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Abstract

This paper is concerned with quasiparallelism relation in a finite planar space S. In particular, we prove that if no plane in S is the
union of two lines quasiparallelism relation between planes is an equivalence relation. Moreover, three-dimensional affine spaces
with a point at infinity and three-dimensional affine spaces with a line at infinity are characterized.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A linear space S is a pair (P, L), where P is a non-empty set of points and L is a family of proper subsets of P,
called lines, such that any two distinct points x and y belong to a unique line xy, every line contains at least two points
and there are at least two lines. We denote by v the number of its points and by b the number of its lines.

A subspace X of S is a subset of P such that the line joining any two distinct points of X is already contained
in X. It is easy to see that the empty set, a point, a line and P are subspaces. Moreover, the intersection of any
family of subspaces is a subspace. Thus, any subset ¥ of P spans the subspace (Y), intersection of all the subspaces
containing Y.

An independent set Z is a set of points such that for each z € Z, z ¢ (Z\{z}). A generator of S is a subset G such
that (G) = P and a basis of S is an independent subset of the points of S which generates S. Moreover, the dimension
of S is the integer dim S = min(|B]| : B is a basis for S)—1 (see [1]).

Let S = (P, L) be a finite linear space. The length of a line / is the number |/| of points on /. Every line of maximal
size will be called a long line. All other lines will be called short lines. The degree of a point x is the number b, of lines
on which it lies. If n + 1 = max(b,, x € P), then the integer n is called the order of S. Let X be a subspace through x.
We denote by by (X) the number of lines through x on X. The integer b, (X) is the degree of x in X.
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A planar space S is a triple (P, L, P*), where (P, L) is a linear space and P* is a non-empty family of subspaces,
called planes, such that:

e cvery plane contains at least three non-collinear points;
e any three non-collinear points lie in exactly one plane and it is the smallest subspace containing them;
e there are at least two planes.

LetS= (P, L, P*) be a finite planar space. If 7 is a plane of S, we denote by |x| the number of its points and by b,
the number of its lines. Consider the family L of lines on the plane n. The pair (7, L) is a finite linear space on |7
points and by lines. If n(r) denotes the order of linear space (, L), the integer n = max{n(n) : = € P*}, is called
order of the planar space.

The subspaces X and X' are quasiparallel if | X N1| =|X"N1| for all lines /£ X U X’ (see [9] ). Let X and X’ be two
quasiparallel subspaces in a finite linear space S. The following results hold (see [9]):

(1) by =b(X) + |X'| — | X N X'| for every x € X\ X'.
(i) |X|=|X'|if X UX # P.

In the following we shall use the notation X ~ X’ to mean that the subspaces X and X’ are quasiparallel.

In a plane 7 of S the relation of quasiparallelism for lines is an equivalence relation. In the following the equivalence
class of quasiparallel lines which contains a line / will be denoted by [/]. An equivalence class [/] will be called a
singleton if [[] contains the unique line /. Let S= (P, L) be a finite linear space. A family of pairwise intersecting lines,
with at least three non-concurrent lines, will be called a cligue of lines. A pencil of lines is a family of lines passing
through a common point. Finally, a spread of lines is a family of pairwise disjoint lines. An equivalence class [/] of
quasiparallel lines, with size at least 2, is one of the following (see [5]):

(D []1is aclique, also called a C-class (or clique-class);
(II) [/]is a pencil of centre x, also called a P-class (or pencil-class) of centre x;
(IIT) [I]1s a spread, also called a S-class (or spread-class).

In this paper we want to study quasiparallelism relation for planes in a finite planar space S = (P, L, P*) with the
following property:
(A) Yae P*, Vr,s€Ly oa#rUs.

In particular, we shall prove that for planes in a finite planar space fulfilling the condition (A) the quasiparallelism relation
is an equivalence relation. Furthermore, three-dimensional affine spaces with a point at infinity and three-dimensional
affine spaces with a line at infinity are characterized.

2. The equivalence relation

Let S be a finite planar space with property (A). In S the following condition holds
(B) Vo,BeP*, P#aUSB.
By Theorem 3.1 in [8] we have
n~n & |aNnn =|aN] 2.1

for every plane o such that © # « # 7'. Consider a plane 7 in S. In [7] we denoted by (r) the subset of P* which
contains 7 and each plane 7’ such that © ~ 7. Furthermore, in [7] we showed that, if there exists in (7) a plane ' with
n N7’ =@, planes in (1) are pairwise disjoint and quasiparallel to each other. Moreover, in [8] we proved that, if 7 and
7’ are two quasiparallel planes which intersect in a line, planes in () are pairwise quasiparallel and any two distinct
planes in () intersect in a line of constant length.

Proposition 2.1. If 7’ is a plane in (%) such that 1 N\ 7' is a point x, any two distinct planes in (1) intersect in point x.
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Proof. Let 7”7 be a plane in () with &= # 7" # #’. Since 7 and n” are quasiparallel, by (2.1) we obtain
lrNa|=|r"Nn|.

Hence, n” intersects 7’ in a point y. We suppose y # x. Every line of ' through x intersects 7”” while the unique line
on 7' containing x and intersecting 7" is the line xy. This forces x = y and #’ N 7" = {x}. Moreover, by 7 ~ 7’ we
deduce

lrNa’|=|n' Nna’|

and = N " = {x}. Hence, any two distinct planes in (7) intersect in point x and the proposition is proved. [J
Proposition 2.2. Let 7' and 7" two distinct planes of (r). If ' intersects 7 in a point x,, then ' and " are quasiparallel.

Proof. Let 7" be a plane in (n), with 7 # 7”. At once (B) and (ii) yield |r| = |7/| = |7”|. We want to show that 7’ and
7’ are quasiparallel. In other words, we shall prove that |7’ N r| = |z” N r| for every line r¢n’ U n”. By Proposition
2.1 wehave N7 =7’ Nn” = {x}. If r meets 7’ in x, r meets both planes, 7’ and 7”". Now, we suppose that r meets 7’
in a point y, with y # x. By (i) we deduce that the lines through y outside n’ are b, — by (n') = |n| — 1. On the other
hand, the lines joining y to points which lie on 7"\’ are |7”| — |7’ N 7’| = || — 1. Hence, every line which meets 7’
in y, meets 7”, too. Analogously, if r is a line which intersects 7”, r meets 7/, too. The proof is complete. [

Now, we are ready to state our first result.

Theorem 1. Let S be a finite planar space with property (A). For planes quasiparallelism relation is an equivalence
relation.

Proof. Let 7 and 7’ be two quasiparallel planes in S. If 7 N 7’ = @, by Propositions 4.1, 4.2 and 4.3 in [7], planes in
(1) are pairwise quasiparallel. Now, we assume that 7 N 7’ is a point x. By Proposition 2.2 planes in () are pairwise
quasiparallel. Finally, if = and «’ intersect in a line, from Proposition 4.3 in [8] we deduce that planes in (7) are pairwise
quasiparallel. Hence, the desired result follows. [J

In the following the equivalence class of quasiparallel planes which contains a plane 7 will be denoted by [7]. An
equivalence class [n] will be called a singleton if [r] contains the unique plane m. Moreover, a family of pairwise
disjoint planes will be called a spread, a family of planes such that any two distinct planes intersect in a common point
x will be called a star of planes of centre x. A pencil of planes of axis [ is a family of planes with a common line /. A
clique of centre x of planes is a family of planes such that point x lies on all planes of the family and any two distinct
planes intersect in a line through x of constant length. Finally, a clique of planes is a family of planes such that any two
distinct planes intersect in a line of constant length and there are at least three planes which have no common point.
Therefore, the results in [7,8] and Propositions 2.1, 2.2 imply the following:

Proposition 2.3. Let S be a finite planar space having property (A). If m is a plane in S, the equivalence class of
quasiparallel planes 1] is one of the following:

(@)
(b)
©)
(d
(e)
(H)

7] is a singleton,;

7] is a spread, also called a S-class (or spread-class);

7] is a star of centre x, also called a S*-class (or star-class) of centre x;

n] is a pencil of axis I, also called a P-class (or pencil-class) of axis [;

7] is a clique of centre x, also called a C*-class (or clique-star-class) of centre x;
7] is a clique, also called a C-class (or clique-class).

—_—r—————

3. Planes which intersect in a line

Let S be a finite planar space fulfilling property (A). We state here the results concerning the intersection of two
non-quasiparallel planes. In [7] we showed that if [«] and [f] are two distinct S-classes of quasiparallel planes, every
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plane in [«] has at least a point in common with every plane in [f]. Moreover, in [8] we proved that if [¢] is a S-class,
for every plane 7 with @ ¢ [o], either ¢ N 7w = or ¢ N 7 is a line. Hence, every plane in [«] meets every plane in [f] in
a line. Furthermore, by Proposition 4.8 in [8] we see that if [¢] is a S-class and [r] is a C-class of quasiparallel planes,
each plane ¢’ in [o] meets each plane 7’ in [x] in a line of constant length.

Now, we state the following general results.

Proposition 3.1. Let [a] be a S-class of quasiparallel planes in S. If [n] is a class of quasiparallel planes, with size at
least two and o ¢ [rt], each plane ¢’ in [c] meets every plane 7' in [7] in a line of constant length.

Proof. By Proposition 4.7 in [8] either ¢ N © = @ or ¢ N 7 is a line. First,we assume ¢ N 7w = ¢J. Let x be a point in g.
From (B), (i) and (ii) we obtain

by =by(0) + |a].
Hence, the number of lines through x outside ¢ is |a|. Since the number of lines joining x to points on 7 is |r|, we have
|| <|al.
Now, we denote by y a point on &, with y ¢ ' and 7’ € [n]. We infer
by =by(m) + |n| — |z N 7|,
lo|<|n| — [z N 7).
Thus, we find
lol<|n| — [z N 7| <7 <ol

which implies |o| = |7| and = N ' = @. Therefore, [x] is a S-class of quasiparallel planes, also. By Proposition 4.4 in
[7] o has at least a point in common with 7, a contradiction. Hence, o N 7 is a line. Moreover, from Theorem 3.1 in [8]
we obtain

loNnal=|lcN7|=|d N7|=|d Nn

and the proposition is proved. [l

Proposition 3.2. Let [o] and [] be two distinct equivalence classes of quasiparallel planes in S, with size at least two.
Every plane o in [o] meets every plane 8 in [B] in a line of constant length.

Proof. If either [o] or [f] is a S-class the desired result follows from Proposition 3.1. Now, we suppose that neither [«]
nor [f] is a S-class. Moreover, we suppose o N = ). We know that

by =by(a) + |a| — [aN o] (3.1)
with o/ € [o] and y € «\o/. Analogously, if 8’ belongs to [f] and z denotes a point on f\f’, we infer that

b. =b:(B)+ 1l = IBN B (3.2
We see, also, that

lof = leno/|=[B] and [B] —IfNJ|=]al.
Hence,

IBI< ol — Jeno/| < o <IBL = BN BT <P,

which is a contradiction.Thus, planes o« and f have at least a point in common. We suppose o N f§ = {x}. Since
N Bl =/ NP, o and f intersect in a unique point x". From o ~ of we deduce that each line through x on f contains
x’, also. This forces x = x’. Therefore, by using Theorem 3.1 in [8], we have |oN | =|aN B|. If x” denotes the unique
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point which is common to « and 8/, from the foregoing, we obtain x = x’ = x”. In order to show the proposition, we
consider a point y on o, with y ¢ ¢/, and a point z on f3, with z ¢ . From (3.1) and (3.2) we infer that

lof —leNa/|=[fl =1 and Bl —IBNBI=]ol 1,

lof = 1> = N o[> |B] = 1=l = BN =>o| — 1
which means that

lend|=1=|pNF| and |of=|pl.

Hence, the equivalence classes [o] and [f] are S*-classes of same centre x. Furthermore, every line which meets o in a
point y meets f3, also, and each line which intersects f§ meets o. It follows that o and f§ are quasiparallel, a contradiction.
We conclude that « N f3 is a line and by Theorem 3.1 in [8] every plane in [«] has a line of constant length |« N 3] in
common with each plane in [f]. O

4. Three-dimensional affine spaces with a point at infinity

A linear space of dimension two is called an affine-projective plane [11] or linearly h-punctured projective plane if it
is a projective plane deprived of % collinear points. In particular, an affine plane of order n is obtained from a projective
plane of order n by deleting one line [. The n 4 1 points of [ are called the points at infinity of the affine plane. An
affine plane of order n (n >2) is a finite linear space with every line of length n and every point of degree n 4+ 1. An
affine plane with a point at infinity of order n is a linear space which is obtained from a projective plane of order n by
removing n collinear points. We know that an affine plane of order n with a point x at infinity has n> + 1 points and
n® + n lines, x has degree 7, all the other points have degree n + 1, lines through x have length 1 + 1, lines which miss
x have length n.

A three-dimensional affine space is a three-dimensional projective space deprived of a plane 7. In an affine space
S of order n all lines have the same length n. The points of 7 are called the points at infinity of the affine space S. A
three-dimensional affine space S of order n with a point x at infinity is a three-dimensional projective space of order n
deprived of a plane 7 passing through x together with its points different from x. All the planes through x are affine
planes of order n with point x at infinity, all the other planes are affine planes of order . It is clear that planes through
x are contained in n 4+ 1 S*-classes of same centre x and planes, which miss point x, belong to n> S-classes.

Proposition 4.1. There exists no finite linear space where there are two distinct P-classes of quasiparallel lines with
same centre Xx.

Proof. Let S be a finite linear space. We denote by [r] and [s] two distinct P-classes of quasiparallel lines in S, both
of centre x. By Proposition 2.2 in [5] lines r and s have same length n + 1, each point y on r, with y # x, has degree
n + 1 and each point z on s, with z # x, has degree n + 1. Thus, every line which meets r, intersects s, also and vice
versa. Hence, r and s are quasiparallel and we have a contradiction. [

Now, we can state our result.

Theorem I1. Let S be a finite planar space satisfying property (A) and such that there is at least a line | of length
|l =5. If equivalence classes of quasiparallel planes in S are only S*-classes and S-classes, there are n + 1 S*-classes
with same centre x and n* S-classes of quasiparallel planes and S is a three-dimensional affine space of order n with
a point x at infinity.

Proof. We proceed in steps.

Step 1: Let [g;] be a S-class of quasiparallel planes in S. If [o;] denotes a S-class of quasiparallel planes, with
[6i] # [o], all the planes in [¢ ;] intersect o; in quasiparallel disjoint lines which belong to a same equivalence S-class
[s;] of quasiparallel lines in ¢;. Now, let [0, ] be a S*-class of quasiparallel planes, of centre x;,. By Proposition 3.1 all
the planes in [0, ] meet o; in quasiparallel lines which are contained in a same equivalence class of quasiparallel lines
in a;, [ay]. If xj, lies on a;, [a] is a P-class of centre xj,. Conversely, if xj, ¢ o;, [an] is a S-class. Let s be a line on ¢;.
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We denote by f a plane through s, with § # ¢;. By hypothesis, equivalence class [f] is either a S-class or a S*-class.
Hence, the equivalence class [s] of quasiparallel lines in o; is either a S-class or a P-class. By Proposition 2.9 in [5]
and Proposition 4.1 there exists at most one P-class in plane ;. Therefore, either each class of quasiparallel lines in
o; is a S-class and o is an affine plane (see Theorem 2 in [5]) or there exists a unique P-class and g; is an affine plane
with a point at infinity [S, Theorem 5]. In particular, if centre x; of a S*-class [ay,] belongs to a;, ¢; is an affine plane
with point x;, at infinity. Furthermore, each plane in a S-class of quasiparallel planes is either an affine plane or an
affine plane with a point at infinity.

Step 2: Let [o;] be a S-class of quasiparallel planes in S. There are two distinct cases to be considered.

Case 1: We assume that g; is an affine plane of order n with point x;, at infinity, where xj, is centre of a S*-class [o,].
The lines through x;, on ¢; have length n 4 1 and are long lines of g;. Instead, the lines on ¢; which miss x; have length
n and are short lines. Let ¢ be a plane of order p in [g;], with 6; # ¢. By (B) and (ii) we have |g;| = |o}|. Hence, if
o} is an affine plane, we obtain n* + 1 = p?, a contradiction. Therefore, every plane in [o;] is an affine plane of order
n with a point at infinity. Moreover, since ¢; and ¢; are disjoint, ¢; has a point x4 at infinity, with x, % xi. From the
foregoing, we see that x; is centre of a S*-class [¢y] of quasiparallel planes. The plane «;, meets o; in a long line of
length n + 1. Since ¢; and o are quasiparallel planes, by Theorem 3.1 in [8] we deduce that o, N ¢ is a long line of
length n + 1, also. Furthermore, since long lines on ¢} pass through x;, we obtain that x; lies on oy, Let o be a plane
in [a,], with oy, # o). By Theorem 3.1 in [8] we have that the lines o, N ¢; and o, N ¢} have length n + 1. Therefore,
X belongs to oc}l and oy, meets oc}, in the line x;,x;, a contradiction.

Case 2: We assume that o; is an affine plane of order n. All the planes in [o;] are affine planes of order n. Let [g]
be a S-class of quasiparallel planes, with [o;] # [o;]. From the foregoing, all the planes in [o] are affine planes.
Moreover, g; N g is a line of length n. Hence, any plane o; which belongs to a S-class of quasiparallel planes is an
affine plane of order n and no centre of a S*-class lies on ;.

Step 3: Let [oy,] be a S*-class of quasiparallel planes of centre xj,. Planes in [o;] intersect oy, in disjoint quasiparallel
lines of length n, which belong to a S-class. Let [o] be a S*-class of centre x such that o, ¢ [0 ]. By Proposition 3.2
planes in [0 ] meet o, in quasiparallel lines which belong to an equivalence class [ax]. Furthermore, if x; lies on oy,
[ak]is a P-class. Conversely, if xj ¢ ay, [ax] is a S-class. Since in a plane there exists at most one P-class, oy, is either an
affine plane or an affine plane with a point x; at infinity. Let o, be an affine plane of order p with a point x at infinity,
where xy, is centre of a S*-class [ox]. The long lines on oy, have length p 4 1 and pass through x;. The short lines have
length p and miss xi. If ¢; is an affine plane in a S-class of quasiparallel planes, we have x; ¢ o; and g; N oy, is a short
line of length p = n. Hence, o, has order n. Therefore, every plane in a S*-class [oy] of quasiparallel planes is either
an affine plane of order n or an affine plane of order n with a point xi at infinity, where xy, is centre of a S*-class [0]
of quasiparallel planes.

Step 4: We suppose that each plane in S is an affine plane of order n. Moreover, any line has length n. By hypothesis
we have n = |[| >5 and S is a three-dimensional affine space of order n (see [2]). Therefore, each equivalence class
of quasiparallel planes is a S-class [7, Theorem II]), a contradiction. Thus, there is at least a plane which is an affine
plane with a point at infinity.

Step 5: Let oy, be an affine plane of order n with a point x; at infinity. Since |ay| = |o¢}l| for each plane oc;l € [ap],
every plane o, is an affine plane of order n with a point x;, at infinity. We know that |og N o | = |og N oy | =n + 1. Thus,
the line o N o, contains point at infinity x; of o). Let o be a plane in [0y ], with o # 0. From Joyx Mo, | = Jog Moty |
we have that o meets o, in a long line which contains the point x;. Hence, both planes «; and o; pass through both
points xj; and x,’c. Since oc}( belongs to S*-class [ox] we infer that x; = x,/{. Therefore, points x;, and x; belong to both
planes «; and oc;l. Thus, x; = x,/{ = xj,. We conclude that every plane in [o,] is an affine plane with a point at infinity of
order n and the point at infinity is the centre xj, of [ay]. Moreover, oy, does not contain a centre xi of a S*-class [og],
with X # xp.

Step 6: Let [ay] be a S*-class of centre xy, with [o,] # [ox]. We suppose that o is an affine plane of order n. The
line o, N o 1s a short line and centre xj of [ox] does not lie on . Let y be a point on oy N o. Using a plane oc}l which
is quasiparallel to o, and a plane oc?( which is quasiparallel to oy, from (i), (ii) and (B) we have

by =by(oan) + oy —1=n+1+n>+1-1,
by =by() + lox| — 1 =n+1+n*—1,

a contradiction. Hence, all the planes in S*-classes are affine planes of order n with a point at infinity.
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Step T: Let [ay] of centre x;, and [0y ] of centre x; be two different S*-classes. Since planes in [0y, ] are affine planes
with xj, at infinity and planes in [0y ] are affine planes with x; at infinity we have either xj, ¢ o and xi ¢ o, or xj, = x.
First, we suppose x, # xi. Therefore, we find xj, ¢ o and xi ¢ a;. Consider a plane y through the line xjxy. Plane y
is not an affine plane of a S-class of quasiparallel planes because y contains xj. Therefore, plane 7 is an affine plane
with a point at infinity and [y] is a S*-class of quasiparallel planes. From the foregoing we deduce that y contains a
centre of a S*-class which is different from centre of S*-class [y]. This contradiction proves that all the S*-classes of
quasiparallel planes have the same centre x.

Step 8: All the lines of length n + 1 contain x. Moreover, we have n >4 because in S there exists a line of length at
least 5. Hence, since any plane of S is an affine-projective plane of order n >4, S is obtained from a projective space P
of order n by removing a part of a plane 7 of P (see [11]). Let s’ be the line o, N ¢;. If we denote by z a point on s”,
using a plane ¢} which is quasiparallel to g;, we obtain

b =b.(0;) + |oi| =n+ 1 +n’.
The unique line through z of length n + 1 is the line xz. Hence, we have
v=|Pl=n+14+ 0 +nmn—-1)=n’+1

Thus, S is a three-dimensional projective space P of order n which n2 4 n coplanar points have been deleted from.
Hence, S is space P deprived of a plane n passing through x together with its points different from x. All the planes
through x belong to n + 1 S*-classes of quasiparallel planes with same centre x, all the planes which miss x belong to
n? S-classes of quasiparallel planes. This completes the proof. []

5. Three-dimensional affine spaces with a long line at infinity

A generalized projective plane is a two-dimensional linear space in which any two distinct lines have a common
point. In particular, a near-pencil on v points is a finite linear space with one line of length v — 1 and v — 1 lines of
length 2. Furthermore, a projective plane of order n, with n > 2, is a finite linear space with every line of length n + 1
and every point of degree n + 1. It is easy to see that projective planes are generalized projective planes without lines
of length two and near-pencils are generalized projective planes with lines of length 2.

A three-dimensional affine space S of order n with a long line at infinity is a three-dimensional projective space P of
order n deprived of a plane 7, together with its lines but one, say /, and its points except those of /. It is clear that planes
through [ belong to a unique P-class of quasiparallel planes of axis . Therefore, each plane which misses / belongs to
a S*-class of centre on /.

Proposition 5.1. Let S be a finite linear space. If l is a line such that every line r in S, with r # [, meets l in a point x;
and r belongs to a pencil of quasiparallel lines of centre x;, all the lines in S are quasiparallel each other and S is a
generalized projective plane.

Proof. The class [r] of quasiparallel lines is neither a S-class nor a singleton. Thus, [r] is either a P-class of centre
x; on [ or a C-class (see [5]). It is clear that there exists at least a line s which misses x; and intersects / in a point x ;,
with x; # x;. The class [s] is either a P-class of centre x j or a C-class. If [r] and [s] are two P-classes, by Proposition
2.9 in [5], there exists in S a singleton [p] such that either x; € p and x; ¢ p or x; ¢ p and x; € p. Since points
x; and x; lie on [ and each line which is distinct from /, does not belong to a singleton, we have a contradiction. By
Proposition 2.1 in [5], there exists at most one C-class in S. Moreover, by Proposition 2.8 in [5], a linear space S, with
both equivalence classes of quasiparallel lines, a C-class and a P-class, does not exist. Hence, r and s are quasiparallel
lines and class [r] = [s] is a C-class. Furthermore, all the lines which are distinct from / belong to unique C-class [r].
By Proposition 2.2 in [6], there exists no linear space with only one C-class and one singleton. Hence, lines in S are
pairwise quasiparallel and S is a generalized projective plane (see [5]). O

Theorem III. LetS be afinite planar space satisfying property (A). If there is a long line of length k > 5 and equivalence
classes of quasiparallel planes in S are only one P-class of axis a line | of length n + 1 and S*-classes of centres on I,
S is a three-dimensional affine space of order n with line [ at infinity.
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Proof. We proceed in steps.

Step 1: Let [n] be the P-class of axis I. If [a,] is a S*-class of centre xj, on I, from Proposition 3.2 we deduce that all
the planes in [oy,] intersect m in quasiparallel lines through x,. Furthermore, the planes of each S*-class intersect 7 in
quasiparallel lines through a point on /. Let r be a line on = which misses xj. A plane f through r, which is distinct from
7, belongs to a S*-class [0y ] of centre x; # xj,. Hence, each line r in 7, which is distinct from /, meets / and belongs
to a pencil of quasiparallel lines of centre on /. By Proposition 5.1, 7 is a generalized projective plane.

Step 2: First, we suppose that 7 is a near-pencil and [ is the long line on 7. The planes in [0, ] intersect 7 in lines
of the same length through x;,. So, we have a contradiction. Now, we suppose that / is a line of length 2. Let s be the
long line on 7. We denote by x the point / N s and by « a plane through s, distinct from 7. The class [«] is a S*-class
and planes in [«] meet 7 in quasiparallel lines of the same length, which is a contradiction. This implies that 7 is a
projective plane. Furthermore, each plane in 7] is a projective plane and all the planes in 1] have the same order n.

Step 3: Let [a,] be a S*-class of centre xj, on . We consider a point y in S, with y ¢ 7, and a line 7 on 7 which misses
xp. It is clear that x;, does not lie on the plane (¢, y). Thus, there exists at least one S*-class o] of centre xi # xp,
such that (¢, y) ~ og. Since two planes of [« ] intersect in the point xj, there exists at most a plane ocjl in [0, ] such that
I C a,. We may assume [ ¢ aj,. By Proposition 3.2 planes in [7] meet o, in quasiparallel lines of length n + 1, which
belong to a pencil of centre x,. If [a] is a S*-class of centre x; # xj, planes in [0 ] meet oy, in quasiparallel disjoint
lines. Finally, let [o;] be a S*-class of centre xj,, such that [o;] # [o]. The planes in [o;] meet oy in quasiparallel
lines through x;. By Proposition 4.1 equivalence classes of quasiparallel lines in oy, are one P-class of centre x;, and
S-classes. By Theorem 5 in [5], oy, is an affine plane with point x, at infinity. Since the line = N oy, of lengthn 4-1is a
long line of oy, o, has order n. Hence, if I ¢ oy, oy, is an affine plane of order n with point xj, at infinity.

Step 4: Let o, be a plane in [oy,], with o, # oy,. By (ii) we have |oy| = |o),| = n?+1.If1 ¢ o, o, is an affine
plane of order n with x;, at infinity. Now, we suppose ! C o;,. Each plane in [x] has line / in common with «},. Planes
in [0 ] meet o, in quasiparallel lines through x;. Let g be a line in o, with ¢ # [. We denote by 7 a plane through
g, with y # o). Since y does not belong to [7], [y] is a S*-class of centre a point x; on [. Thus, g meets / in x; and
belongs to a pencil of quasiparallel lines of centre x;. By Proposition 5.1 o}, is a generalized projective plane. First, we
suppose that o, is a near-pencil. Since / lies on the projective plane 7, [ is long line of o, By |o| = o | = n? 41, we
have a contradiction. Now, we suppose that o, is a projective plane of order n. From |oy| = o, | = n? 4 1, we obtain
a contradiction. Thus, [ ¢ cx;l. Each plane in [«,] is an affine plane of order n with x, at infinity. Furthermore, all the
planes in S*-classes are affine planes of order n with a point at infinity on I.

Step 5: Since there is a long line of length k£ >5, each plane has order n >4. Furthermore, each plane is affine-
projective. By a result in [11] we deduce that S is a projective space which a part of a plane has been deleted from. Let
z be a point on 7 such that z ¢ [. We denote by ¢ a plane through z, distinct from 7. Plane J belongs to a S*-class of
centre p on [. All the lines through z on 8, distinct from line pz, have length n. Let 7’ be a plane in [n] with ' # 7. By
(i) we have

by = b(m) + || — |n N,
b=+ D4+ @ +n+1)—@n+1).

Hence, there exist n2 4+ n + 1 lines through z, n + 1 of length n + 1 and n? of length n. Thus, we obtain
v=|P|=1+@+Dn+n*n—D)=n*+n+1. (5.1)

Finally, we denote by P the three-dimensional projective space from which S has been obtained by deleting a part of a
plane 7. It is clear that P\t is an affine space and each plane in P\ is an affine plane. Since in S a plane ay (o) is an
affine plane with a point x;, (xg) at infinity, in P the points x;, and xx lie on 7 and / C 7. Furthermore, by (5.1) we delete
exactly n? points from 7. Hence, since line  has length n + 1 we obtain S deleting t\! from P. S is a three-dimensional
affine space of order n with line 1 of length n + 1 at infinity. U

6. Three-dimensional affine spaces with a short line at infinity
A punctured projective plane is a projective plane deprived of a point. In the following if  is a line, we denote by

i(r) the number of lines which have at least a common point with r and by ext(r) the number of lines which miss
line r.
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Proposition 6.1. There exists no finite linear space S such that the equivalence classes of quasiparallel lines in S are
only one C-class, one S-class and one singleton.

Proof. On the contrary, we suppose that S is a finite linear space such that equivalence classes of quasiparallel lines
are exactly one C-class [r], one S-class [s] and one singleton [I]. If each line in [r] has length n + 1, by Proposition
2.5 in [5], each line in [s] has length n and each point has degree n + 1. Let x be a point on » which does not lie on /.
There exists at most one line s” of [s] such that x belongs to s’. By counting points on lines through x, we have

n? +n<v<l + (n+ Dn. 6.1)

By Proposition 2.5 in [5], each line in [s] meets every line in [r]. Therefore, since b, =n + 1 for each point y in S, /
meets each line in [»] and we obtain

b=i(r)=n>+n+1. (6.2)

If v=n?+n+1,S is a generalized projective plane and there exists a unique equivalence class of quasiparallel
lines, a contradiction. Now, we assume v = n% + n. By Theorem 1.2 in [10] S can be embedded into a projective
plane of order n. Since v = n? 4+ n, S is a punctured projective plane and there exists no singleton. So, we have
a contradiction. [

Proposition 6.2. There exists no finite linear space whose equivalence classes of quasiparallel lines are only one
P-class of centre x, one singleton [l], with x € I, and S-classes.

Proof. On the contrary, we suppose that S is a finite linear space such that equivalence classes are exactly one P-class
[r] of centre x, h S-classes [s1], . . ., [sn] and one singleton [I], with x € [. Let n 4 1 be length of r. By (ii) all the lines
in [r] have length n + 1. Each point y on r, with y # x, has degree n + 1 (see [5]). From Proposition 2.6 in [5] each
line in a S-class [si] (i =1, ..., k) has length n and every point on a line in a S-class has degree n 4- 1. The n + 1 lines
through y are the line r and n lines in n S-classes. Thus, we have & >n >2 and

v=n+l+n(n—1)=n2+1. (6.3)

Let z be a point on /, with z # x. Each line g through z, with g # [, is a line in a S-class. Hence, z has degree n + 1
and we obtain:

v=|ll+nn—1)=n>—n+|l|. 6.4)
By (6.3) and (6.4) we find:
ll|=n+1. (6.5)

From a result of Erdos et al. [4] we deduce
b>=n’+n. (6.6)
By Propositions 2.4 and 2.6 in [5], each line s; of a S-class of quasiparallel lines meets r. Hence, we have
b:i(r):n2+bx>n2+n.
If by > n + 1, all the lines through x, which are distinct from /, belong to [r] and we obtain
v:l—}—bx-n:nz—i—l,

a contradiction. Hence, either by =n or b, =n + 1. First, we suppose b, =n + 1. There exist at least three lines through
x of length n + 1, [ and two lines in [r]. If n = 2, we find v = 1 + 3n, a contradiction. If n >3, we have:

v=143n+0m—2)n—1)=n>+3,

a contradiction. Hence, we deduce b, = n, each line through x has lengthn + 1 and b = n? + n. From Lemma 2.6 in
[10] S can be embedded in a projective plane 7 of order n. Since v =n? + 1 and b = n®> + n, we obtain S by deleting
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from 7 n points py, ..., p, and one line. Thus points p; (i =1, ..., n) are collinear and S is an affine plane with a
point at infinity. Furthermore, there exists no singleton in S. So, we have a contradiction. [

Proposition 6.3. Let S be a finite linear space such that there exists a unique singleton [l] and, if there exist
P-classes of quasiparallel lines, each centre of a P-class lies on 1. S is linearly h-punctured projective plane of order n
2<h<n — 1), equivalence classes are one C-class [r], h S-classes and one singleton [l], with |l| = |r| — h, and there
exists no P-class.

Proof. First, we suppose that in S there exist P-classes of centres on /. By Proposition 4.1 two distinct P-classes of
quasiparallel lines have distinct centres. From Proposition 2.9 in [5] we deduce that if there are two distinct P-classes
(4], [t;] of centres x;, x, there exists a singleton [g] such that either x; € g and x; ¢ g or x; ¢ g and x; € g. Since
there is a unique singleton [I] with x; € [ and x; € [, there exists at most one P-class [t] in S. By Proposition 2.8 in
[5] there exists no C-class in S. If equivalence classes are only [#] and [/], all the lines belong to a pencil. So, we have
a contradiction. Hence, there are S-classes of quasiparallel lines. By Proposition 6.2 there exists no finite linear space
with only one P-class, one singleton and S-classes. Hence, there is no P-class in S. Now, we suppose that equivalence
classes are only S-classes and unique singleton [I]. All the lines in S-classes have the same length n and by Theorem 2
in [6], either there exists no singleton or there exist at least n + 1 singletons. So, we have a contradiction. Finally, we
suppose that there exists a C-class [r]. By Proposition 2.1 in [5], [r] is the unique C-class. If there exists a class [s]
of quasiparallel lines, with [r] # [s] # [I], [s] is a S-class. Therefore, if there exists no S-class, by Proposition 2.2 in
[6], the number of singletons is at least k > |r|. So, we have a contradiction. Thus, there is at least one S-class in S. We
suppose that equivalence classes are exactly one C-class, one S-class and one singleton. By Proposition 6.1, we have a
contradiction. Now, we suppose that there are & S-classes, with h >2. By Theorem 4 in [5], S is a linearly A-punctured
projective plane of order n, with [r|=n+land |l|=n+1—-h 2<h<n—-1). O

Let S be a three-dimensional affine space of order n >4 with a line [/ of length |/|<n at infinity. It is clear that
equivalence classes of quasiparallel planes are only one P-class of axis I, S*-classes of centres on [ and S-classes and
there exists at least one line of length at least 5.

Theorem IV. Let S be a finite planar space with property (A). If there is at least one line of length at least 5 and
equivalence classes of quasiparallel planes are only one P-class of axis a line I, S*-classes of centres on | and at least
one S-class, S is a three-dimensional affine space of order n >4 with line [ at infinity. Moreover, if k is the number of
S-classes, |l| =n + 1 — k and the number of S*-classes isn + 1 — k.

Proof. We proceed in steps.

Step 1: Let [o1,] be a S-class of quasiparallel planes. We denote by n the order of ¢;,. There exists at most one plane
‘7;1 € [o,] such that [ C a},. Thus, we may suppose [ ¢ a,. There are three distinct cases to be considered.

Case 1: We assume that each plane in [g}] has no point in common with /. Planes in each class of quasiparallel planes,
which is distinct from [0, ], meet ¢, in quasiparallel disjoint lines. Hence, every equivalence class of quasiparallel lines
in gy, is a S-class and by Theorem 2 in [5] o}, is an affine plane. Furthermore, every plane in [o1,] is an affine plane of
order n.

Case 2: We suppose that ¢, has empty intersection with / and there exists a plane ¢}, in [65] of order m such that
I C o}l. From the foregoing, gy, is an affine plane of order n. Planes in each S-class [0y ], with g}, ¢ [ax], intersect a}l
in quasiparallel disjoint lines. Moreover, planes in P-class [r] intersect a}z in line / and planes in each S*-class [o;] of
centre x; on [ meet ¢), in quasiparallel lines through x;. It is clear that each equivalence class of quasiparallel lines in
a;l, which is distinct from [[], is not a singleton. By Proposition 6.3, if [/] is a singleton, 6}1 is a linearly k-punctured
projective plane, with 2<k<<m — 1. If [I] is not a singleton, each equivalence class of quasiparallel lines in ¢}, has
size at least 2. By Proposition 2.1 in [8] one of the following cases occurs: @), is a projective plane, ¢}, is a punctured
projective plane, g}, is an affine plane with a point at infinity, ¢, is an affine plane. Since in ¢), there exists at least an
equivalence class of quasiparallel lines which is distinct from a S-class, ¢}, is not an affine plane. If ¢), is a projective
plane, by (ii) we find |g;,| = n? = loy,| = m? 4+ m + 1, a contradiction. If 0}, is a punctured projective plane, we have
lop| = n? = lo,| = m? + m, a contradiction. Moreover, if 0}, is an affine plane with a point at infinity, we deduce
n>=m?+ 1. So, we have a contradiction. Finally, if 0, is a k-punctured projective plane, we have n=m?+m+1—k,
with 2 <k <m — 1, a contradiction.
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Case 3: We assume [ N 6, = {x;,}. Every plane ), in [¢}] intersects / in a point. By Proposition 3.1 planes in a S-class
[ox], with o}, ¢ [0%], meet o, in quasiparallel disjoint lines. If [¢;] is a S*-class of centre x; # xj, planes in [o; ] meet
gy in quasiparallel disjoint lines. Let [o;] be a S*-class of centre xj, planes in [y, ] intersect gy, in quasiparallel lines
through xj,. Finally, planes in [r] meet g, in quasiparallel lines through x;. By Proposition 4.1 there exists a unique
P-class of centre xj,. Hence, the equivalence classes of quasiparallel lines in ¢, are only one P-class and S-classes. By
Theorem 5 in [5], g, is an affine plane with point x, at infinity. Furthermore, every plane in [0},] is an affine plane with
a point at infinity.

Hence, either each plane in [0} is an affine plane of order n and it is disjoint from | or every plane o), in [6] meets
lin a point x; and o}, is an affine plane of order n with point x; at infinity.

Step 2: Let [o;] be a S*-class of centre x; € [. There exists at most one plane oc; € [o;] such that [ C aﬁ. We may
suppose that/ ¢ «;. By Proposition 3.1 planes in a S-class [g] intersect «; in quasiparallel disjoint lines. By Proposition
3.21if [oej] is a S*-class of centre x;, planes in [o;] intersect o; in quasiparallel lines through x;, if [«;]is a S*-class of
centre xj # x;, planes in [o;] intersect o; in quasiparallel disjoint lines. Finally, planes in P-class [r] intersect o; in
quasiparallel lines through x;. By Proposition 4.1 in o; there exists a unique P-class of quasiparallel lines of centre x;.
Hence, o; is an affine plane with point x; at infinity (see [5]).

Step 3: Let o] be a plane in [o;] such that/ C «.. Since planes in a S-class [¢] intersect «; in quasiparallel disjoint lines,
there exists at least one S-class of quasiparallel lines in o;. Planes in a S*-class [a;] of centre x ; meet o} in quasiparallel
lines through x; and planes in [] meet o} in line /. Hence, there is at most one singleton, line [. First, we suppose that
there exists a singleton. By Proposition 6.3, o/ is a linearly k-punctured projective plane, with k >2. Now, we suppose
that each equivalence class has size at least 2. Since in o] there exists at least one S-class of quasiparallel lines, o} is
not a projective plane. Analogously, o is not an affine plane because there exists at least one class of quasiparallel lines
which is distinct from a S-class. By Proposition 2.1 in [8], o] is either a punctured projective plane or an affine plane
with a point at infinity. We denote by p the order of o; and by ¢ the order of o. If ois a linearly k-punctured projective
plane, with k >2, we obtain

lojl=p* +1=o}|=¢q* +q+1—k.

So, we have p =¢ =k and o is an affine plane with a point at infinity. Now, let o be a punctured projective plane. We
deduce

loi| = p* + 1= o] =¢* +q.

So, we have a contradiction. Hence, each plane in a S*-class [o;] is an affine plane with a point at infinity and all the
planes in [o;] have same order.

Step 4: We suppose that oy, is an affine plane of order n with a point x;, at infinity which belongs to a S-class and «;
is an affine plane of order p with a point x; at infinity which belongs to a S*-class. We can assume xj, 7~ x; and ! ¢ o;.
Hence, we have xj, ¢ 0; and x; ¢ o;,. We denote by 62 a plane in [y, ], with g, # U}l, and by oc; a plane in [o;], with
o # oc;. Let r be line ¢;, N «;. Line r is a short line of both planes ¢, and «; and has length n = p. Let y be a point on
r. By (i) and (ii) we obtain

by =by(op) + |0}l =n+14+n*+1,
by =by(;) + o} —l=n+14+n*+1-1.

Hence, we have a contradiction. Thus, gy, is an affine plane of order n. Furthermore, all the planes in a S-class [a] are
affine planes of order n and each plane in [c] has no point in common with line l.

Step 5: Let [o;] be a S*-class, with o; N[ = {x;}. From the foregoing ; is an affine plane with point x; at infinity.
Line r = g, N o; of length n is a short line in o;. Hence, o; has order n and all the planes of S*-classes have same
order n.

Step 6: By Propositions 3.1 and 3.2 planes in a S-class [g] intersect each plane of [r] in quasiparallel disjoint lines.
Therefore, the line s = ¢ N 7 is a line of length n which is disjoint from I. Planes in a S*-class [o;] of centre x; on [
meet every plane of [n] in quasiparallel lines through x;. In & there is at most one singleton [I]. If [I] is a singleton, by
Proposition 6.3 & is a linearly #-punctured projective plane with ¢ >2. If [/] is not a singleton, by Proposition 2.1 in [8],
7 is either a punctured projective plane or an affine plane with a point x; on [ at infinity.
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There are two distinct cases to be considered.
Case 1: We suppose that 7 is an affine plane with point x; at infinity. Since s is a short line of 7, 7 has order n. We
consider a plane ¢’ € [o], with ¢’ # ¢, and a plane 7’ € [x], with 7’ # 7. If z is a point on s we have

b, =b.(6)+|d'| =n+1+n> (6.7)
b.=b,(m)+ 7| —|nNa|=n+1+n>+1—]l.

Hence, we have |/| = 1, a contradiction.

Case 2: Each plane in [n] is either a punctured projective plane or linearly #-punctured projective plane with ¢ >2.
We may state that each plane in [n] is a k-punctured projective plane with k> 1. Planes in a S-class [o] intersect 7 in
short lines of length n. Hence, m has order n. We obtain

b,=b,(0)+ | |=n+1+n°=b(m)+|7|—|nnN7|=n+1+n>+n+1—k—|l|
for a point z on s = N . Thus, we have
ll=n+1—k.

There are n + 1 lines through z on 7, k of length n which miss / and n 4+ 1 — k of length n 4+ 1 which intersect line
l. The plane 7 is an affine plane of order n with line [ at infinity. All the lines through z on a plane ¢ of a S-class of
quasiparallel planes have length n. Let x be a point on [. If « is a plane through line xz, with o # m, we have that «
belongs to a S*-class. Therefore, o is an affine plane with x at infinity. The unique line through z of length n + 1 on «
is line xz. Thus, the n + 1 — k lines joining z to points on / have length n + 1, all the other lines through z have length
n. Hence, by (6.7) we obtain

v=|Pl=1+m+1—kn+m>*+kn-—1),
v=n+n+1—k=n>+]. (6.8)

All the planes in S are affine-projective planes of order n. Since there is a line of length at least 5, we obtain n >4. By a
resultin [11] S is a projective space P of order n deprived of a part of its plane 7. Let X be the set of points on T which
are in S. By (6.8) S has been obtained from P by deleting n”> 4+n + 1 — |I| =n?* + k points of 7 and | X| = |I|. Hence, S is
a three-dimensional affine space with line [ at infinity. Furthermore, the number of S*-classes is exactly n + 1 —k =|l|
and the number of S-classes is k. This completes the proof. [J
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