An equivalence relation in finite planar spaces ${ }^{2}$ ك

Sveva Freni
Dipartimento di Matematica, Seconda Università degli Studi di Napoli, Via Vivaldi, 43, Caserta, Italy
Received 30 November 2004; received in revised form 12 February 2006; accepted 27 November 2006
Available online 2 June 2007

Abstract

This paper is concerned with quasiparallelism relation in a finite planar space \mathbf{S}. In particular, we prove that if no plane in \mathbf{S} is the union of two lines quasiparallelism relation between planes is an equivalence relation. Moreover, three-dimensional affine spaces with a point at infinity and three-dimensional affine spaces with a line at infinity are characterized.

© 2007 Elsevier B.V. All rights reserved.

MSC: 51A45; 51A15; 05B25
Keywords: Quasiparallel lines; Quasiparallel planes

1. Introduction

A linear space \mathbf{S} is a pair (P, L), where P is a non-empty set of points and L is a family of proper subsets of P, called lines, such that any two distinct points x and y belong to a unique line $x y$, every line contains at least two points and there are at least two lines. We denote by v the number of its points and by b the number of its lines.

A subspace X of \mathbf{S} is a subset of P such that the line joining any two distinct points of X is already contained in X. It is easy to see that the empty set, a point, a line and P are subspaces. Moreover, the intersection of any family of subspaces is a subspace. Thus, any subset Y of P spans the subspace $\langle Y\rangle$, intersection of all the subspaces containing Y.

An independent set Z is a set of points such that for each $z \in Z, z \notin\langle Z \backslash\{z\}\rangle$. A generator of \mathbf{S} is a subset G such that $\langle G\rangle=P$ and a basis of \mathbf{S} is an independent subset of the points of \mathbf{S} which generates \mathbf{S}. Moreover, the dimension of \mathbf{S} is the integer $\operatorname{dim} \mathbf{S}=\min (|B|: B$ is a basis for $\mathbf{S})-1$ (see [1]).

Let $\mathbf{S}=(P, L)$ be a finite linear space. The length of a line l is the number $|l|$ of points on l. Every line of maximal size will be called a long line. All other lines will be called short lines. The degree of a point x is the number b_{x} of lines on which it lies. If $n+1=\max \left(b_{x}, x \in P\right)$, then the integer n is called the order of \mathbf{S}. Let X be a subspace through x. We denote by $b_{x}(X)$ the number of lines through x on X. The integer $b_{x}(X)$ is the degree of x in X.

[^0]A planar space \mathbf{S} is a triple $\left(P, L, P^{*}\right)$, where (P, L) is a linear space and P^{*} is a non-empty family of subspaces, called planes, such that:

- every plane contains at least three non-collinear points;
- any three non-collinear points lie in exactly one plane and it is the smallest subspace containing them;
- there are at least two planes.

Let $\mathbf{S}=\left(P, L, P^{*}\right)$ be a finite planar space. If π is a plane of \mathbf{S}, we denote by $|\pi|$ the number of its points and by b_{π} the number of its lines. Consider the family L_{π} of lines on the plane π. The pair $\left(\pi, L_{\pi}\right)$ is a finite linear space on $|\pi|$ points and b_{π} lines. If $n(\pi)$ denotes the order of linear space $\left(\pi, L_{\pi}\right)$, the integer $n=\max \left\{n(\pi): \pi \in P^{*}\right\}$, is called order of the planar space.

The subspaces X and X^{\prime} are quasiparallel if $|X \cap l|=\left|X^{\prime} \cap l\right|$ for all lines $l \nsubseteq X \cup X^{\prime}$ (see [9]). Let X and X^{\prime} be two quasiparallel subspaces in a finite linear space \mathbf{S}. The following results hold (see [9]):
(i) $b_{x}=b_{x}(X)+\left|X^{\prime}\right|-\left|X \cap X^{\prime}\right|$ for every $x \in X \backslash X^{\prime}$.
(ii) $|X|=\left|X^{\prime}\right|$ if $X \cup X^{\prime} \neq P$.

In the following we shall use the notation $X \sim X^{\prime}$ to mean that the subspaces X and X^{\prime} are quasiparallel.
In a plane π of \mathbf{S} the relation of quasiparallelism for lines is an equivalence relation. In the following the equivalence class of quasiparallel lines which contains a line l will be denoted by $[l]$. An equivalence class [l] will be called a singleton if $[l]$ contains the unique line l. Let $\mathbf{S}=(P, L)$ be a finite linear space. A family of pairwise intersecting lines, with at least three non-concurrent lines, will be called a clique of lines. A pencil of lines is a family of lines passing through a common point. Finally, a spread of lines is a family of pairwise disjoint lines. An equivalence class $[l]$ of quasiparallel lines, with size at least 2 , is one of the following (see [5]):
(I) $[l]$ is a clique, also called a C-class (or clique-class);
(II) $[l]$ is a pencil of centre x, also called a P-class (or pencil-class) of centre x;
(III) [$l]$ is a spread, also called a S-class (or spread-class).

In this paper we want to study quasiparallelism relation for planes in a finite planar space $\mathbf{S}=\left(P, L, P^{*}\right)$ with the following property:

$$
\text { (A) } \forall \alpha \in P^{*}, \quad \forall r, s \in L_{\alpha}, \quad \alpha \neq r \cup s .
$$

In particular, we shall prove that for planes in a finite planar space fulfilling the condition (A) the quasiparallelism relation is an equivalence relation. Furthermore, three-dimensional affine spaces with a point at infinity and three-dimensional affine spaces with a line at infinity are characterized.

2. The equivalence relation

Let \mathbf{S} be a finite planar space with property (A). In \mathbf{S} the following condition holds

$$
\text { (B) } \forall \alpha, \beta \in P^{*}, \quad P \neq \alpha \cup \beta .
$$

By Theorem 3.1 in [8] we have

$$
\begin{equation*}
\pi \sim \pi^{\prime} \Leftrightarrow|\alpha \cap \pi|=\left|\alpha \cap \pi^{\prime}\right| \tag{2.1}
\end{equation*}
$$

for every plane α such that $\pi \neq \alpha \neq \pi^{\prime}$. Consider a plane π in \mathbf{S}. In [7] we denoted by (π) the subset of P^{*} which contains π and each plane π^{\prime} such that $\pi \sim \pi^{\prime}$. Furthermore, in [7] we showed that, if there exists in (π) a plane π^{\prime} with $\pi \cap \pi^{\prime}=\emptyset$, planes in (π) are pairwise disjoint and quasiparallel to each other. Moreover, in [8] we proved that, if π and π^{\prime} are two quasiparallel planes which intersect in a line, planes in (π) are pairwise quasiparallel and any two distinct planes in (π) intersect in a line of constant length.

Proposition 2.1. If π^{\prime} is a plane in (π) such that $\pi \cap \pi^{\prime}$ is a point x, any two distinct planes in (π) intersect in point x.

Proof. Let $\pi^{\prime \prime}$ be a plane in (π) with $\pi \neq \pi^{\prime \prime} \neq \pi^{\prime}$. Since π and $\pi^{\prime \prime}$ are quasiparallel, by (2.1) we obtain

$$
\left|\pi \cap \pi^{\prime}\right|=\left|\pi^{\prime \prime} \cap \pi^{\prime}\right| .
$$

Hence, $\pi^{\prime \prime}$ intersects π^{\prime} in a point y. We suppose $y \neq x$. Every line of π^{\prime} through x intersects $\pi^{\prime \prime}$ while the unique line on π^{\prime} containing x and intersecting $\pi^{\prime \prime}$ is the line $x y$. This forces $x=y$ and $\pi^{\prime} \cap \pi^{\prime \prime}=\{x\}$. Moreover, by $\pi \sim \pi^{\prime}$ we deduce

$$
\left|\pi \cap \pi^{\prime \prime}\right|=\left|\pi^{\prime} \cap \pi^{\prime \prime}\right|
$$

and $\pi \cap \pi^{\prime \prime}=\{x\}$. Hence, any two distinct planes in (π) intersect in point x and the proposition is proved.
Proposition 2.2. Let π^{\prime} and $\pi^{\prime \prime}$ two distinct planes of (π). If π^{\prime} intersects π in a point x, then π^{\prime} and $\pi^{\prime \prime}$ are quasiparallel.
Proof. Let $\pi^{\prime \prime}$ be a plane in (π), with $\pi \neq \pi^{\prime \prime}$. At once (B) and (ii) yield $|\pi|=\left|\pi^{\prime}\right|=\left|\pi^{\prime \prime}\right|$. We want to show that π^{\prime} and $\pi^{\prime \prime}$ are quasiparallel. In other words, we shall prove that $\left|\pi^{\prime} \cap r\right|=\left|\pi^{\prime \prime} \cap r\right|$ for every line $r \nsubseteq \pi^{\prime} \cup \pi^{\prime \prime}$. By Proposition 2.1 we have $\pi \cap \pi^{\prime \prime}=\pi^{\prime} \cap \pi^{\prime \prime}=\{x\}$. If r meets π^{\prime} in x, r meets both planes, π^{\prime} and $\pi^{\prime \prime}$. Now, we suppose that r meets π^{\prime} in a point y, with $y \neq x$. By (i) we deduce that the lines through y outside π^{\prime} are $b_{y}-b_{y}\left(\pi^{\prime}\right)=|\pi|-1$. On the other hand, the lines joining y to points which lie on $\pi^{\prime \prime} \backslash \pi^{\prime}$ are $\left|\pi^{\prime \prime}\right|-\left|\pi^{\prime} \cap \pi^{\prime \prime}\right|=|\pi|-1$. Hence, every line which meets π^{\prime} in y, meets $\pi^{\prime \prime}$, too. Analogously, if r is a line which intersects $\pi^{\prime \prime}, r$ meets π^{\prime}, too. The proof is complete.

Now, we are ready to state our first result.
Theorem I. Let \mathbf{S} be a finite planar space with property (A). For planes quasiparallelism relation is an equivalence relation.

Proof. Let π and π^{\prime} be two quasiparallel planes in \mathbf{S}. If $\pi \cap \pi^{\prime}=\emptyset$, by Propositions 4.1, 4.2 and 4.3 in [7], planes in (π) are pairwise quasiparallel. Now, we assume that $\pi \cap \pi^{\prime}$ is a point x. By Proposition 2.2 planes in (π) are pairwise quasiparallel. Finally, if π and π^{\prime} intersect in a line, from Proposition 4.3 in [8] we deduce that planes in (π) are pairwise quasiparallel. Hence, the desired result follows.

In the following the equivalence class of quasiparallel planes which contains a plane π will be denoted by $[\pi]$. An equivalence class $[\pi]$ will be called a singleton if $[\pi]$ contains the unique plane π. Moreover, a family of pairwise disjoint planes will be called a spread, a family of planes such that any two distinct planes intersect in a common point x will be called a star of planes of centre x. A pencil of planes of axis l is a family of planes with a common line l. A clique of centre x of planes is a family of planes such that point x lies on all planes of the family and any two distinct planes intersect in a line through x of constant length. Finally, a clique of planes is a family of planes such that any two distinct planes intersect in a line of constant length and there are at least three planes which have no common point. Therefore, the results in $[7,8]$ and Propositions 2.1, 2.2 imply the following:

Proposition 2.3. Let \mathbf{S} be a finite planar space having property (A). If π is a plane in \mathbf{S}, the equivalence class of quasiparallel planes $[\pi]$ is one of the following:
(a) $[\pi]$ is a singleton;
(b) $[\pi]$ is a spread, also called a S-class (or spread-class);
(c) $[\pi]$ is a star of centre x, also called a S^{*}-class (or star-class) of centre x;
(d) $[\pi]$ is a pencil of axis l, also called a P-class (or pencil-class) of axis l;
(e) $[\pi]$ is a clique of centre x, also called a C^{*}-class (or clique-star-class) of centre x;
(f) $[\pi]$ is a clique, also called a C-class (or clique-class).

3. Planes which intersect in a line

Let \mathbf{S} be a finite planar space fulfilling property (A). We state here the results concerning the intersection of two non-quasiparallel planes. In [7] we showed that if $[\alpha]$ and $[\beta]$ are two distinct S-classes of quasiparallel planes, every
plane in $[\alpha]$ has at least a point in common with every plane in $[\beta]$. Moreover, in $[8]$ we proved that if $[\sigma]$ is a S-class, for every plane π with $\pi \notin[\sigma]$, either $\sigma \cap \pi=\emptyset$ or $\sigma \cap \pi$ is a line. Hence, every plane in $[\alpha]$ meets every plane in $[\beta]$ in a line. Furthermore, by Proposition 4.8 in [8] we see that if $[\sigma]$ is a S-class and $[\pi]$ is a C-class of quasiparallel planes, each plane σ^{\prime} in $[\sigma]$ meets each plane π^{\prime} in $[\pi]$ in a line of constant length.

Now, we state the following general results.
Proposition 3.1. Let $[\sigma]$ be a S-class of quasiparallel planes in \mathbf{S}. If $[\pi]$ is a class of quasiparallel planes, with size at least two and $\sigma \notin[\pi]$, each plane σ^{\prime} in $[\sigma]$ meets every plane π^{\prime} in $[\pi]$ in a line of constant length.

Proof. By Proposition 4.7 in [8] either $\sigma \cap \pi=\emptyset$ or $\sigma \cap \pi$ is a line. First,we assume $\sigma \cap \pi=\emptyset$. Let x be a point in σ. From (B), (i) and (ii) we obtain

$$
b_{x}=b_{x}(\sigma)+|\sigma| .
$$

Hence, the number of lines through x outside σ is $|\sigma|$. Since the number of lines joining x to points on π is $|\pi|$, we have

$$
|\pi| \leqslant|\sigma| .
$$

Now, we denote by y a point on π, with $y \notin \pi^{\prime}$ and $\pi^{\prime} \in[\pi]$. We infer

$$
\begin{aligned}
& b_{y}=b_{y}(\pi)+|\pi|-\left|\pi \cap \pi^{\prime}\right|, \\
& |\sigma| \leqslant|\pi|-\left|\pi \cap \pi^{\prime}\right| .
\end{aligned}
$$

Thus, we find

$$
|\sigma| \leqslant|\pi|-\left|\pi \cap \pi^{\prime}\right| \leqslant|\pi| \leqslant|\sigma|,
$$

which implies $|\sigma|=|\pi|$ and $\pi \cap \pi^{\prime}=\emptyset$. Therefore, $[\pi]$ is a S-class of quasiparallel planes, also. By Proposition 4.4 in [7] σ has at least a point in common with π, a contradiction. Hence, $\sigma \cap \pi$ is a line. Moreover, from Theorem 3.1 in [8] we obtain

$$
|\sigma \cap \pi|=\left|\sigma \cap \pi^{\prime}\right|=\left|\sigma^{\prime} \cap \pi^{\prime}\right|=\left|\sigma^{\prime} \cap \pi\right|
$$

and the proposition is proved.
Proposition 3.2. Let $[\alpha]$ and $[\beta]$ be two distinct equivalence classes of quasiparallel planes in \mathbf{S}, with size at least two. Every plane α^{\prime} in $[\alpha]$ meets every plane β^{\prime} in $[\beta]$ in a line of constant length.

Proof. If either $[\alpha]$ or $[\beta]$ is a S-class the desired result follows from Proposition 3.1. Now, we suppose that neither $[\alpha]$ nor $[\beta]$ is a S-class. Moreover, we suppose $\alpha \cap \beta=\emptyset$. We know that

$$
\begin{equation*}
b_{y}=b_{y}(\alpha)+|\alpha|-\left|\alpha \cap \alpha^{\prime}\right| \tag{3.1}
\end{equation*}
$$

with $\alpha^{\prime} \in[\alpha]$ and $y \in \alpha \backslash \alpha^{\prime}$. Analogously, if β^{\prime} belongs to $[\beta]$ and z denotes a point on $\beta \backslash \beta^{\prime}$, we infer that

$$
\begin{equation*}
b_{z}=b_{z}(\beta)+|\beta|-\left|\beta \cap \beta^{\prime}\right| . \tag{3.2}
\end{equation*}
$$

We see, also, that

$$
|\alpha|-\left|\alpha \cap \alpha^{\prime}\right| \geqslant|\beta| \quad \text { and } \quad|\beta|-\left|\beta \cap \beta^{\prime}\right| \geqslant|\alpha| \text {. }
$$

Hence,

$$
|\beta| \leqslant|\alpha|-\left|\alpha \cap \alpha^{\prime}\right|<|\alpha| \leqslant|\beta|-\left|\beta \cap \beta^{\prime}\right|<|\beta|,
$$

which is a contradiction.Thus, planes α and β have at least a point in common. We suppose $\alpha \cap \beta=\{x\}$. Since $|\alpha \cap \beta|=\left|\alpha^{\prime} \cap \beta\right|, \alpha^{\prime}$ and β intersect in a unique point x^{\prime}. From $\alpha \sim \alpha^{\prime}$ we deduce that each line through x on β contains x^{\prime}, also. This forces $x=x^{\prime}$. Therefore, by using Theorem 3.1 in [8], we have $|\alpha \cap \beta|=\left|\alpha \cap \beta^{\prime}\right|$. If $x^{\prime \prime}$ denotes the unique
point which is common to α and β^{\prime}, from the foregoing, we obtain $x=x^{\prime}=x^{\prime \prime}$. In order to show the proposition, we consider a point y on α, with $y \notin \alpha^{\prime}$, and a point z on β, with $z \notin \beta^{\prime}$. From (3.1) and (3.2) we infer that

$$
\begin{aligned}
& |\alpha|-\left|\alpha \cap \alpha^{\prime}\right| \geqslant|\beta|-1 \quad \text { and } \quad|\beta|-\left|\beta \cap \beta^{\prime}\right| \geqslant|\alpha|-1, \\
& |\alpha|-1 \geqslant|\alpha|-\left|\alpha \cap \alpha^{\prime}\right| \geqslant|\beta|-1 \geqslant|\beta|-\left|\beta \cap \beta^{\prime}\right| \geqslant|\alpha|-1
\end{aligned}
$$

which means that

$$
\left|\alpha \cap \alpha^{\prime}\right|=1=\left|\beta \cap \beta^{\prime}\right| \quad \text { and } \quad|\alpha|=|\beta| .
$$

Hence, the equivalence classes $[\alpha]$ and $[\beta]$ are S^{*}-classes of same centre x. Furthermore, every line which meets α in a point y meets β, also, and each line which intersects β meets α. It follows that α and β are quasiparallel, a contradiction. We conclude that $\alpha \cap \beta$ is a line and by Theorem 3.1 in [8] every plane in [α] has a line of constant length $|\alpha \cap \beta|$ in common with each plane in $[\beta]$.

4. Three-dimensional affine spaces with a point at infinity

A linear space of dimension two is called an affine-projective plane [11] or linearly h-punctured projective plane if it is a projective plane deprived of h collinear points. In particular, an affine plane of order n is obtained from a projective plane of order n by deleting one line l. The $n+1$ points of l are called the points at infinity of the affine plane. An affine plane of order $n(n \geqslant 2)$ is a finite linear space with every line of length n and every point of degree $n+1$. An affine plane with a point at infinity of order n is a linear space which is obtained from a projective plane of order n by removing n collinear points. We know that an affine plane of order n with a point x at infinity has $n^{2}+1$ points and $n^{2}+n$ lines, x has degree n, all the other points have degree $n+1$, lines through x have length $n+1$, lines which miss x have length n.

A three-dimensional affine space is a three-dimensional projective space deprived of a plane π. In an affine space \mathbf{S} of order n all lines have the same length n. The points of π are called the points at infinity of the affine space \mathbf{S}. A three-dimensional affine space \mathbf{S} of order n with a point x at infinity is a three-dimensional projective space of order n deprived of a plane π passing through x together with its points different from x. All the planes through x are affine planes of order n with point x at infinity, all the other planes are affine planes of order n. It is clear that planes through x are contained in $n+1 \mathrm{~S}^{*}$-classes of same centre x and planes, which miss point x, belong to $n^{2} \mathrm{~S}$-classes.

Proposition 4.1. There exists no finite linear space where there are two distinct P-classes of quasiparallel lines with same centre x.

Proof. Let \mathbf{S} be a finite linear space. We denote by $[r]$ and $[s]$ two distinct P-classes of quasiparallel lines in \mathbf{S}, both of centre x. By Proposition 2.2 in [5] lines r and s have same length $n+1$, each point y on r, with $y \neq x$, has degree $n+1$ and each point z on s, with $z \neq x$, has degree $n+1$. Thus, every line which meets r, intersects s, also and vice versa. Hence, r and s are quasiparallel and we have a contradiction.

Now, we can state our result.
Theorem II. Let \mathbf{S} be a finite planar space satisfying property (A) and such that there is at least a line l of length $|l| \geqslant 5$. If equivalence classes of quasiparallel planes in \mathbf{S} are only S^{*}-classes and S-classes, there are $n+1 S^{*}$-classes with same centre x and $n^{2} S$-classes of quasiparallel planes and S is a three-dimensional affine space of order n with a point x at infinity.

Proof. We proceed in steps.
Step 1: Let $\left[\sigma_{i}\right]$ be a S-class of quasiparallel planes in \mathbf{S}. If $\left[\sigma_{j}\right]$ denotes a S-class of quasiparallel planes, with $\left[\sigma_{i}\right] \neq\left[\sigma_{j}\right]$, all the planes in $\left[\sigma_{j}\right]$ intersect σ_{i} in quasiparallel disjoint lines which belong to a same equivalence S -class [s_{j}] of quasiparallel lines in σ_{i}. Now, let [α_{h}] be a S^{*}-class of quasiparallel planes, of centre x_{h}. By Proposition 3.1 all the planes in $\left[\alpha_{h}\right]$ meet σ_{i} in quasiparallel lines which are contained in a same equivalence class of quasiparallel lines in $\sigma_{i},\left[a_{h}\right]$. If x_{h} lies on $\sigma_{i},\left[a_{h}\right]$ is a P-class of centre x_{h}. Conversely, if $x_{h} \notin \sigma_{i},\left[a_{h}\right]$ is a S-class. Let s be a line on σ_{i}.

We denote by β a plane through s, with $\beta \neq \sigma_{i}$. By hypothesis, equivalence class $[\beta]$ is either a S-class or a S^{*}-class. Hence, the equivalence class [s] of quasiparallel lines in σ_{i} is either a S-class or a P-class. By Proposition 2.9 in [5] and Proposition 4.1 there exists at most one P-class in plane σ_{i}. Therefore, either each class of quasiparallel lines in σ_{i} is a S-class and σ_{i} is an affine plane (see Theorem 2 in [5]) or there exists a unique P -class and σ_{i} is an affine plane with a point at infinity [5, Theorem 5]. In particular, if centre x_{h} of a S^{*}-class [α_{h}] belongs to σ_{i}, σ_{i} is an affine plane with point x_{h} at infinity. Furthermore, each plane in a S-class of quasiparallel planes is either an affine plane or an affine plane with a point at infinity.

Step 2: Let $\left[\sigma_{i}\right]$ be a S-class of quasiparallel planes in \mathbf{S}. There are two distinct cases to be considered.
Case 1: We assume that σ_{i} is an affine plane of order n with point x_{h} at infinity, where x_{h} is centre of a S^{*}-class $\left[\alpha_{h}\right]$. The lines through x_{h} on σ_{i} have length $n+1$ and are long lines of σ_{i}. Instead, the lines on σ_{i} which miss x_{h} have length n and are short lines. Let σ_{i}^{\prime} be a plane of order p in $\left[\sigma_{i}\right]$, with $\sigma_{i} \neq \sigma_{i}^{\prime}$. By (B) and (ii) we have $\left|\sigma_{i}\right|=\left|\sigma_{i}^{\prime}\right|$. Hence, if σ_{i}^{\prime} is an affine plane, we obtain $n^{2}+1=p^{2}$, a contradiction. Therefore, every plane in $\left[\sigma_{i}\right]$ is an affine plane of order n with a point at infinity. Moreover, since σ_{i} and σ_{i}^{\prime} are disjoint, σ_{i}^{\prime} has a point x_{k} at infinity, with $x_{h} \neq x_{k}$. From the foregoing, we see that x_{k} is centre of a S^{*}-class $\left[\alpha_{k}\right]$ of quasiparallel planes. The plane α_{h} meets σ_{i} in a long line of length $n+1$. Since σ_{i} and σ_{i}^{\prime} are quasiparallel planes, by Theorem 3.1 in [8] we deduce that $\alpha_{h} \cap \sigma_{i}^{\prime}$ is a long line of length $n+1$, also. Furthermore, since long lines on σ_{i}^{\prime} pass through x_{k}, we obtain that x_{k} lies on α_{h}. Let α_{h}^{\prime} be a plane in $\left[\alpha_{h}\right]$, with $\alpha_{h} \neq \alpha_{h}^{\prime}$. By Theorem 3.1 in [8] we have that the lines $\alpha_{h}^{\prime} \cap \sigma_{i}$ and $\alpha_{h}^{\prime} \cap \sigma_{i}^{\prime}$ have length $n+1$. Therefore, x_{k} belongs to α_{h}^{\prime} and α_{h} meets α_{h}^{\prime} in the line $x_{h} x_{k}$, a contradiction.

Case 2: We assume that σ_{i} is an affine plane of order n. All the planes in $\left[\sigma_{i}\right]$ are affine planes of order n. Let $\left[\sigma_{j}\right]$ be a S-class of quasiparallel planes, with $\left[\sigma_{i}\right] \neq\left[\sigma_{j}\right]$. From the foregoing, all the planes in $\left[\sigma_{j}\right]$ are affine planes. Moreover, $\sigma_{i} \cap \sigma_{j}$ is a line of length n. Hence, any plane σ_{i} which belongs to a S-class of quasiparallel planes is an affine plane of order n and no centre of $a \mathrm{~S}^{*}$-class lies on σ_{i}.

Step 3: Let $\left[\alpha_{h}\right]$ be a S^{*}-class of quasiparallel planes of centre x_{h}. Planes in $\left[\sigma_{i}\right]$ intersect α_{h} in disjoint quasiparallel lines of length n, which belong to a S-class. Let $\left[\alpha_{k}\right]$ be a S*-class of centre x_{k} such that $\alpha_{h} \notin\left[\alpha_{k}\right]$. By Proposition 3.2 planes in $\left[\alpha_{k}\right]$ meet α_{h} in quasiparallel lines which belong to an equivalence class [a_{k}]. Furthermore, if x_{k} lies on α_{h}, [$\left.a_{k}\right]$ is a P-class. Conversely, if $x_{k} \notin \alpha_{h},\left[a_{k}\right]$ is a S-class. Since in a plane there exists at most one P-class, α_{h} is either an affine plane or an affine plane with a point x_{k} at infinity. Let α_{h} be an affine plane of order p with a point x_{k} at infinity, where x_{k} is centre of a S^{*}-class $\left[\alpha_{k}\right]$. The long lines on α_{h} have length $p+1$ and pass through x_{k}. The short lines have length p and miss x_{k}. If σ_{i} is an affine plane in a S-class of quasiparallel planes, we have $x_{k} \notin \sigma_{i}$ and $\sigma_{i} \cap \alpha_{h}$ is a short line of length $p=n$. Hence, α_{h} has order n. Therefore, every plane in a S^{*}-class $\left[\alpha_{h}\right]$ of quasiparallel planes is either an affine plane of order n or an affine plane of order n with a point x_{k} at infinity, where x_{k} is centre of a S^{*}-class $\left[\alpha_{k}\right]$ of quasiparallel planes.

Step 4: We suppose that each plane in \mathbf{S} is an affine plane of order n. Moreover, any line has length n. By hypothesis we have $n=|l| \geqslant 5$ and \mathbf{S} is a three-dimensional affine space of order n (see [2]). Therefore, each equivalence class of quasiparallel planes is a S-class [7, Theorem II]), a contradiction. Thus, there is at least a plane which is an affine plane with a point at infinity.

Step 5: Let α_{h} be an affine plane of order n with a point x_{k} at infinity. Since $\left|\alpha_{h}\right|=\left|\alpha_{h}^{\prime}\right|$ for each plane $\alpha_{h}^{\prime} \in\left[\alpha_{h}\right]$, every plane α_{h}^{\prime} is an affine plane of order n with a point x_{k}^{\prime} at infinity. We know that $\left|\alpha_{k} \cap \alpha_{h}\right|=\left|\alpha_{k} \cap \alpha_{h}^{\prime}\right|=n+1$. Thus, the line $\alpha_{k} \cap \alpha_{h}^{\prime}$ contains point at infinity x_{k}^{\prime} of α_{h}^{\prime}. Let α_{k}^{\prime} be a plane in $\left[\alpha_{k}\right]$, with $\alpha_{k} \neq \alpha_{k}^{\prime}$. From $\left|\alpha_{k} \cap \alpha_{h}^{\prime}\right|=\left|\alpha_{k}^{\prime} \cap \alpha_{h}^{\prime}\right|$ we have that α_{k}^{\prime} meets α_{h}^{\prime} in a long line which contains the point x_{k}^{\prime}. Hence, both planes α_{k} and α_{k}^{\prime} pass through both points x_{k} and x_{k}^{\prime}. Since α_{k}^{\prime} belongs to S^{*}-class $\left[\alpha_{k}\right]$ we infer that $x_{k}=x_{k}^{\prime}$. Therefore, points x_{h} and x_{k} belong to both planes α_{h} and α_{h}^{\prime}. Thus, $x_{k}=x_{k}^{\prime}=x_{h}$. We conclude that every plane in $\left[\alpha_{h}\right]$ is an affine plane with a point at infinity of order n and the point at infinity is the centre x_{h} of $\left[\alpha_{h}\right]$. Moreover, α_{h} does not contain a centre x_{k} of a S^{*}-class $\left[\alpha_{k}\right]$, with $x_{k} \neq x_{h}$.

Step 6: Let $\left[\alpha_{k}\right]$ be a S^{*}-class of centre x_{k}, with $\left[\alpha_{h}\right] \neq\left[\alpha_{k}\right]$. We suppose that α_{k} is an affine plane of order n. The line $\alpha_{h} \cap \alpha_{k}$ is a short line and centre x_{k} of $\left[\alpha_{k}\right]$ does not lie on α_{h}. Let y be a point on $\alpha_{h} \cap \alpha_{k}$. Using a plane α_{h}^{\prime} which is quasiparallel to α_{h} and a plane α_{k}^{\prime} which is quasiparallel to α_{k}, from (i), (ii) and (B) we have

$$
\begin{aligned}
& b_{y}=b_{y}\left(\alpha_{h}\right)+\left|\alpha_{h}\right|-1=n+1+n^{2}+1-1, \\
& b_{y}=b_{y}\left(\alpha_{k}\right)+\left|\alpha_{k}\right|-1=n+1+n^{2}-1,
\end{aligned}
$$

a contradiction. Hence, all the planes in S^{*}-classes are affine planes of order n with a point at infinity.

Step 7: Let $\left[\alpha_{h}\right]$ of centre x_{h} and $\left[\alpha_{k}\right]$ of centre x_{k} be two different S^{*}-classes. Since planes in $\left[\alpha_{h}\right]$ are affine planes with x_{h} at infinity and planes in $\left[\alpha_{k}\right]$ are affine planes with x_{k} at infinity we have either $x_{h} \notin \alpha_{k}$ and $x_{k} \notin \alpha_{h}$ or $x_{h}=x_{k}$. First, we suppose $x_{h} \neq x_{k}$. Therefore, we find $x_{h} \notin \alpha_{k}$ and $x_{k} \notin \alpha_{h}$. Consider a plane γ through the line $x_{h} x_{k}$. Plane γ is not an affine plane of a S-class of quasiparallel planes because γ contains x_{h}. Therefore, plane γ is an affine plane with a point at infinity and $[\gamma]$ is a S^{*}-class of quasiparallel planes. From the foregoing we deduce that γ contains a centre of a S^{*}-class which is different from centre of S^{*}-class $[\gamma]$. This contradiction proves that all the S^{*}-classes of quasiparallel planes have the same centre x.

Step 8: All the lines of length $n+1$ contain x. Moreover, we have $n \geqslant 4$ because in \mathbf{S} there exists a line of length at least 5. Hence, since any plane of \mathbf{S} is an affine-projective plane of order $n \geqslant 4, \mathbf{S}$ is obtained from a projective space \mathbf{P} of order n by removing a part of a plane π of \mathbf{P} (see [11]). Let s^{\prime} be the line $\alpha_{h} \cap \sigma_{i}$. If we denote by z a point on s^{\prime}, using a plane σ_{i}^{\prime} which is quasiparallel to σ_{i}, we obtain

$$
b_{z}=b_{z}\left(\sigma_{i}\right)+\left|\sigma_{i}\right|=n+1+n^{2}
$$

The unique line through z of length $n+1$ is the line $x z$. Hence, we have

$$
v=|P|=n+1+\left(n^{2}+n\right)(n-1)=n^{3}+1 .
$$

Thus, \mathbf{S} is a three-dimensional projective space \mathbf{P} of order n which $n^{2}+n$ coplanar points have been deleted from. Hence, \mathbf{S} is space \mathbf{P} deprived of a plane π passing through x together with its points different from x. All the planes through x belong to $n+1 \mathrm{~S}^{*}$-classes of quasiparallel planes with same centre x, all the planes which miss x belong to n^{2} S-classes of quasiparallel planes. This completes the proof.

5. Three-dimensional affine spaces with a long line at infinity

A generalized projective plane is a two-dimensional linear space in which any two distinct lines have a common point. In particular, a near-pencil on v points is a finite linear space with one line of length $v-1$ and $v-1$ lines of length 2 . Furthermore, a projective plane of order n, with $n \geqslant 2$, is a finite linear space with every line of length $n+1$ and every point of degree $n+1$. It is easy to see that projective planes are generalized projective planes without lines of length two and near-pencils are generalized projective planes with lines of length 2.

A three-dimensional affine space \mathbf{S} of order n with a long line at infinity is a three-dimensional projective space \mathbf{P} of order n deprived of a plane π, together with its lines but one, say l, and its points except those of l. It is clear that planes through l belong to a unique P-class of quasiparallel planes of axis l. Therefore, each plane which misses l belongs to a S^{*}-class of centre on l.

Proposition 5.1. Let \mathbf{S} be a finite linear space. If l is a line such that every line r in \mathbf{S}, with $r \neq l$, meets l in a point x_{i} and r belongs to a pencil of quasiparallel lines of centre x_{i}, all the lines in \mathbf{S} are quasiparallel each other and \mathbf{S} is a generalized projective plane.

Proof. The class [r] of quasiparallel lines is neither a S-class nor a singleton. Thus, $[r]$ is either a P-class of centre x_{i} on l or a C-class (see [5]). It is clear that there exists at least a line s which misses x_{i} and intersects l in a point x_{j}, with $x_{i} \neq x_{j}$. The class $[s]$ is either a P-class of centre x_{j} or a C-class. If $[r]$ and $[s]$ are two P -classes, by Proposition 2.9 in [5], there exists in \mathbf{S} a singleton $[p]$ such that either $x_{i} \in p$ and $x_{j} \notin p$ or $x_{i} \notin p$ and $x_{j} \in p$. Since points x_{i} and x_{j} lie on l and each line which is distinct from l, does not belong to a singleton, we have a contradiction. By Proposition 2.1 in [5], there exists at most one C-class in \mathbf{S}. Moreover, by Proposition 2.8 in [5], a linear space \mathbf{S}, with both equivalence classes of quasiparallel lines, a C-class and a P-class, does not exist. Hence, r and s are quasiparallel lines and class $[r]=[s]$ is a C-class. Furthermore, all the lines which are distinct from l belong to unique C -class $[r]$. By Proposition 2.2 in [6], there exists no linear space with only one C-class and one singleton. Hence, lines in \mathbf{S} are pairwise quasiparallel and \mathbf{S} is a generalized projective plane (see [5]).

Theorem III. Let \mathbf{S} be a finite planar space satisfying property (A). If there is a long line of length $k \geqslant 5$ and equivalence classes of quasiparallel planes in \mathbf{S} are only one P-class of axis a line l of length $n+1$ and S^{*}-classes of centres on l, \mathbf{S} is a three-dimensional affine space of order n with line l at infinity.

Proof. We proceed in steps.
Step 1: Let $[\pi]$ be the P-class of axis l. If $\left[\alpha_{h}\right]$ is a S^{*}-class of centre x_{h} on l, from Proposition 3.2 we deduce that all the planes in $\left[\alpha_{h}\right]$ intersect π in quasiparallel lines through x_{h}. Furthermore, the planes of each S^{*}-class intersect π in quasiparallel lines through a point on l. Let r be a line on π which misses x_{h}. A plane β through r, which is distinct from π, belongs to a S^{*}-class [α_{k}] of centre $x_{k} \neq x_{h}$. Hence, each line r in π, which is distinct from l, meets l and belongs to a pencil of quasiparallel lines of centre on l. By Proposition 5.1, π is a generalized projective plane.

Step 2: First, we suppose that π is a near-pencil and l is the long line on π. The planes in $\left[\alpha_{h}\right]$ intersect π in lines of the same length through x_{h}. So, we have a contradiction. Now, we suppose that l is a line of length 2 . Let s be the long line on π. We denote by x the point $l \cap s$ and by α a plane through s, distinct from π. The class $[\alpha]$ is a S^{*}-class and planes in $[\alpha]$ meet π in quasiparallel lines of the same length, which is a contradiction. This implies that π is a projective plane. Furthermore, each plane in $[\pi]$ is a projective plane and all the planes in $[\pi]$ have the same order n.

Step 3: Let $\left[\alpha_{h}\right]$ be a S^{*}-class of centre x_{h} on l. We consider a point y in \mathbf{S}, with $y \notin \pi$, and a line t on π which misses x_{h}. It is clear that x_{h} does not lie on the plane $\langle t, y\rangle$. Thus, there exists at least one S^{*}-class $\left[\alpha_{k}\right]$ of centre $x_{k} \neq x_{h}$, such that $\langle t, y\rangle \sim \alpha_{k}$. Since two planes of $\left[\alpha_{h}\right]$ intersect in the point x_{h}, there exists at most a plane α_{h}^{\prime} in $\left[\alpha_{h}\right]$ such that $l \subset \alpha_{h}^{\prime}$. We may assume $l \not \subset \alpha_{h}$. By Proposition 3.2 planes in $[\pi]$ meet α_{h} in quasiparallel lines of length $n+1$, which belong to a pencil of centre x_{h}. If $\left[\alpha_{k}\right]$ is a S^{*}-class of centre $x_{k} \neq x_{h}$, planes in $\left[\alpha_{k}\right]$ meet α_{h} in quasiparallel disjoint lines. Finally, let $\left[\alpha_{i}\right]$ be a S^{*}-class of centre x_{h}, such that $\left[\alpha_{i}\right] \neq\left[\alpha_{h}\right]$. The planes in $\left[\alpha_{i}\right]$ meet α_{h} in quasiparallel lines through x_{h}. By Proposition 4.1 equivalence classes of quasiparallel lines in α_{h} are one P-class of centre x_{h} and S-classes. By Theorem 5 in [5], α_{h} is an affine plane with point x_{h} at infinity. Since the line $\pi \cap \alpha_{h}$ of length $n+1$ is a long line of α_{h}, α_{h} has order n. Hence, if $l \not \subset \alpha_{h}, \alpha_{h}$ is an affine plane of order n with point x_{h} at infinity.

Step 4: Let α_{h}^{\prime} be a plane in $\left[\alpha_{h}\right]$, with $\alpha_{h}^{\prime} \neq \alpha_{h}$. By (ii) we have $\left|\alpha_{h}\right|=\left|\alpha_{h}^{\prime}\right|=n^{2}+1$. If $l \not \subset \alpha_{h}^{\prime}, \alpha_{h}^{\prime}$ is an affine plane of order n with x_{h} at infinity. Now, we suppose $l \subset \alpha_{h}^{\prime}$. Each plane in $[\pi]$ has line l in common with α_{h}^{\prime}. Planes in $\left[\alpha_{k}\right]$ meet α_{h}^{\prime} in quasiparallel lines through x_{k}. Let g be a line in α_{h}^{\prime}, with $g \neq l$. We denote by γ a plane through g, with $\gamma \neq \alpha_{h}^{\prime}$. Since γ does not belong to $[\pi],[\gamma]$ is a S^{*}-class of centre a point x_{i} on l. Thus, g meets l in x_{i} and belongs to a pencil of quasiparallel lines of centre x_{i}. By Proposition $5.1 \alpha_{h}^{\prime}$ is a generalized projective plane. First, we suppose that α_{h}^{\prime} is a near-pencil. Since l lies on the projective plane π, l is long line of α_{h}^{\prime}. By $\left|\alpha_{h}\right|=\left|\alpha_{h}^{\prime}\right|=n^{2}+1$, we have a contradiction. Now, we suppose that α_{h}^{\prime} is a projective plane of order n. From $\left|\alpha_{h}\right|=\left|\alpha_{h}^{\prime}\right|=n^{2}+1$, we obtain a contradiction. Thus, $l \not \subset \alpha_{h}^{\prime}$. Each plane in $\left[\alpha_{h}\right]$ is an affine plane of order n with x_{h} at infinity. Furthermore, all the planes in S^{*}-classes are affine planes of order n with a point at infinity on l.

Step 5: Since there is a long line of length $k \geqslant 5$, each plane has order $n \geqslant 4$. Furthermore, each plane is affineprojective. By a result in [11] we deduce that \mathbf{S} is a projective space which a part of a plane has been deleted from. Let z be a point on π such that $z \notin l$. We denote by δ a plane through z, distinct from π. Plane δ belongs to a S^{*}-class of centre p on l. All the lines through z on δ, distinct from line $p z$, have length n. Let π^{\prime} be a plane in $[\pi]$ with $\pi^{\prime} \neq \pi$. By (i) we have

$$
\begin{aligned}
& b_{z}=b_{z}(\pi)+\left|\pi^{\prime}\right|-\left|\pi \cap \pi^{\prime}\right| \\
& b_{z}=(n+1)+\left(n^{2}+n+1\right)-(n+1) .
\end{aligned}
$$

Hence, there exist $n^{2}+n+1$ lines through $z, n+1$ of length $n+1$ and n^{2} of length n. Thus, we obtain

$$
\begin{equation*}
v=|P|=1+(n+1) n+n^{2}(n-1)=n^{3}+n+1 . \tag{5.1}
\end{equation*}
$$

Finally, we denote by \mathbf{P} the three-dimensional projective space from which \mathbf{S} has been obtained by deleting a part of a plane τ. It is clear that $\mathbf{P} \backslash \tau$ is an affine space and each plane in $\mathbf{P} \backslash \tau$ is an affine plane. Since in \mathbf{S} a plane $\alpha_{h}\left(\alpha_{k}\right)$ is an affine plane with a point $x_{h}\left(x_{k}\right)$ at infinity, in \mathbf{P} the points x_{h} and x_{k} lie on τ and $l \subset \tau$. Furthermore, by (5.1) we delete exactly n^{2} points from τ. Hence, since line l has length $n+1$ we obtain \mathbf{S} deleting $\tau \backslash l$ from \mathbf{P}. \mathbf{S} is a three-dimensional affine space of order n with line l of length $n+1$ at infinity.

6. Three-dimensional affine spaces with a short line at infinity

A punctured projective plane is a projective plane deprived of a point. In the following if r is a line, we denote by $i(r)$ the number of lines which have at least a common point with r and by $\operatorname{ext}(r)$ the number of lines which miss line r.

Proposition 6.1. There exists no finite linear space \mathbf{S} such that the equivalence classes of quasiparallel lines in \mathbf{S} are only one C-class, one S-class and one singleton.

Proof. On the contrary, we suppose that \mathbf{S} is a finite linear space such that equivalence classes of quasiparallel lines are exactly one C-class $[r]$, one S-class $[s]$ and one singleton $[l]$. If each line in $[r]$ has length $n+1$, by Proposition 2.5 in [5], each line in [s] has length n and each point has degree $n+1$. Let x be a point on r which does not lie on l. There exists at most one line s^{\prime} of $[s]$ such that x belongs to s^{\prime}. By counting points on lines through x, we have

$$
\begin{equation*}
n^{2}+n \leqslant v \leqslant 1+(n+1) n . \tag{6.1}
\end{equation*}
$$

By Proposition 2.5 in [5], each line in $[s]$ meets every line in $[r]$. Therefore, since $b_{y}=n+1$ for each point y in \mathbf{S}, l meets each line in $[r]$ and we obtain

$$
\begin{equation*}
b=i(r)=n^{2}+n+1 . \tag{6.2}
\end{equation*}
$$

If $v=n^{2}+n+1, \mathbf{S}$ is a generalized projective plane and there exists a unique equivalence class of quasiparallel lines, a contradiction. Now, we assume $v=n^{2}+n$. By Theorem 1.2 in [10] \mathbf{S} can be embedded into a projective plane of order n. Since $v=n^{2}+n, \mathbf{S}$ is a punctured projective plane and there exists no singleton. So, we have a contradiction.

Proposition 6.2. There exists no finite linear space whose equivalence classes of quasiparallel lines are only one P-class of centre x, one singleton $[l]$, with $x \in l$, and S-classes.

Proof. On the contrary, we suppose that \mathbf{S} is a finite linear space such that equivalence classes are exactly one P-class $[r]$ of centre $x, h \mathrm{~S}$-classes $\left[s_{1}\right], \ldots,\left[s_{h}\right]$ and one singleton $[l]$, with $x \in l$. Let $n+1$ be length of r. By (ii) all the lines in $[r]$ have length $n+1$. Each point y on r, with $y \neq x$, has degree $n+1$ (see [5]). From Proposition 2.6 in [5] each line in a S-class $[s i](i=1, \ldots, h)$ has length n and every point on a line in a S-class has degree $n+1$. The $n+1$ lines through y are the line r and n lines in $n S$-classes. Thus, we have $h \geqslant n \geqslant 2$ and

$$
\begin{equation*}
v=n+1+n(n-1)=n^{2}+1 . \tag{6.3}
\end{equation*}
$$

Let z be a point on l, with $z \neq x$. Each line g through z, with $g \neq l$, is a line in a S-class. Hence, z has degree $n+1$ and we obtain:

$$
\begin{equation*}
v=|l|+n(n-1)=n^{2}-n+|l| . \tag{6.4}
\end{equation*}
$$

By (6.3) and (6.4) we find:

$$
\begin{equation*}
|l|=n+1 . \tag{6.5}
\end{equation*}
$$

From a result of Erdös et al. [4] we deduce

$$
\begin{equation*}
b \geqslant n^{2}+n . \tag{6.6}
\end{equation*}
$$

By Propositions 2.4 and 2.6 in [5], each line s_{i} of a S-class of quasiparallel lines meets r. Hence, we have

$$
b=i(r)=n^{2}+b_{x} \geqslant n^{2}+n .
$$

If $b_{x}>n+1$, all the lines through x, which are distinct from l, belong to $[r]$ and we obtain

$$
v=1+b_{x} \cdot n=n^{2}+1
$$

a contradiction. Hence, either $b_{x}=n$ or $b_{x}=n+1$. First, we suppose $b_{x}=n+1$. There exist at least three lines through x of length $n+1, l$ and two lines in $[r]$. If $n=2$, we find $v=1+3 n$, a contradiction. If $n \geqslant 3$, we have:

$$
v \geqslant 1+3 n+(n-2)(n-1)=n^{2}+3,
$$

a contradiction. Hence, we deduce $b_{x}=n$, each line through x has length $n+1$ and $b=n^{2}+n$. From Lemma 2.6 in [10] \mathbf{S} can be embedded in a projective plane π of order n. Since $v=n^{2}+1$ and $b=n^{2}+n$, we obtain \mathbf{S} by deleting
from πn points p_{1}, \ldots, p_{n} and one line. Thus points $p_{i}(i=1, \ldots, n)$ are collinear and \mathbf{S} is an affine plane with a point at infinity. Furthermore, there exists no singleton in \mathbf{S}. So, we have a contradiction.

Proposition 6.3. Let \mathbf{S} be a finite linear space such that there exists a unique singleton $[l]$ and, if there exist P-classes of quasiparallel lines, each centre of a P-class lies on l. \mathbf{S} is linearly h-punctured projective plane of order n $(2 \leqslant h \leqslant n-1)$, equivalence classes are one C-class $[r], h S$-classes and one singleton $[l]$, with $|l|=|r|-h$, and there exists no P-class.

Proof. First, we suppose that in \mathbf{S} there exist P-classes of centres on l. By Proposition 4.1 two distinct P-classes of quasiparallel lines have distinct centres. From Proposition 2.9 in [5] we deduce that if there are two distinct P-classes $\left[t_{i}\right],\left[t_{j}\right]$ of centres x_{i}, x_{j}, there exists a singleton [$\left.g\right]$ such that either $x_{i} \in g$ and $x_{j} \notin g$ or $x_{i} \notin g$ and $x_{j} \in g$. Since there is a unique singleton [l] with $x_{i} \in l$ and $x_{j} \in l$, there exists at most one P-class [t] in \mathbf{S}. By Proposition 2.8 in [5] there exists no C-class in \mathbf{S}. If equivalence classes are only $[t]$ and $[l]$, all the lines belong to a pencil. So, we have a contradiction. Hence, there are S-classes of quasiparallel lines. By Proposition 6.2 there exists no finite linear space with only one P-class, one singleton and S-classes. Hence, there is no P-class in S. Now, we suppose that equivalence classes are only S-classes and unique singleton [l]. All the lines in S-classes have the same length n and by Theorem 2 in [6], either there exists no singleton or there exist at least $n+1$ singletons. So, we have a contradiction. Finally, we suppose that there exists a C-class [r]. By Proposition 2.1 in [5], $[r]$ is the unique C-class. If there exists a class $[s]$ of quasiparallel lines, with $[r] \neq[s] \neq[l],[s]$ is a S-class. Therefore, if there exists no S-class, by Proposition 2.2 in [6], the number of singletons is at least $k>|r|$. So, we have a contradiction. Thus, there is at least one S-class in \mathbf{S}. We suppose that equivalence classes are exactly one C-class, one S-class and one singleton. By Proposition 6.1, we have a contradiction. Now, we suppose that there are $h \mathbf{S}$-classes, with $h \geqslant 2$. By Theorem 4 in [5], \mathbf{S} is a linearly h-punctured projective plane of order n, with $|r|=n+1$ and $|l|=n+1-h(2 \leqslant h \leqslant n-1)$.

Let \mathbf{S} be a three-dimensional affine space of order $n \geqslant 4$ with a line l of length $|l| \leqslant n$ at infinity. It is clear that equivalence classes of quasiparallel planes are only one P -class of axis l, S^{*}-classes of centres on l and S -classes and there exists at least one line of length at least 5.

Theorem IV. Let \mathbf{S} be a finite planar space with property (A). If there is at least one line of length at least 5 and equivalence classes of quasiparallel planes are only one P-class of axis a line l, S^{*}-classes of centres on l and at least one S-class, \mathbf{S} is a three-dimensional affine space of order $n \geqslant 4$ with line lat infinity. Moreover, if k is the number of S-classes, $|l|=n+1-k$ and the number of S^{*}-classes is $n+1-k$.

Proof. We proceed in steps.
Step 1: Let $\left[\sigma_{h}\right]$ be a S-class of quasiparallel planes. We denote by n the order of σ_{h}. There exists at most one plane $\sigma_{h}^{\prime} \in\left[\sigma_{h}\right]$ such that $l \subset \sigma_{h}^{\prime}$. Thus, we may suppose $l \not \subset \sigma_{h}$. There are three distinct cases to be considered.

Case 1: We assume that each plane in $\left[\sigma_{h}\right]$ has no point in common with l. Planes in each class of quasiparallel planes, which is distinct from $\left[\sigma_{h}\right]$, meet σ_{h} in quasiparallel disjoint lines. Hence, every equivalence class of quasiparallel lines in σ_{h} is a S-class and by Theorem 2 in [5] σ_{h} is an affine plane. Furthermore, every plane in $\left[\sigma_{h}\right]$ is an affine plane of order n.

Case 2: We suppose that σ_{h} has empty intersection with l and there exists a plane σ_{h}^{\prime} in $\left[\sigma_{h}\right]$ of order m such that $l \subset \sigma_{h}^{\prime}$. From the foregoing, σ_{h} is an affine plane of order n. Planes in each S-class [$\left.\sigma_{k}\right]$, with $\sigma_{h} \notin\left[\sigma_{k}\right]$, intersect σ_{h}^{\prime} in quasiparallel disjoint lines. Moreover, planes in P-class [π] intersect σ_{h}^{\prime} in line l and planes in each S^{*}-class $\left[\alpha_{i}\right]$ of centre x_{i} on l meet σ_{h}^{\prime} in quasiparallel lines through x_{i}. It is clear that each equivalence class of quasiparallel lines in σ_{h}^{\prime}, which is distinct from $[l]$, is not a singleton. By Proposition 6.3 , if $[l]$ is a singleton, σ_{h}^{\prime} is a linearly k-punctured projective plane, with $2 \leqslant k \leqslant m-1$. If [l] is not a singleton, each equivalence class of quasiparallel lines in σ_{h}^{\prime} has size at least 2. By Proposition 2.1 in [8] one of the following cases occurs: σ_{h}^{\prime} is a projective plane, σ_{h}^{\prime} is a punctured projective plane, σ_{h}^{\prime} is an affine plane with a point at infinity, σ_{h}^{\prime} is an affine plane. Since in σ_{h}^{\prime} there exists at least an equivalence class of quasiparallel lines which is distinct from a S-class, σ_{h}^{\prime} is not an affine plane. If σ_{h}^{\prime} is a projective plane, by (ii) we find $\left|\sigma_{h}\right|=n^{2}=\left|\sigma_{h}^{\prime}\right|=m^{2}+m+1$, a contradiction. If σ_{h}^{\prime} is a punctured projective plane, we have $\left|\sigma_{h}\right|=n^{2}=\left|\sigma_{h}^{\prime}\right|=m^{2}+m$, a contradiction. Moreover, if σ_{h}^{\prime} is an affine plane with a point at infinity, we deduce $n^{2}=m^{2}+1$. So, we have a contradiction. Finally, if σ_{h}^{\prime} is a k-punctured projective plane, we have $n^{2}=m^{2}+m+1-k$, with $2 \leqslant k \leqslant m-1$, a contradiction.

Case 3: We assume $l \cap \sigma_{h}=\left\{x_{h}\right\}$. Every plane σ_{h}^{\prime} in $\left[\sigma_{h}\right]$ intersects l in a point. By Proposition 3.1 planes in a S-class [$\left.\sigma_{k}\right]$, with $\sigma_{h} \notin\left[\sigma_{k}\right]$, meet σ_{h} in quasiparallel disjoint lines. If $\left[\alpha_{i}\right]$ is a S^{*}-class of centre $x_{i} \neq x_{h}$, planes in $\left[\alpha_{i}\right]$ meet σ_{h} in quasiparallel disjoint lines. Let $\left[\alpha_{h}\right]$ be a S^{*}-class of centre x_{h}, planes in $\left[\alpha_{h}\right]$ intersect σ_{h} in quasiparallel lines through x_{h}. Finally, planes in $[\pi]$ meet σ_{h} in quasiparallel lines through x_{h}. By Proposition 4.1 there exists a unique P -class of centre x_{h}. Hence, the equivalence classes of quasiparallel lines in σ_{h} are only one P-class and S-classes. By Theorem 5 in [5], σ_{h} is an affine plane with point x_{h} at infinity. Furthermore, every plane in $\left[\sigma_{h}\right]$ is an affine plane with a point at infinity.

Hence, either each plane in $\left[\sigma_{h}\right]$ is an affine plane of order n and it is disjoint from lor every plane σ_{h}^{\prime} in $\left[\sigma_{h}\right]$ meets l in a point x_{h}^{\prime} and σ_{h}^{\prime} is an affine plane of order n with point x_{h}^{\prime} at infinity.

Step 2: Let $\left[\alpha_{i}\right]$ be a S^{*}-class of centre $x_{i} \in l$. There exists at most one plane $\alpha_{i}^{\prime} \in\left[\alpha_{i}\right]$ such that $l \subset \alpha_{i}^{\prime}$. We may suppose that $l \not \subset \alpha_{i}$. By Proposition 3.1 planes in a S-class $[\sigma]$ intersect α_{i} in quasiparallel disjoint lines. By Proposition 3.2 if $\left[\alpha_{j}\right]$ is a S^{*}-class of centre x_{i}, planes in $\left[\alpha_{j}\right]$ intersect α_{i} in quasiparallel lines through x_{i}, if $\left[\alpha_{j}\right]$ is a S^{*}-class of centre $x_{j} \neq x_{i}$, planes in $\left[\alpha_{j}\right]$ intersect α_{i} in quasiparallel disjoint lines. Finally, planes in P-class [π] intersect α_{i} in quasiparallel lines through x_{i}. By Proposition 4.1 in α_{i} there exists a unique P-class of quasiparallel lines of centre x_{i}. Hence, α_{i} is an affine plane with point x_{i} at infinity (see [5]).

Step 3: Let α_{i}^{\prime} be a plane in $\left[\alpha_{i}\right]$ such that $l \subset \alpha_{i}^{\prime}$. Since planes in a S-class $[\sigma]$ intersect α_{i}^{\prime} in quasiparallel disjoint lines, there exists at least one S-class of quasiparallel lines in α_{i}^{\prime}. Planes in a S^{*}-class $\left[\alpha_{j}\right]$ of centre x_{j} meet α_{i}^{\prime} in quasiparallel lines through x_{j} and planes in $[\pi]$ meet α_{i}^{\prime} in line l. Hence, there is at most one singleton, line l. First, we suppose that there exists a singleton. By Proposition 6.3, α_{i}^{\prime} is a linearly k-punctured projective plane, with $k \geqslant 2$. Now, we suppose that each equivalence class has size at least 2. Since in α_{i}^{\prime} there exists at least one S -class of quasiparallel lines, α_{i}^{\prime} is not a projective plane. Analogously, α_{i}^{\prime} is not an affine plane because there exists at least one class of quasiparallel lines which is distinct from a S-class. By Proposition 2.1 in [8], α_{i}^{\prime} is either a punctured projective plane or an affine plane with a point at infinity. We denote by p the order of α_{i} and by q the order of α_{i}^{\prime}. If α_{i}^{\prime} is a linearly k-punctured projective plane, with $k \geqslant 2$, we obtain

$$
\left|\alpha_{i}\right|=p^{2}+1=\left|\alpha_{i}^{\prime}\right|=q^{2}+q+1-k
$$

So, we have $p=q=k$ and α_{i}^{\prime} is an affine plane with a point at infinity. Now, let α_{i}^{\prime} be a punctured projective plane. We deduce

$$
\left|\alpha_{i}\right|=p^{2}+1=\left|\alpha_{i}^{\prime}\right|=q^{2}+q
$$

So, we have a contradiction. Hence, each plane in a S^{*}-class $\left[\alpha_{i}\right]$ is an affine plane with a point at infinity and all the planes in $\left[\alpha_{i}\right]$ have same order.

Step 4: We suppose that σ_{h} is an affine plane of order n with a point x_{h} at infinity which belongs to a S-class and α_{i} is an affine plane of order p with a point x_{i} at infinity which belongs to a S^{*}-class. We can assume $x_{h} \neq x_{i}$ and $l \not \subset \alpha_{i}$. Hence, we have $x_{h} \notin \alpha_{i}$ and $x_{i} \notin \sigma_{h}$. We denote by σ_{h}^{\prime} a plane in $\left[\sigma_{h}\right]$, with $\sigma_{h} \neq \sigma_{h}^{\prime}$, and by α_{i}^{\prime} a plane in $\left[\alpha_{i}\right]$, with $\alpha_{i} \neq \alpha_{i}^{\prime}$. Let r be line $\sigma_{h} \cap \alpha_{i}$. Line r is a short line of both planes σ_{h} and α_{i} and has length $n=p$. Let y be a point on r. By (i) and (ii) we obtain

$$
\begin{aligned}
& b_{y}=b_{y}\left(\sigma_{h}\right)+\left|\sigma_{h}^{\prime}\right|=n+1+n^{2}+1 \\
& b_{y}=b_{y}\left(\alpha_{i}\right)+\left|\alpha_{i}^{\prime}\right|-1=n+1+n^{2}+1-1
\end{aligned}
$$

Hence, we have a contradiction. Thus, σ_{h} is an affine plane of order n. Furthermore, all the planes in a S -class $[\sigma]$ are affine planes of order n and each plane in $[\sigma]$ has no point in common with line l.

Step 5: Let $\left[\alpha_{i}\right]$ be a S^{*}-class, with $\alpha_{i} \cap l=\left\{x_{i}\right\}$. From the foregoing α_{i} is an affine plane with point x_{i} at infinity. Line $r=\sigma_{h} \cap \alpha_{i}$ of length n is a short line in α_{i}. Hence, α_{i} has order n and all the planes of S^{*}-classes have same order n.

Step 6: By Propositions 3.1 and 3.2 planes in a S-class $[\sigma]$ intersect each plane of $[\pi]$ in quasiparallel disjoint lines. Therefore, the line $s=\sigma \cap \pi$ is a line of length n which is disjoint from l. Planes in a S^{*}-class $\left[\alpha_{i}\right]$ of centre x_{i} on l meet every plane of $[\pi]$ in quasiparallel lines through x_{i}. In π there is at most one singleton $[l]$. If $[l]$ is a singleton, by Proposition 6.3π is a linearly t-punctured projective plane with $t \geqslant 2$. If [l] is not a singleton, by Proposition 2.1 in [8], π is either a punctured projective plane or an affine plane with a point x_{i} on l at infinity.

There are two distinct cases to be considered.
Case 1: We suppose that π is an affine plane with point x_{i} at infinity. Since s is a short line of π, π has order n. We consider a plane $\sigma^{\prime} \in[\sigma]$, with $\sigma^{\prime} \neq \sigma$, and a plane $\pi^{\prime} \in[\pi]$, with $\pi^{\prime} \neq \pi$. If z is a point on s we have

$$
\begin{align*}
& b_{z}=b_{z}(\sigma)+\left|\sigma^{\prime}\right|=n+1+n^{2}, \tag{6.7}\\
& b_{z}=b_{z}(\pi)+\left|\pi^{\prime}\right|-\left|\pi \cap \pi^{\prime}\right|=n+1+n^{2}+1-|l| .
\end{align*}
$$

Hence, we have $|l|=1$, a contradiction.
Case 2: Each plane in $[\pi]$ is either a punctured projective plane or linearly t-punctured projective plane with $t \geqslant 2$. We may state that each plane in $[\pi]$ is a k-punctured projective plane with $k \geqslant 1$. Planes in a S-class $[\sigma]$ intersect π in short lines of length n. Hence, π has order n. We obtain

$$
b_{z}=b_{z}(\sigma)+\left|\sigma^{\prime}\right|=n+1+n^{2}=b_{z}(\pi)+\left|\pi^{\prime}\right|-\left|\pi \cap \pi^{\prime}\right|=n+1+n^{2}+n+1-k-|l|
$$

for a point z on $s=\pi \cap \sigma$. Thus, we have

$$
|l|=n+1-k .
$$

There are $n+1$ lines through z on π, k of length n which miss l and $n+1-k$ of length $n+1$ which intersect line l. The plane π is an affine plane of order n with line l at infinity. All the lines through z on a plane σ of a S-class of quasiparallel planes have length n. Let x be a point on l. If α is a plane through line $x z$, with $\alpha \neq \pi$, we have that α belongs to a S^{*}-class. Therefore, α is an affine plane with x at infinity. The unique line through z of length $n+1$ on α is line $x z$. Thus, the $n+1-k$ lines joining z to points on l have length $n+1$, all the other lines through z have length n. Hence, by (6.7) we obtain

$$
\begin{align*}
& v=|P|=1+(n+1-k) n+\left(n^{2}+k\right)(n-1) \\
& v=n^{3}+n+1-k=n^{3}+|l| \tag{6.8}
\end{align*}
$$

All the planes in \mathbf{S} are affine-projective planes of order n. Since there is a line of length at least 5, we obtain $n \geqslant 4$. By a result in [11] \mathbf{S} is a projective space \mathbf{P} of order n deprived of a part of its plane τ. Let X be the set of points on τ which are in \mathbf{S}. By (6.8) \mathbf{S} has been obtained from \mathbf{P} by deleting $n^{2}+n+1-|l|=n^{2}+k$ points of τ and $|X|=|l|$. Hence, \mathbf{S} is a three-dimensional affine space with line l at infinity. Furthermore, the number of S^{*}-classes is exactly $n+1-k=|l|$ and the number of S-classes is k. This completes the proof.

References

[1] L.M. Batten, Combinatorics of Finite Geometries, Cambridge, 1997.
[2] F. Buekenhout, Une caractérisation des espaces affins basée sur la notion de droite, Math. Z. 111 (1969) 367-371.
[4] P. Erdös, R.C. Mullin, V.T. Sòs, D.R. Stinson, Finite linear spaces and projective planes, Discrete Math. 47 (1983) 49-62.
[5] S. Freni, Quasiparallel lines in finite linear spaces, Ricerche di Matematica 47 (fasc.1) (1998) 115-124.
[6] S. Freni, Quasiparallelism and embedding of finite linear spaces, Discrete Math. 208/209 (1999) 273-284.
[7] S. Freni, Quasiparallel planes in finite planar spaces, Discrete Math. 255 (2002) 117-124.
[8] S. Freni, Quasiparallelism in finite planar spaces, Discrete Math. 267 (2003) 127-142.
[9] N. Melone, U. Ott, On the rank of truncated incidence matrices of linear spaces, Designs Codes Cryptogr. 2 (1992) 307-313.
[10] D.R. Stinson, A short proof of a theorem of de Witte, Ars Combin. 14 (1982) 78-86.
[11] L. Teirlinck, Combinatorial structures, Ph.D. Thesis, Department of Mathematics, Vrije University, Bruxelles, 1976.

[^0]: ${ }^{4}$ Work supported by National Research Project Strutture geometriche, Combinatoria e loro applicazioni of the Italian Ministero dell'Università e della Ricerca scientifica and by G.N.S.A.G.A. of C.N.R.

 E-mail address: sveva.freni@unina2.it.

