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Abstract

This paper is concerned with quasiparallelism relation in a finite planar space S. In particular, we prove that if no plane in S is the
union of two lines quasiparallelism relation between planes is an equivalence relation. Moreover, three-dimensional affine spaces
with a point at infinity and three-dimensional affine spaces with a line at infinity are characterized.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A linear space S is a pair (P, L), where P is a non-empty set of points and L is a family of proper subsets of P ,
called lines, such that any two distinct points x and y belong to a unique line xy, every line contains at least two points
and there are at least two lines. We denote by v the number of its points and by b the number of its lines.

A subspace X of S is a subset of P such that the line joining any two distinct points of X is already contained
in X. It is easy to see that the empty set, a point, a line and P are subspaces. Moreover, the intersection of any
family of subspaces is a subspace. Thus, any subset Y of P spans the subspace 〈Y 〉, intersection of all the subspaces
containing Y .

An independent set Z is a set of points such that for each z ∈ Z, z /∈ 〈Z\{z}〉. A generator of S is a subset G such
that 〈G〉 = P and a basis of S is an independent subset of the points of S which generates S. Moreover, the dimension
of S is the integer dim S = min(|B| : B is a basis for S)−1 (see [1]).

Let S = (P, L) be a finite linear space. The length of a line l is the number |l| of points on l. Every line of maximal
size will be called a long line. All other lines will be called short lines. The degree of a point x is the number bx of lines
on which it lies. If n + 1 = max(bx, x ∈ P), then the integer n is called the order of S. Let X be a subspace through x.
We denote by bx(X) the number of lines through x on X. The integer bx(X) is the degree of x in X.
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A planar space S is a triple (P, L, P ∗), where (P, L) is a linear space and P ∗ is a non-empty family of subspaces,
called planes, such that:

• every plane contains at least three non-collinear points;
• any three non-collinear points lie in exactly one plane and it is the smallest subspace containing them;
• there are at least two planes.

Let S = (P, L, P ∗) be a finite planar space. If � is a plane of S, we denote by |�| the number of its points and by b�
the number of its lines. Consider the family L� of lines on the plane �. The pair (�, L�) is a finite linear space on |�|
points and b� lines. If n(�) denotes the order of linear space (�, L�), the integer n = max{n(�) : � ∈ P ∗}, is called
order of the planar space.

The subspaces X and X′ are quasiparallel if |X ∩ l| = |X′ ∩ l| for all lines l�X ∪ X′ (see [9] ). Let X and X′ be two
quasiparallel subspaces in a finite linear space S. The following results hold (see [9]):

(i) bx = bx(X) + |X′| − |X ∩ X′| for every x ∈ X\X′.
(ii) |X| = |X′| if X ∪ X′ 	= P .

In the following we shall use the notation X ∼ X′ to mean that the subspaces X and X′ are quasiparallel.
In a plane � of S the relation of quasiparallelism for lines is an equivalence relation. In the following the equivalence

class of quasiparallel lines which contains a line l will be denoted by [l]. An equivalence class [l] will be called a
singleton if [l] contains the unique line l. Let S= (P, L) be a finite linear space. A family of pairwise intersecting lines,
with at least three non-concurrent lines, will be called a clique of lines. A pencil of lines is a family of lines passing
through a common point. Finally, a spread of lines is a family of pairwise disjoint lines. An equivalence class [l] of
quasiparallel lines, with size at least 2, is one of the following (see [5]):

(I) [l] is a clique, also called a C-class (or clique-class);
(II) [l] is a pencil of centre x, also called a P -class (or pencil-class) of centre x;

(III) [l] is a spread, also called a S-class (or spread-class).

In this paper we want to study quasiparallelism relation for planes in a finite planar space S = (P, L, P ∗) with the
following property:

(A) ∀� ∈ P ∗, ∀r, s ∈ L�, � 	= r ∪ s.

In particular, we shall prove that for planes in a finite planar space fulfilling the condition (A) the quasiparallelism relation
is an equivalence relation. Furthermore, three-dimensional affine spaces with a point at infinity and three-dimensional
affine spaces with a line at infinity are characterized.

2. The equivalence relation

Let S be a finite planar space with property (A). In S the following condition holds

(B) ∀�, � ∈ P ∗, P 	= � ∪ �.

By Theorem 3.1 in [8] we have

� ∼ �′ ⇔ |� ∩ �| = |� ∩ �′| (2.1)

for every plane � such that � 	= � 	= �′. Consider a plane � in S. In [7] we denoted by (�) the subset of P ∗ which
contains � and each plane �′ such that � ∼ �′. Furthermore, in [7] we showed that, if there exists in (�) a plane �′ with
� ∩ �′ = ∅, planes in (�) are pairwise disjoint and quasiparallel to each other. Moreover, in [8] we proved that, if � and
�′ are two quasiparallel planes which intersect in a line, planes in (�) are pairwise quasiparallel and any two distinct
planes in (�) intersect in a line of constant length.

Proposition 2.1. If �′ is a plane in (�) such that � ∩ �′ is a point x, any two distinct planes in (�) intersect in point x.
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Proof. Let �′′ be a plane in (�) with � 	= �′′ 	= �′. Since � and �′′ are quasiparallel, by (2.1) we obtain

|� ∩ �′| = |�′′ ∩ �′|.
Hence, �′′ intersects �′ in a point y. We suppose y 	= x. Every line of �′ through x intersects �′′ while the unique line
on �′ containing x and intersecting �′′ is the line xy. This forces x = y and �′ ∩ �′′ = {x}. Moreover, by � ∼ �′ we
deduce

|� ∩ �′′| = |�′ ∩ �′′|
and � ∩ �′′ = {x}. Hence, any two distinct planes in (�) intersect in point x and the proposition is proved. �

Proposition 2.2. Let �′ and �′′ two distinct planes of (�). If �′ intersects � in a point x, then �′ and �′′ are quasiparallel.

Proof. Let �′′ be a plane in (�), with � 	= �′′. At once (B) and (ii) yield |�| = |�′| = |�′′|. We want to show that �′ and
�′′ are quasiparallel. In other words, we shall prove that |�′ ∩ r| = |�′′ ∩ r| for every line r��′ ∪ �′′. By Proposition
2.1 we have � ∩ �′′ = �′ ∩ �′′ = {x}. If r meets �′ in x, r meets both planes, �′ and �′′. Now, we suppose that r meets �′
in a point y, with y 	= x. By (i) we deduce that the lines through y outside �′ are by − by(�′) = |�| − 1. On the other
hand, the lines joining y to points which lie on �′′\�′ are |�′′| − |�′ ∩ �′′| = |�| − 1. Hence, every line which meets �′
in y, meets �′′, too. Analogously, if r is a line which intersects �′′, r meets �′, too. The proof is complete. �

Now, we are ready to state our first result.

Theorem I. Let S be a finite planar space with property (A). For planes quasiparallelism relation is an equivalence
relation.

Proof. Let � and �′ be two quasiparallel planes in S. If � ∩ �′ = ∅, by Propositions 4.1, 4.2 and 4.3 in [7], planes in
(�) are pairwise quasiparallel. Now, we assume that � ∩ �′ is a point x. By Proposition 2.2 planes in (�) are pairwise
quasiparallel. Finally, if � and �′ intersect in a line, from Proposition 4.3 in [8] we deduce that planes in (�) are pairwise
quasiparallel. Hence, the desired result follows. �

In the following the equivalence class of quasiparallel planes which contains a plane � will be denoted by [�]. An
equivalence class [�] will be called a singleton if [�] contains the unique plane �. Moreover, a family of pairwise
disjoint planes will be called a spread, a family of planes such that any two distinct planes intersect in a common point
x will be called a star of planes of centre x. A pencil of planes of axis l is a family of planes with a common line l. A
clique of centre x of planes is a family of planes such that point x lies on all planes of the family and any two distinct
planes intersect in a line through x of constant length. Finally, a clique of planes is a family of planes such that any two
distinct planes intersect in a line of constant length and there are at least three planes which have no common point.
Therefore, the results in [7,8] and Propositions 2.1, 2.2 imply the following:

Proposition 2.3. Let S be a finite planar space having property (A). If � is a plane in S, the equivalence class of
quasiparallel planes [�] is one of the following:

(a) [�] is a singleton;
(b) [�] is a spread, also called a S-class (or spread-class);
(c) [�] is a star of centre x, also called a S∗-class (or star-class) of centre x;
(d) [�] is a pencil of axis l, also called a P-class (or pencil-class) of axis l;
(e) [�] is a clique of centre x, also called a C∗-class (or clique-star-class) of centre x;
(f) [�] is a clique, also called a C-class (or clique-class).

3. Planes which intersect in a line

Let S be a finite planar space fulfilling property (A). We state here the results concerning the intersection of two
non-quasiparallel planes. In [7] we showed that if [�] and [�] are two distinct S-classes of quasiparallel planes, every
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plane in [�] has at least a point in common with every plane in [�]. Moreover, in [8] we proved that if [�] is a S-class,
for every plane � with � /∈ [�], either � ∩ � = ∅ or � ∩ � is a line. Hence, every plane in [�] meets every plane in [�] in
a line. Furthermore, by Proposition 4.8 in [8] we see that if [�] is a S-class and [�] is a C-class of quasiparallel planes,
each plane �′ in [�] meets each plane �′ in [�] in a line of constant length.

Now, we state the following general results.

Proposition 3.1. Let [�] be a S-class of quasiparallel planes in S. If [�] is a class of quasiparallel planes, with size at
least two and � /∈ [�], each plane �′ in [�] meets every plane �′ in [�] in a line of constant length.

Proof. By Proposition 4.7 in [8] either � ∩ � = ∅ or � ∩ � is a line. First,we assume � ∩ � = ∅. Let x be a point in �.
From (B), (i) and (ii) we obtain

bx = bx(�) + |�|.
Hence, the number of lines through x outside � is |�|. Since the number of lines joining x to points on � is |�|, we have

|�|� |�|.
Now, we denote by y a point on �, with y /∈ �′ and �′ ∈ [�]. We infer

by = by(�) + |�| − |� ∩ �′|,
|�|� |�| − |� ∩ �′|.

Thus, we find

|�|� |�| − |� ∩ �′|� |�|� |�|,
which implies |�| = |�| and � ∩ �′ = ∅. Therefore, [�] is a S-class of quasiparallel planes, also. By Proposition 4.4 in
[7] � has at least a point in common with �, a contradiction. Hence, � ∩ � is a line. Moreover, from Theorem 3.1 in [8]
we obtain

|� ∩ �| = |� ∩ �′| = |�′ ∩ �′| = |�′ ∩ �|
and the proposition is proved. �

Proposition 3.2. Let [�] and [�] be two distinct equivalence classes of quasiparallel planes in S, with size at least two.
Every plane �′ in [�] meets every plane �′ in [�] in a line of constant length.

Proof. If either [�] or [�] is a S-class the desired result follows from Proposition 3.1. Now, we suppose that neither [�]
nor [�] is a S-class. Moreover, we suppose � ∩ � = ∅. We know that

by = by(�) + |�| − |� ∩ �′| (3.1)

with �′ ∈ [�] and y ∈ �\�′. Analogously, if �′ belongs to [�] and z denotes a point on �\�′, we infer that

bz = bz(�) + |�| − |� ∩ �′|. (3.2)

We see, also, that

|�| − |� ∩ �′|� |�| and |�| − |� ∩ �′|� |�|.
Hence,

|�|� |�| − |� ∩ �′| < |�|� |�| − |� ∩ �′| < |�|,
which is a contradiction.Thus, planes � and � have at least a point in common. We suppose � ∩ � = {x}. Since
|� ∩ �| = |�′ ∩ �|, �′ and � intersect in a unique point x′. From � ∼ �′ we deduce that each line through x on � contains
x′, also. This forces x = x′. Therefore, by using Theorem 3.1 in [8], we have |�∩�|= |�∩�′|. If x′′ denotes the unique
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point which is common to � and �′, from the foregoing, we obtain x = x′ = x′′. In order to show the proposition, we
consider a point y on �, with y /∈ �′, and a point z on �, with z /∈ �′. From (3.1) and (3.2) we infer that

|�| − |� ∩ �′|� |�| − 1 and |�| − |� ∩ �′|� |�| − 1,

|�| − 1� |�| − |� ∩ �′|� |�| − 1� |�| − |� ∩ �′|� |�| − 1

which means that

|� ∩ �′| = 1 = |� ∩ �′| and |�| = |�|.
Hence, the equivalence classes [�] and [�] are S∗-classes of same centre x. Furthermore, every line which meets � in a
point y meets �, also, and each line which intersects � meets �. It follows that � and � are quasiparallel, a contradiction.
We conclude that � ∩ � is a line and by Theorem 3.1 in [8] every plane in [�] has a line of constant length |� ∩ �| in
common with each plane in [�]. �

4. Three-dimensional affine spaces with a point at infinity

A linear space of dimension two is called an affine-projective plane [11] or linearly h-punctured projective plane if it
is a projective plane deprived of h collinear points. In particular, an affine plane of order n is obtained from a projective
plane of order n by deleting one line l. The n + 1 points of l are called the points at infinity of the affine plane. An
affine plane of order n (n�2) is a finite linear space with every line of length n and every point of degree n + 1. An
affine plane with a point at infinity of order n is a linear space which is obtained from a projective plane of order n by
removing n collinear points. We know that an affine plane of order n with a point x at infinity has n2 + 1 points and
n2 + n lines, x has degree n, all the other points have degree n + 1, lines through x have length n + 1, lines which miss
x have length n.

A three-dimensional affine space is a three-dimensional projective space deprived of a plane �. In an affine space
S of order n all lines have the same length n. The points of � are called the points at infinity of the affine space S. A
three-dimensional affine space S of order n with a point x at infinity is a three-dimensional projective space of order n

deprived of a plane � passing through x together with its points different from x. All the planes through x are affine
planes of order n with point x at infinity, all the other planes are affine planes of order n. It is clear that planes through
x are contained in n + 1 S∗-classes of same centre x and planes, which miss point x, belong to n2 S-classes.

Proposition 4.1. There exists no finite linear space where there are two distinct P-classes of quasiparallel lines with
same centre x.

Proof. Let S be a finite linear space. We denote by [r] and [s] two distinct P-classes of quasiparallel lines in S, both
of centre x. By Proposition 2.2 in [5] lines r and s have same length n + 1, each point y on r , with y 	= x, has degree
n + 1 and each point z on s, with z 	= x, has degree n + 1. Thus, every line which meets r , intersects s, also and vice
versa. Hence, r and s are quasiparallel and we have a contradiction. �

Now, we can state our result.

Theorem II. Let S be a finite planar space satisfying property (A) and such that there is at least a line l of length
|l|�5. If equivalence classes of quasiparallel planes in S are only S∗-classes and S-classes, there are n+ 1 S∗-classes
with same centre x and n2 S-classes of quasiparallel planes and S is a three-dimensional affine space of order n with
a point x at infinity.

Proof. We proceed in steps.
Step 1: Let [�i] be a S-class of quasiparallel planes in S. If [�j ] denotes a S-class of quasiparallel planes, with

[�i] 	= [�j ], all the planes in [�j ] intersect �i in quasiparallel disjoint lines which belong to a same equivalence S-class
[sj ] of quasiparallel lines in �i . Now, let [�h] be a S∗-class of quasiparallel planes, of centre xh. By Proposition 3.1 all
the planes in [�h] meet �i in quasiparallel lines which are contained in a same equivalence class of quasiparallel lines
in �i , [ah]. If xh lies on �i , [ah] is a P-class of centre xh. Conversely, if xh /∈ �i , [ah] is a S-class. Let s be a line on �i .
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We denote by � a plane through s, with � 	= �i . By hypothesis, equivalence class [�] is either a S-class or a S∗-class.
Hence, the equivalence class [s] of quasiparallel lines in �i is either a S-class or a P-class. By Proposition 2.9 in [5]
and Proposition 4.1 there exists at most one P-class in plane �i . Therefore, either each class of quasiparallel lines in
�i is a S-class and �i is an affine plane (see Theorem 2 in [5]) or there exists a unique P-class and �i is an affine plane
with a point at infinity [5, Theorem 5]. In particular, if centre xh of a S∗-class [�h] belongs to �i , �i is an affine plane
with point xh at infinity. Furthermore, each plane in a S-class of quasiparallel planes is either an affine plane or an
affine plane with a point at infinity.

Step 2: Let [�i] be a S-class of quasiparallel planes in S. There are two distinct cases to be considered.
Case 1: We assume that �i is an affine plane of order n with point xh at infinity, where xh is centre of a S∗-class [�h].

The lines through xh on �i have length n+1 and are long lines of �i . Instead, the lines on �i which miss xh have length
n and are short lines. Let �′

i be a plane of order p in [�i], with �i 	= �′
i . By (B) and (ii) we have |�i | = |�′

i |. Hence, if
�′

i is an affine plane, we obtain n2 + 1 = p2, a contradiction. Therefore, every plane in [�i] is an affine plane of order
n with a point at infinity. Moreover, since �i and �′

i are disjoint, �′
i has a point xk at infinity, with xh 	= xk . From the

foregoing, we see that xk is centre of a S∗-class [�k] of quasiparallel planes. The plane �h meets �i in a long line of
length n + 1. Since �i and �′

i are quasiparallel planes, by Theorem 3.1 in [8] we deduce that �h ∩ �′
i is a long line of

length n + 1, also. Furthermore, since long lines on �′
i pass through xk , we obtain that xk lies on �h. Let �′

h be a plane
in [�h], with �h 	= �′

h. By Theorem 3.1 in [8] we have that the lines �′
h ∩ �i and �′

h ∩ �′
i have length n + 1. Therefore,

xk belongs to �′
h and �h meets �′

h in the line xhxk , a contradiction.
Case 2: We assume that �i is an affine plane of order n. All the planes in [�i] are affine planes of order n. Let [�j ]

be a S-class of quasiparallel planes, with [�i] 	= [�j ]. From the foregoing, all the planes in [�j ] are affine planes.
Moreover, �i ∩ �j is a line of length n. Hence, any plane �i which belongs to a S-class of quasiparallel planes is an
affine plane of order n and no centre of a S∗-class lies on �i .

Step 3: Let [�h] be a S∗-class of quasiparallel planes of centre xh. Planes in [�i] intersect �h in disjoint quasiparallel
lines of length n, which belong to a S-class. Let [�k] be a S∗-class of centre xk such that �h /∈ [�k]. By Proposition 3.2
planes in [�k] meet �h in quasiparallel lines which belong to an equivalence class [ak]. Furthermore, if xk lies on �h,
[ak] is a P-class. Conversely, if xk /∈ �h, [ak] is a S-class. Since in a plane there exists at most one P-class, �h is either an
affine plane or an affine plane with a point xk at infinity. Let �h be an affine plane of order p with a point xk at infinity,
where xk is centre of a S∗-class [�k]. The long lines on �h have length p + 1 and pass through xk . The short lines have
length p and miss xk . If �i is an affine plane in a S-class of quasiparallel planes, we have xk /∈ �i and �i ∩ �h is a short
line of length p = n. Hence, �h has order n. Therefore, every plane in a S∗-class [�h] of quasiparallel planes is either
an affine plane of order n or an affine plane of order n with a point xk at infinity, where xk is centre of a S∗-class [�k]
of quasiparallel planes.

Step 4: We suppose that each plane in S is an affine plane of order n. Moreover, any line has length n. By hypothesis
we have n = |l|�5 and S is a three-dimensional affine space of order n (see [2]). Therefore, each equivalence class
of quasiparallel planes is a S-class [7, Theorem II]), a contradiction. Thus, there is at least a plane which is an affine
plane with a point at infinity.

Step 5: Let �h be an affine plane of order n with a point xk at infinity. Since |�h| = |�′
h| for each plane �′

h ∈ [�h],
every plane �′

h is an affine plane of order n with a point x′
k at infinity. We know that |�k ∩ �h|= |�k ∩ �′

h|=n+ 1. Thus,
the line �k ∩ �′

h contains point at infinity x′
k of �′

h. Let �′
k be a plane in [�k], with �k 	= �′

k . From |�k ∩ �′
h| = |�′

k ∩ �′
h|

we have that �′
k meets �′

h in a long line which contains the point x′
k . Hence, both planes �k and �′

k pass through both
points xk and x′

k . Since �′
k belongs to S∗-class [�k] we infer that xk = x′

k . Therefore, points xh and xk belong to both
planes �h and �′

h. Thus, xk = x′
k = xh. We conclude that every plane in [�h] is an affine plane with a point at infinity of

order n and the point at infinity is the centre xh of [�h]. Moreover, �h does not contain a centre xk of a S∗-class [�k],
with xk 	= xh.

Step 6: Let [�k] be a S∗-class of centre xk , with [�h] 	= [�k]. We suppose that �k is an affine plane of order n. The
line �h ∩ �k is a short line and centre xk of [�k] does not lie on �h. Let y be a point on �h ∩ �k . Using a plane �′

h which
is quasiparallel to �h and a plane �′

k which is quasiparallel to �k , from (i), (ii) and (B) we have

by = by(�h) + |�h| − 1 = n + 1 + n2 + 1 − 1,

by = by(�k) + |�k| − 1 = n + 1 + n2 − 1,

a contradiction. Hence, all the planes in S∗-classes are affine planes of order n with a point at infinity.
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Step 7: Let [�h] of centre xh and [�k] of centre xk be two different S∗-classes. Since planes in [�h] are affine planes
with xh at infinity and planes in [�k] are affine planes with xk at infinity we have either xh /∈ �k and xk /∈ �h or xh = xk .
First, we suppose xh 	= xk . Therefore, we find xh /∈ �k and xk /∈ �h. Consider a plane � through the line xhxk . Plane �
is not an affine plane of a S-class of quasiparallel planes because � contains xh. Therefore, plane � is an affine plane
with a point at infinity and [�] is a S∗-class of quasiparallel planes. From the foregoing we deduce that � contains a
centre of a S∗-class which is different from centre of S∗-class [�]. This contradiction proves that all the S∗-classes of
quasiparallel planes have the same centre x.

Step 8: All the lines of length n + 1 contain x. Moreover, we have n�4 because in S there exists a line of length at
least 5. Hence, since any plane of S is an affine-projective plane of order n�4, S is obtained from a projective space P
of order n by removing a part of a plane � of P (see [11]). Let s′ be the line �h ∩ �i . If we denote by z a point on s′,
using a plane �′

i which is quasiparallel to �i , we obtain

bz = bz(�i ) + |�i | = n + 1 + n2.

The unique line through z of length n + 1 is the line xz. Hence, we have

v = |P | = n + 1 + (n2 + n)(n − 1) = n3 + 1.

Thus, S is a three-dimensional projective space P of order n which n2 + n coplanar points have been deleted from.
Hence, S is space P deprived of a plane � passing through x together with its points different from x. All the planes
through x belong to n + 1 S∗-classes of quasiparallel planes with same centre x, all the planes which miss x belong to
n2 S-classes of quasiparallel planes. This completes the proof. �

5. Three-dimensional affine spaces with a long line at infinity

A generalized projective plane is a two-dimensional linear space in which any two distinct lines have a common
point. In particular, a near-pencil on v points is a finite linear space with one line of length v − 1 and v − 1 lines of
length 2. Furthermore, a projective plane of order n, with n�2, is a finite linear space with every line of length n + 1
and every point of degree n + 1. It is easy to see that projective planes are generalized projective planes without lines
of length two and near-pencils are generalized projective planes with lines of length 2.

A three-dimensional affine space S of order n with a long line at infinity is a three-dimensional projective space P of
order n deprived of a plane �, together with its lines but one, say l, and its points except those of l. It is clear that planes
through l belong to a unique P-class of quasiparallel planes of axis l. Therefore, each plane which misses l belongs to
a S∗-class of centre on l.

Proposition 5.1. Let S be a finite linear space. If l is a line such that every line r in S, with r 	= l, meets l in a point xi

and r belongs to a pencil of quasiparallel lines of centre xi , all the lines in S are quasiparallel each other and S is a
generalized projective plane.

Proof. The class [r] of quasiparallel lines is neither a S-class nor a singleton. Thus, [r] is either a P-class of centre
xi on l or a C-class (see [5]). It is clear that there exists at least a line s which misses xi and intersects l in a point xj ,
with xi 	= xj . The class [s] is either a P-class of centre xj or a C-class. If [r] and [s] are two P-classes, by Proposition
2.9 in [5], there exists in S a singleton [p] such that either xi ∈ p and xj /∈ p or xi /∈ p and xj ∈ p. Since points
xi and xj lie on l and each line which is distinct from l, does not belong to a singleton, we have a contradiction. By
Proposition 2.1 in [5], there exists at most one C-class in S. Moreover, by Proposition 2.8 in [5], a linear space S, with
both equivalence classes of quasiparallel lines, a C-class and a P-class, does not exist. Hence, r and s are quasiparallel
lines and class [r] = [s] is a C-class. Furthermore, all the lines which are distinct from l belong to unique C-class [r].
By Proposition 2.2 in [6], there exists no linear space with only one C-class and one singleton. Hence, lines in S are
pairwise quasiparallel and S is a generalized projective plane (see [5]). �

Theorem III. Let S be a finite planar space satisfying property (A). If there is a long line of length k�5 and equivalence
classes of quasiparallel planes in S are only one P-class of axis a line l of length n + 1 and S∗-classes of centres on l,
S is a three-dimensional affine space of order n with line l at infinity.
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Proof. We proceed in steps.
Step 1: Let [�] be the P-class of axis l. If [�h] is a S∗-class of centre xh on l, from Proposition 3.2 we deduce that all

the planes in [�h] intersect � in quasiparallel lines through xh. Furthermore, the planes of each S∗-class intersect � in
quasiparallel lines through a point on l. Let r be a line on � which misses xh. A plane � through r, which is distinct from
�, belongs to a S∗-class [�k] of centre xk 	= xh. Hence, each line r in �, which is distinct from l, meets l and belongs
to a pencil of quasiparallel lines of centre on l. By Proposition 5.1, � is a generalized projective plane.

Step 2: First, we suppose that � is a near-pencil and l is the long line on �. The planes in [�h] intersect � in lines
of the same length through xh. So, we have a contradiction. Now, we suppose that l is a line of length 2. Let s be the
long line on �. We denote by x the point l ∩ s and by � a plane through s, distinct from �. The class [�] is a S∗-class
and planes in [�] meet � in quasiparallel lines of the same length, which is a contradiction. This implies that � is a
projective plane. Furthermore, each plane in [�] is a projective plane and all the planes in [�] have the same order n.

Step 3: Let [�h] be a S∗-class of centre xh on l. We consider a point y in S, with y /∈ �, and a line t on � which misses
xh. It is clear that xh does not lie on the plane 〈t, y〉. Thus, there exists at least one S∗-class [�k] of centre xk 	= xh,
such that 〈t, y〉 ∼ �k . Since two planes of [�h] intersect in the point xh, there exists at most a plane �′

h in [�h] such that
l ⊂ �′

h. We may assume l /⊂ �h. By Proposition 3.2 planes in [�] meet �h in quasiparallel lines of length n + 1, which
belong to a pencil of centre xh. If [�k] is a S∗-class of centre xk 	= xh, planes in [�k] meet �h in quasiparallel disjoint
lines. Finally, let [�i] be a S∗-class of centre xh, such that [�i] 	= [�h]. The planes in [�i] meet �h in quasiparallel
lines through xh. By Proposition 4.1 equivalence classes of quasiparallel lines in �h are one P-class of centre xh and
S-classes. By Theorem 5 in [5], �h is an affine plane with point xh at infinity. Since the line � ∩ �h of length n + 1 is a
long line of �h, �h has order n. Hence, if l /⊂ �h, �h is an affine plane of order n with point xh at infinity.

Step 4: Let �′
h be a plane in [�h], with �′

h 	= �h. By (ii) we have |�h| = |�′
h| = n2 + 1. If l /⊂ �′

h, �
′
h is an affine

plane of order n with xh at infinity. Now, we suppose l ⊂ �′
h. Each plane in [�] has line l in common with �′

h. Planes
in [�k] meet �′

h in quasiparallel lines through xk . Let g be a line in �′
h, with g 	= l. We denote by � a plane through

g, with � 	= �′
h. Since � does not belong to [�], [�] is a S∗-class of centre a point xi on l. Thus, g meets l in xi and

belongs to a pencil of quasiparallel lines of centre xi . By Proposition 5.1 �′
h is a generalized projective plane. First, we

suppose that �′
his a near-pencil. Since l lies on the projective plane �, l is long line of �′

h. By |�h| = |�′
h| = n2 + 1, we

have a contradiction. Now, we suppose that �′
h is a projective plane of order n. From |�h| = |�′

h| = n2 + 1, we obtain
a contradiction. Thus, l /⊂ �′

h. Each plane in [�h] is an affine plane of order n with xh at infinity. Furthermore, all the
planes in S∗-classes are affine planes of order n with a point at infinity on l.

Step 5: Since there is a long line of length k�5, each plane has order n�4. Furthermore, each plane is affine-
projective. By a result in [11] we deduce that S is a projective space which a part of a plane has been deleted from. Let
z be a point on � such that z /∈ l. We denote by � a plane through z, distinct from �. Plane � belongs to a S∗-class of
centre p on l. All the lines through z on �, distinct from line pz, have length n. Let �′ be a plane in [�] with �′ 	= �. By
(i) we have

bz = bz(�) + |�′| − |� ∩ �′|,
bz = (n + 1) + (n2 + n + 1) − (n + 1).

Hence, there exist n2 + n + 1 lines through z, n + 1 of length n + 1 and n2 of length n. Thus, we obtain

v = |P | = 1 + (n + 1)n + n2(n − 1) = n3 + n + 1. (5.1)

Finally, we denote by P the three-dimensional projective space from which S has been obtained by deleting a part of a
plane �. It is clear that P\� is an affine space and each plane in P\� is an affine plane. Since in S a plane �h (�k) is an
affine plane with a point xh (xk) at infinity, in P the points xh and xk lie on � and l ⊂ �. Furthermore, by (5.1) we delete
exactly n2 points from �. Hence, since line l has length n + 1 we obtain S deleting �\l from P. S is a three-dimensional
affine space of order n with line l of length n + 1 at infinity. �

6. Three-dimensional affine spaces with a short line at infinity

A punctured projective plane is a projective plane deprived of a point. In the following if r is a line, we denote by
i(r) the number of lines which have at least a common point with r and by ext(r) the number of lines which miss
line r.
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Proposition 6.1. There exists no finite linear space S such that the equivalence classes of quasiparallel lines in S are
only one C-class, one S-class and one singleton.

Proof. On the contrary, we suppose that S is a finite linear space such that equivalence classes of quasiparallel lines
are exactly one C-class [r], one S-class [s] and one singleton [l]. If each line in [r] has length n + 1, by Proposition
2.5 in [5], each line in [s] has length n and each point has degree n + 1. Let x be a point on r which does not lie on l.
There exists at most one line s′ of [s] such that x belongs to s′. By counting points on lines through x, we have

n2 + n�v�1 + (n + 1)n. (6.1)

By Proposition 2.5 in [5], each line in [s] meets every line in [r]. Therefore, since by = n + 1 for each point y in S, l
meets each line in [r] and we obtain

b = i(r) = n2 + n + 1. (6.2)

If v = n2 + n + 1, S is a generalized projective plane and there exists a unique equivalence class of quasiparallel
lines, a contradiction. Now, we assume v = n2 + n. By Theorem 1.2 in [10] S can be embedded into a projective
plane of order n. Since v = n2 + n, S is a punctured projective plane and there exists no singleton. So, we have
a contradiction. �

Proposition 6.2. There exists no finite linear space whose equivalence classes of quasiparallel lines are only one
P-class of centre x, one singleton [l], with x ∈ l, and S-classes.

Proof. On the contrary, we suppose that S is a finite linear space such that equivalence classes are exactly one P-class
[r] of centre x, h S-classes [s1], . . . , [sh] and one singleton [l], with x ∈ l. Let n + 1 be length of r. By (ii) all the lines
in [r] have length n + 1. Each point y on r, with y 	= x, has degree n + 1 (see [5]). From Proposition 2.6 in [5] each
line in a S-class [si] (i = 1, . . . , h) has length n and every point on a line in a S-class has degree n + 1. The n + 1 lines
through y are the line r and n lines in n S-classes. Thus, we have h�n�2 and

v = n + 1 + n(n − 1) = n2 + 1. (6.3)

Let z be a point on l, with z 	= x. Each line g through z, with g 	= l, is a line in a S-class. Hence, z has degree n + 1
and we obtain:

v = |l| + n(n − 1) = n2 − n + |l|. (6.4)

By (6.3) and (6.4) we find:

|l| = n + 1. (6.5)

From a result of Erdös et al. [4] we deduce

b�n2 + n. (6.6)

By Propositions 2.4 and 2.6 in [5], each line si of a S-class of quasiparallel lines meets r. Hence, we have

b = i(r) = n2 + bx �n2 + n.

If bx > n + 1, all the lines through x, which are distinct from l, belong to [r] and we obtain

v = 1 + bx · n = n2 + 1,

a contradiction. Hence, either bx =n or bx =n+1. First, we suppose bx =n+1. There exist at least three lines through
x of length n + 1, l and two lines in [r]. If n = 2, we find v = 1 + 3n, a contradiction. If n�3, we have:

v�1 + 3n + (n − 2)(n − 1) = n2 + 3,

a contradiction. Hence, we deduce bx = n, each line through x has length n + 1 and b = n2 + n. From Lemma 2.6 in
[10] S can be embedded in a projective plane � of order n. Since v = n2 + 1 and b = n2 + n, we obtain S by deleting
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from � n points p1, . . . , pn and one line. Thus points pi (i = 1, . . . , n) are collinear and S is an affine plane with a
point at infinity. Furthermore, there exists no singleton in S. So, we have a contradiction. �

Proposition 6.3. Let S be a finite linear space such that there exists a unique singleton [l] and, if there exist
P-classes of quasiparallel lines, each centre of a P-class lies on l. S is linearly h-punctured projective plane of order n
(2�h�n − 1), equivalence classes are one C-class [r], h S-classes and one singleton [l], with |l| = |r| − h, and there
exists no P-class.

Proof. First, we suppose that in S there exist P-classes of centres on l. By Proposition 4.1 two distinct P-classes of
quasiparallel lines have distinct centres. From Proposition 2.9 in [5] we deduce that if there are two distinct P-classes
[ti], [tj ] of centres xi, xj , there exists a singleton [g] such that either xi ∈ g and xj /∈ g or xi /∈ g and xj ∈ g. Since
there is a unique singleton [l] with xi ∈ l and xj ∈ l, there exists at most one P-class [t] in S. By Proposition 2.8 in
[5] there exists no C-class in S. If equivalence classes are only [t] and [l], all the lines belong to a pencil. So, we have
a contradiction. Hence, there are S-classes of quasiparallel lines. By Proposition 6.2 there exists no finite linear space
with only one P-class, one singleton and S-classes. Hence, there is no P-class in S. Now, we suppose that equivalence
classes are only S-classes and unique singleton [l]. All the lines in S-classes have the same length n and by Theorem 2
in [6], either there exists no singleton or there exist at least n + 1 singletons. So, we have a contradiction. Finally, we
suppose that there exists a C-class [r]. By Proposition 2.1 in [5], [r] is the unique C-class. If there exists a class [s]
of quasiparallel lines, with [r] 	= [s] 	= [l], [s] is a S-class. Therefore, if there exists no S-class, by Proposition 2.2 in
[6], the number of singletons is at least k > |r|. So, we have a contradiction. Thus, there is at least one S-class in S. We
suppose that equivalence classes are exactly one C-class, one S-class and one singleton. By Proposition 6.1, we have a
contradiction. Now, we suppose that there are h S-classes, with h�2. By Theorem 4 in [5], S is a linearly h-punctured
projective plane of order n, with |r| = n + 1 and |l| = n + 1 − h (2�h�n − 1). �

Let S be a three-dimensional affine space of order n�4 with a line l of length |l|�n at infinity. It is clear that
equivalence classes of quasiparallel planes are only one P-class of axis l, S∗-classes of centres on l and S-classes and
there exists at least one line of length at least 5.

Theorem IV. Let S be a finite planar space with property (A). If there is at least one line of length at least 5 and
equivalence classes of quasiparallel planes are only one P-class of axis a line l, S∗-classes of centres on l and at least
one S-class, S is a three-dimensional affine space of order n�4 with line l at infinity. Moreover, if k is the number of
S-classes, |l| = n + 1 − k and the number of S∗-classes is n + 1 − k.

Proof. We proceed in steps.
Step 1: Let [�h] be a S-class of quasiparallel planes. We denote by n the order of �h. There exists at most one plane

�′
h ∈ [�h] such that l ⊂ �′

h. Thus, we may suppose l /⊂ �h. There are three distinct cases to be considered.
Case 1: We assume that each plane in [�h] has no point in common with l. Planes in each class of quasiparallel planes,

which is distinct from [�h], meet �h in quasiparallel disjoint lines. Hence, every equivalence class of quasiparallel lines
in �h is a S-class and by Theorem 2 in [5] �h is an affine plane. Furthermore, every plane in [�h] is an affine plane of
order n.

Case 2: We suppose that �h has empty intersection with l and there exists a plane �′
h in [�h] of order m such that

l ⊂ �′
h. From the foregoing, �h is an affine plane of order n. Planes in each S-class [�k], with �h /∈ [�k], intersect �′

h

in quasiparallel disjoint lines. Moreover, planes in P-class [�] intersect �′
h in line l and planes in each S∗-class [�i] of

centre xi on l meet �′
h in quasiparallel lines through xi . It is clear that each equivalence class of quasiparallel lines in

�′
h, which is distinct from [l], is not a singleton. By Proposition 6.3, if [l] is a singleton, �′

h is a linearly k-punctured
projective plane, with 2�k�m − 1. If [l] is not a singleton, each equivalence class of quasiparallel lines in �′

h has
size at least 2. By Proposition 2.1 in [8] one of the following cases occurs: �′

h is a projective plane, �′
h is a punctured

projective plane, �′
his an affine plane with a point at infinity, �′

h is an affine plane. Since in �′
h there exists at least an

equivalence class of quasiparallel lines which is distinct from a S-class, �′
h is not an affine plane. If �′

h is a projective
plane, by (ii) we find |�h| = n2 = |�′

h| = m2 + m + 1, a contradiction. If �′
h is a punctured projective plane, we have

|�h| = n2 = |�′
h| = m2 + m, a contradiction. Moreover, if �′

h is an affine plane with a point at infinity, we deduce
n2 =m2 +1. So, we have a contradiction. Finally, if �′

h is a k-punctured projective plane, we have n2 =m2 +m+1−k,
with 2�k�m − 1, a contradiction.
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Case 3: We assume l ∩�h ={xh}. Every plane �′
h in [�h] intersects l in a point. By Proposition 3.1 planes in a S-class

[�k], with �h /∈ [�k], meet �h in quasiparallel disjoint lines. If [�i] is a S∗-class of centre xi 	= xh, planes in [�i] meet
�h in quasiparallel disjoint lines. Let [�h] be a S∗-class of centre xh, planes in [�h] intersect �h in quasiparallel lines
through xh. Finally, planes in [�] meet �h in quasiparallel lines through xh. By Proposition 4.1 there exists a unique
P-class of centre xh. Hence, the equivalence classes of quasiparallel lines in �h are only one P-class and S-classes. By
Theorem 5 in [5], �h is an affine plane with point xh at infinity. Furthermore, every plane in [�h] is an affine plane with
a point at infinity.

Hence, either each plane in [�h] is an affine plane of order n and it is disjoint from l or every plane �′
h in [�h] meets

l in a point x′
h and �′

h is an affine plane of order n with point x′
h at infinity.

Step 2: Let [�i] be a S∗-class of centre xi ∈ l. There exists at most one plane �′
i ∈ [�i] such that l ⊂ �′

i . We may
suppose that l /⊂ �i . By Proposition 3.1 planes in a S-class [�] intersect �i in quasiparallel disjoint lines. By Proposition
3.2 if [�j ] is a S∗-class of centre xi , planes in [�j ] intersect �i in quasiparallel lines through xi , if [�j ] is a S∗-class of
centre xj 	= xi , planes in [�j ] intersect �i in quasiparallel disjoint lines. Finally, planes in P-class [�] intersect �i in
quasiparallel lines through xi . By Proposition 4.1 in �i there exists a unique P-class of quasiparallel lines of centre xi .
Hence, �i is an affine plane with point xi at infinity (see [5]).

Step 3: Let �′
i be a plane in [�i] such that l ⊂ �′

i . Since planes in a S-class [�] intersect �′
i in quasiparallel disjoint lines,

there exists at least one S-class of quasiparallel lines in �′
i . Planes in a S∗-class [�j ] of centre xj meet �′

i in quasiparallel
lines through xj and planes in [�] meet �′

i in line l. Hence, there is at most one singleton, line l. First, we suppose that
there exists a singleton. By Proposition 6.3, �′

i is a linearly k-punctured projective plane, with k�2. Now, we suppose
that each equivalence class has size at least 2. Since in �′

i there exists at least one S-class of quasiparallel lines, �′
i is

not a projective plane. Analogously, �′
i is not an affine plane because there exists at least one class of quasiparallel lines

which is distinct from a S-class. By Proposition 2.1 in [8], �′
i is either a punctured projective plane or an affine plane

with a point at infinity. We denote by p the order of �i and by q the order of �′
i . If �′

i is a linearly k-punctured projective
plane, with k�2, we obtain

|�i | = p2 + 1 = |�′
i | = q2 + q + 1 − k.

So, we have p = q = k and �′
i is an affine plane with a point at infinity. Now, let �′

i be a punctured projective plane. We
deduce

|�i | = p2 + 1 = |�′
i | = q2 + q.

So, we have a contradiction. Hence, each plane in a S∗-class [�i] is an affine plane with a point at infinity and all the
planes in [�i] have same order.

Step 4: We suppose that �h is an affine plane of order n with a point xh at infinity which belongs to a S-class and �i

is an affine plane of order p with a point xi at infinity which belongs to a S∗-class. We can assume xh 	= xi and l /⊂ �i .
Hence, we have xh /∈ �i and xi /∈ �h. We denote by �′

h a plane in [�h], with �h 	= �′
h, and by �′

i a plane in [�i], with
�i 	= �′

i . Let r be line �h ∩ �i . Line r is a short line of both planes �h and �i and has length n = p. Let y be a point on
r. By (i) and (ii) we obtain

by = by(�h) + |�′
h| = n + 1 + n2 + 1,

by = by(�i ) + |�′
i | − 1 = n + 1 + n2 + 1 − 1.

Hence, we have a contradiction. Thus, �h is an affine plane of order n. Furthermore, all the planes in a S-class [�] are
affine planes of order n and each plane in [�] has no point in common with line l.

Step 5: Let [�i] be a S∗-class, with �i ∩ l = {xi}. From the foregoing �i is an affine plane with point xi at infinity.
Line r = �h ∩ �i of length n is a short line in �i . Hence, �i has order n and all the planes of S∗-classes have same
order n.

Step 6: By Propositions 3.1 and 3.2 planes in a S-class [�] intersect each plane of [�] in quasiparallel disjoint lines.
Therefore, the line s = � ∩ � is a line of length n which is disjoint from l. Planes in a S∗-class [�i] of centre xi on l
meet every plane of [�] in quasiparallel lines through xi . In � there is at most one singleton [l]. If [l] is a singleton, by
Proposition 6.3 � is a linearly t-punctured projective plane with t �2. If [l] is not a singleton, by Proposition 2.1 in [8],
� is either a punctured projective plane or an affine plane with a point xi on l at infinity.
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There are two distinct cases to be considered.
Case 1: We suppose that � is an affine plane with point xi at infinity. Since s is a short line of �, � has order n. We

consider a plane �′ ∈ [�], with �′ 	= �, and a plane �′ ∈ [�], with �′ 	= �. If z is a point on s we have

bz = bz(�) + |�′| = n + 1 + n2, (6.7)

bz = bz(�) + |�′| − |� ∩ �′| = n + 1 + n2 + 1 − |l|.
Hence, we have |l| = 1, a contradiction.

Case 2: Each plane in [�] is either a punctured projective plane or linearly t-punctured projective plane with t �2.
We may state that each plane in [�] is a k-punctured projective plane with k�1. Planes in a S-class [�] intersect � in
short lines of length n. Hence, � has order n. We obtain

bz = bz(�) + |�′| = n + 1 + n2 = bz(�) + |�′| − |� ∩ �′| = n + 1 + n2 + n + 1 − k − |l|
for a point z on s = � ∩ �. Thus, we have

|l| = n + 1 − k.

There are n + 1 lines through z on �, k of length n which miss l and n + 1 − k of length n + 1 which intersect line
l. The plane � is an affine plane of order n with line l at infinity. All the lines through z on a plane � of a S-class of
quasiparallel planes have length n. Let x be a point on l. If � is a plane through line xz, with � 	= �, we have that �
belongs to a S∗-class. Therefore, � is an affine plane with x at infinity. The unique line through z of length n + 1 on �
is line xz. Thus, the n + 1 − k lines joining z to points on l have length n + 1, all the other lines through z have length
n. Hence, by (6.7) we obtain

v = |P | = 1 + (n + 1 − k)n + (n2 + k)(n − 1),

v = n3 + n + 1 − k = n3 + |l|. (6.8)

All the planes in S are affine-projective planes of order n. Since there is a line of length at least 5, we obtain n�4. By a
result in [11] S is a projective space P of order n deprived of a part of its plane �. Let X be the set of points on � which
are in S. By (6.8) S has been obtained from P by deleting n2 +n+ 1 −|l|=n2 + k points of � and |X|= |l|. Hence, S is
a three-dimensional affine space with line l at infinity. Furthermore, the number of S∗-classes is exactly n + 1 − k = |l|
and the number of S-classes is k. This completes the proof. �
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