denote by *n* the order of σ_h . There exists at most one plane $\sigma'_h \in [\sigma_h]$ such that $l \subset \sigma'_h$. Thus, we may suppose $l \notin \sigma_h$. There are three distinct cases to be considered.

Case 1: We assume that each plane in $[\sigma_h]$ has no point in common with *l*. Planes in each class of quasiparallel planes, which is distinct from $[\sigma_h]$, meet σ_h in quasiparallel disjoint lines. Hence, every equivalence class of quasiparallel lines in σ_h is a S-*class* and by Theorem 2 in [5] σ_h is an affine plane. Furthermore, *every plane in* $[\sigma_h]$ *is an affine plane of order n*.

Case 2: We suppose that σ_h has empty intersection with l and there exists a plane σ'_h in $[\sigma_h]$ of order m such that $l \subset \sigma'_h$. From the foregoing, σ_h is an affine plane of order n. Planes in each S-*class* $[\sigma_k]$, with $\sigma_h \notin [\sigma_k]$, intersect σ'_h in quasiparallel disjoint lines. Moreover, planes in P-*class* $[\pi]$ intersect σ'_h in line l and planes in each S*-*class* $[\alpha_i]$ of *centre* x_i on l meet σ'_h in quasiparallel lines through x_i . It is clear that each equivalence class of quasiparallel lines in σ'_h , which is distinct from [l], is not a *singleton*. By Proposition 6.3, if [l] is a *singleton*, σ'_h is a linearly k-punctured projective plane, with $2 \le k \le m - 1$. If [l] is not a *singleton*, each equivalence class of quasiparallel lines in σ'_h has size at least 2. By Proposition 2.1 in [8] one of the following cases occurs: σ'_h is a projective plane, σ'_h is an affine plane with a point at infinity, σ'_h is an affine plane. If σ'_h is a projective plane, by (ii) we find $|\sigma_h| = n^2 = |\sigma'_h| = m^2 + m + 1$, a contradiction. If σ'_h is a punctured projective plane, we have $n^2 = m^2 + m + 1 - k$, with $2 \le k \le m - 1$, a contradiction. Finally, if σ'_h is a k-punctured projective plane, we have $n^2 = m^2 + m + 1 - k$, with $2 \le k \le m - 1$, a contradiction.

Case 3: We assume $l \cap \sigma_h = \{x_h\}$. Every plane σ'_h in $[\sigma_h]$ intersects l in a point. By Proposition 3.1 planes in a S-*class* $[\sigma_k]$, with $\sigma_h \notin [\sigma_k]$, meet σ_h in quasiparallel disjoint lines. If $[\alpha_i]$ is a S*-*class of centre* $x_i \neq x_h$, planes in $[\alpha_i]$ meet σ_h in quasiparallel disjoint lines. Let $[\alpha_h]$ be a S*-*class of centre* x_h , planes in $[\alpha_h]$ intersect σ_h in quasiparallel lines through x_h . Finally, planes in $[\pi]$ meet σ_h in quasiparallel lines through x_h . By Proposition 4.1 there exists a unique P-*class of centre* x_h . Hence, the equivalence classes of quasiparallel lines in σ_h are only one P-*class* and S-*classes*. By Theorem 5 in [5], σ_h is an affine plane with point x_h at infinity. Furthermore, every plane in $[\sigma_h]$ is an affine plane with a point at infinity.

Hence, either each plane in $[\sigma_h]$ is an affine plane of order n and it is disjoint from l or every plane σ'_h in $[\sigma_h]$ meets l in a point x'_h and σ'_h is an affine plane of order n with point x'_h at infinity.

Step 2: Let $[\alpha_i]$ be a S*-class of centre $x_i \in l$. There exists at most one plane $\alpha'_i \in [\alpha_i]$ such that $l \subset \alpha'_i$. We may suppose that $l \not\subset \alpha_i$. By Proposition 3.1 planes in a S-class $[\sigma]$ intersect α_i in quasiparallel disjoint lines. By Proposition 3.2 if $[\alpha_j]$ is a S*-class of centre x_i , planes in $[\alpha_j]$ intersect α_i in quasiparallel lines through x_i , if $[\alpha_j]$ is a S*-class of centre $x_j \neq x_i$, planes in $[\alpha_j]$ intersect α_i in quasiparallel disjoint lines. Finally, planes in P-class $[\pi]$ intersect α_i in quasiparallel lines through x_i . By Proposition 4.1 in α_i there exists a unique P-class of quasiparallel lines of centre x_i . Hence, α_i is an affine plane with point x_i at infinity (see [5]).

Step 3: Let α'_i be a plane in $[\alpha_i]$ such that $l \subset \alpha'_i$. Since planes in a S-class $[\sigma]$ intersect α'_i in quasiparallel disjoint lines, there exists at least one S-class of quasiparallel lines in α'_i . Planes in a S*-class $[\alpha_j]$ of centre x_j meet α'_i in quasiparallel lines through x_j and planes in $[\pi]$ meet α'_i in line l. Hence, there is at most one singleton, line l. First, we suppose that there exists a singleton. By Proposition 6.3, α'_i is a linearly k-punctured projective plane, with $k \ge 2$. Now, we suppose that each equivalence class has size at least 2. Since in α'_i there exists at least one S-class of quasiparallel lines, α'_i is not a projective plane. Analogously, α'_i is not an affine plane because there exists at least one class of quasiparallel lines which is distinct from a S-class. By Proposition 2.1 in [8], α'_i is either a punctured projective plane or an affine plane with a point at infinity. We denote by p the order of α_i and by q the order of α'_i . If α'_i is a linearly k-punctured projective plane, with $k \ge 2$, we obtain

$$|\alpha_i| = p^2 + 1 = |\alpha'_i| = q^2 + q + 1 - k.$$

So, we have p = q = k and α'_i is an affine plane with a point at infinity. Now, let α'_i be a punctured projective plane. We deduce

$$|\alpha_i| = p^2 + 1 = |\alpha'_i| = q^2 + q.$$

So, we have a contradiction. Hence, each plane in a S^{*}-class $[\alpha_i]$ is an affine plane with a point at infinity and all the planes in $[\alpha_i]$ have same order.

Step 4: We suppose that σ_h is an affine plane of order n with a point x_h at infinity which belongs to a S-class and α_i is an affine plane of order p with a point x_i at infinity which belongs to a S*-class. We can assume $x_h \neq x_i$ and $l \not\subset \alpha_i$. Hence, we have $x_h \notin \alpha_i$ and $x_i \notin \sigma_h$. We denote by σ'_h a plane in $[\sigma_h]$, with $\sigma_h \neq \sigma'_h$, and by α'_i a plane in $[\alpha_i]$, with $\alpha_i \neq \alpha'_i$. Let r be line $\sigma_h \cap \alpha_i$. Line r is a short line of both planes σ_h and α_i and has length n = p. Let y be a point on r. By (i) and (ii) we obtain

$$b_y = b_y(\sigma_h) + |\sigma'_h| = n + 1 + n^2 + 1,$$

$$b_y = b_y(\alpha_i) + |\alpha'_i| - 1 = n + 1 + n^2 + 1 - 1$$

Hence, we have a contradiction. Thus, σ_h is an affine plane of order *n*. Furthermore, all the planes in a S-class $[\sigma]$ are affine planes of order *n* and each plane in $[\sigma]$ has no point in common with line *l*.

Step 5: Let $[\alpha_i]$ be a S*-class, with $\alpha_i \cap l = \{x_i\}$. From the foregoing α_i is an affine plane with point x_i at infinity. Line $r = \sigma_h \cap \alpha_i$ of length *n* is a short line in α_i . Hence, α_i has order *n* and all the planes of S*-classes have same order *n*.

Step 6: By Propositions 3.1 and 3.2 planes in a S-class $[\sigma]$ intersect each plane of $[\pi]$ in quasiparallel disjoint lines. Therefore, the line $s = \sigma \cap \pi$ is a line of length *n* which is disjoint from *l*. Planes in a S*-class $[\alpha_i]$ of centre x_i on *l* meet every plane of $[\pi]$ in quasiparallel lines through x_i . In π there is at most one singleton [l]. If [l] is a singleton, by Proposition 6.3 π is a linearly *t*-punctured projective plane with $t \ge 2$. If [l] is not a singleton, by Proposition 2.1 in [8], π is either a punctured projective plane with a point x_i on *l* at infinity. There are two distinct cases to be considered.

Case 1: We suppose that π is an affine plane with point x_i at infinity. Since *s* is a short line of π , π has order *n*. We consider a plane $\sigma' \in [\sigma]$, with $\sigma' \neq \sigma$, and a plane $\pi' \in [\pi]$, with $\pi' \neq \pi$. If *z* is a point on *s* we have

$$b_{z} = b_{z}(\sigma) + |\sigma'| = n + 1 + n^{2},$$

$$b_{z} = b_{z}(\pi) + |\pi'| - |\pi \cap \pi'| = n + 1 + n^{2} + 1 - |l|.$$
(6.7)

Hence, we have |l| = 1, a contradiction.

Case 2: Each plane in $[\pi]$ is either a punctured projective plane or linearly *t*-punctured projective plane with $t \ge 2$. We may state that each plane in $[\pi]$ is a *k*-punctured projective plane with $k \ge 1$. Planes in a S-*class* $[\sigma]$ intersect π in short lines of length *n*. Hence, π has order *n*. We obtain

$$b_z = b_z(\sigma) + |\sigma'| = n + 1 + n^2 = b_z(\pi) + |\pi'| - |\pi \cap \pi'| = n + 1 + n^2 + n + 1 - k - |l|$$

for a point *z* on $s = \pi \cap \sigma$. Thus, we have

$$|l| = n + 1 - k.$$

There are n + 1 lines through z on π , k of length n which miss l and n + 1 - k of length n + 1 which intersect line l. The plane π is an affine plane of order n with line l at infinity. All the lines through z on a plane σ of a S-*class* of quasiparallel planes have length n. Let x be a point on l. If α is a plane through line xz, with $\alpha \neq \pi$, we have that α belongs to a S*-*class*. Therefore, α is an affine plane with x at infinity. The unique line through z of length n + 1 on α is line xz. Thus, the n + 1 - k lines joining z to points on l have length n + 1, all the other lines through z have length n. Hence, by (6.7) we obtain

$$v = |P| = 1 + (n + 1 - k)n + (n^{2} + k)(n - 1),$$

$$v = n^{3} + n + 1 - k = n^{3} + |l|.$$
(6.8)

All the planes in **S** are affine-projective planes of order *n*. Since there is a line of length at least 5, we obtain $n \ge 4$. By a result in [11] **S** is a projective space **P** of order *n* deprived of a part of its plane τ . Let *X* be the set of points on τ which are in **S**. By (6.8) **S** has been obtained from **P** by deleting $n^2 + n + 1 - |l| = n^2 + k$ points of τ and |X| = |l|. Hence, **S** is a three-dimensional affine space with line *l* at infinity. Furthermore, the number of S*-*classes* is exactly n + 1 - k = |l| and the number of S-*classes* is *k*. This completes the proof. \Box

References

- [1] L.M. Batten, Combinatorics of Finite Geometries, Cambridge, 1997.
- [2] F. Buekenhout, Une caractérisation des espaces affins basée sur la notion de droite, Math. Z. 111 (1969) 367-371.
- [4] P. Erdös, R.C. Mullin, V.T. Sòs, D.R. Stinson, Finite linear spaces and projective planes, Discrete Math. 47 (1983) 49-62.
- [5] S. Freni, Quasiparallel lines in finite linear spaces, Ricerche di Matematica 47 (fasc.1) (1998) 115–124.
- [6] S. Freni, Quasiparallelism and embedding of finite linear spaces, Discrete Math. 208/209 (1999) 273-284.
- [7] S. Freni, Quasiparallel planes in finite planar spaces, Discrete Math. 255 (2002) 117-124.
- [8] S. Freni, Quasiparallelism in finite planar spaces, Discrete Math. 267 (2003) 127-142.
- [9] N. Melone, U. Ott, On the rank of truncated incidence matrices of linear spaces, Designs Codes Cryptogr. 2 (1992) 307-313.
- [10] D.R. Stinson, A short proof of a theorem of de Witte, Ars Combin. 14 (1982) 78–86.
- [11] L. Teirlinck, Combinatorial structures, Ph.D. Thesis, Department of Mathematics, Vrije University, Bruxelles, 1976.

266