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a b s t r a c t

This paper is concerned with the time-asymptotic behavior toward strong rarefaction
waves of solutions to one-dimension compressible fluid models of Korteweg type, which
governs the motions of the compressible fluids with internal capillarity. Assume that
the corresponding Riemann problem to the compressible Euler system can be solved by
rarefactionwaves (V R,UR)(t, x). If the initial data is a small perturbation of an approximate
rarefaction wave for (V R,UR)(t, x), we show that the corresponding Cauchy problem
admits a unique global smooth solution which tends to (V R,UR)(t, x) time asymptotically.
Since we do not require the strength of the rarefaction waves to be small, this result gives
the nonlinear stability of strong rarefaction waves for the one-dimensional compressible
fluid models of Korteweg type. The analysis is based on the elementary L2 energy method
together with continuation argument.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The motion of the compressible isothermal viscous capillary fluids is described by the Korteweg-type model:
ρt + ∇ · (ρu) = 0,
(ρu)t + ∇ ·


ρu


u


+ ∇p(ρ) = µ1u + (ν + µ)∇(∇ · u)+ κρ∇1ρ,
t > 0, x ∈ R3. (1.1)

Here the unknown functions are the density ρ > 0, the velocity u, and the pressure p = p(ρ) of the fluids respectively.
µ > 0, ν ≥ 0 are the viscosity coefficients and κ > 0 is the capillary coefficient. Notice that when κ = 0, system (1.1) is
reduced to the compressible Navier–Stokes system.

The formulation of the theory of capillarity with diffuse interface was first introduced by Korteweg [1], and derived
rigorously by Dunn and Serrin [2]. Recently, many efforts were made on the compressible Navier–Stokes–Korteweg system
(1.1). We refer to [3–10] and the references therein. However, most of these results are concentrated on the case when the
far-fields of the initial data are equal (consequently the large time behaviors of its global solutions are described by the
constant states) and, to the best of our knowledge, fewer results have been obtained for the case when the far-fields of the
initial data are different (in this case, its large time behaviors are described by some nonlinear elementary waves, such as
rarefaction waves, viscous shock profiles, etc.). The main purpose of this manuscript is devoted to this problem and as a
first step toward this goal, we consider the following one-dimension compressible Navier–Stokes–Korteweg system in the
Lagrange coordinates:

vt − ux = 0,

ut + p(v)x = µ
ux

v


x
+ κ

1
v


1
v


1
v


1
v


x


x


x

(1.2)
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with the initial data

(v(t, x), u(t, x))|t=0 = (v0(x), u0(x)) → (v±, u±), as x → ±∞, (1.3)

where v > 0 denotes the specific volume, v± > 0 and u± are constants. The physical meaning of the other variables in (1.2)
are the same as those of (1.1).

We are concerned with the global existence of solutions of the initial value problem (1.2), (1.3) and their large time
behavior in relation with the expansive waves. For expansive waves, the right hand side of (1.2) decays faster than
each individual term on the left hand side. Therefore, the compressible Navier–Stokes–Korteweg system (1.2) may be
approximated, time asymptotically, by the Riemann problem of the compressible Euler equations

vt − ux = 0,
ut + p(v)x = 0 (1.4)

with the Riemann data

(v(t, x), u(t, x))|t=0 = (vR0, u
R
0)(x) =


(v−, u−), x < 0,
(v+, u+), x > 0. (1.5)

We consider the case when the Riemann problem (1.4), (1.5) admits a unique global weak solution (V R(t, x),UR(t, x))
consisting of a rarefaction wave of the first family, denoted by (V R

1 (
x
t ),U

R
1 (

x
t )), and another of the second family denoted

by (V R
2 (

x
t ),U

R
2 (

x
t )). That is, there exists a unique constant state (v̄, ū) ∈ R2 with v̄ > 0 such that (v̄, ū) ∈ R1(v−, u−) and

(v+, u+) ∈ R2(v̄, ū). Here
R1(v−, u−) =


(v, u)

u = u− +

 v

v−


−p′(z)dz, u ≥ u−


,

R2(v̄, ū) =


(v, u)

u = ū −

 v

v̄


−p′(z)dz, u ≥ ū


.

(1.6)

Namely,

(V R(t, x),UR(t, x)) =


V R
1

x
t


+ V R

2

x
t


− v̄,UR

1

x
t


+ UR

2

x
t


− ū


(1.7)

where (V R
i ,U

R
i )(

x
t ), i = 1, 2 are defined by

(V R
1 ,U

R
1 )
x
t


=



(v−, u−), −∞ ≤
x
t

≤ λ1(v−),
λ−1
1

x
t


, u− −

 λ−1
1 (

x
t )

v−

λ1(s) ds


, λ1(v−) ≤

x
t

≤ λ1(v̄),

(v̄, ū), λ1(v̄) ≤
x
t

≤ +∞,

(1.8)

and

(V R
2 ,U

R
2 )
x
t


=



(v̄, ū), −∞ ≤
x
t

≤ λ2(v̄),
λ−1
2

x
t


, ū −

 λ−1
2 (

x
t )

v̄

λ2(s) ds


, λ2(v̄) ≤

x
t

≤ λ2(v+),

(v+, u+), λ2(v+) ≤
x
t

≤ +∞

(1.9)

with λ1(v) = −
√

−p′(v) and λ2(v) =
√

−p′(v).
The main purpose of this paper is to show that the Cauchy problem (1.2), (1.3) admits a unique global smooth solution

which tends to the rarefaction wave (V R(t, x), uR(t, x)) defined by (1.7), time asymptotically. That is, we want to study the
nonlinear stability of the rarefactionwave (V R(t, x), uR(t, x)). Since rarefactionwaves are only Lipschitz continuous, to study
the stability problem, we need to construct a smooth approximation to the above Riemann solution (V R(t, x), uR(t, x)). As
in [11], letwi(t, x), i = 1, 2 be the unique global smooth solution to the following Cauchy problemwit + wiwix = 0,

wi(t, x)|t=0 = wi0(x) =
wi+ + wi−

2
+
wi+ − wi−

2
tanh(ϵx)

(1.10)
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where ϵ > 0 is a given sufficiently small constant, which will be determined later, and w1− = λ1(v−), w1+ = λ1(v̄),
w2− = λ2(v̄), w2+ = λ2(v+). Then the smooth approximate solution (V ,U)(t, x) of (V R(t, x), uR(t, x)) is constructed as
follows:

(V (t, x),U(t, x)) = (V1(t + t0, x)+ V2(t + t0, x)− v̄,U1(t + t0, x)+ U2(t + t0, x)− ū) , (1.11)
where t0 =

1
ϵ2

with ϵ given in (1.10), and (Vi(t, x),Ui(t, x)), i = 1, 2 are defined as follows

λi(Vi(t, x)) = wi(t, x), λi(v) = (−1)i


−p′(v), i = 1, 2,

U1(t, x) = u− +

 V1(t,x)

v−


−p′(z)dz,

U2(t, x) = ū −

 V2(t,x)

v̄


−p′(z)dz.

(1.12)

Throughout this paper, we assume that the coefficients of viscosity and capillary,µ and κ , are positive constants and the
pressure p(v) is a positive smooth function for v > 0 and satisfies

p′(v) < 0, p′′(v) > 0, for v > 0, (1.13)
which means the Euler system (1.4) is strictly hyperbolic and both characteristic fields are genuinely nonlinear. Our main
result can be stated as follows.

Theorem 1.1. Suppose that p(v) satisfies (1.13) and the solution (V R,UR)(t, x) to the Riemann problem (1.4), (1.5) is given
by (1.7). Let (V ,U)(t, x) be a smooth approximation of the Riemann solution (V R,UR)(t, x) constructed by (1.11), (1.12). Then if

N(0) = ∥v0 − V (0, x)∥H3(R) + ∥u0 − U(0, x)∥H2(R)

is sufficiently small, the Cauchy problem (1.2), (1.3) admits a unique global smooth solution (v, u)(t, x) satisfying
(v − V )(t, x) ∈ C(0,+∞;H4(R)) ∩ C1(0,+∞;H2(R)),
(u − U)(t, x) ∈ C(0,+∞;H3(R)) ∩ C1(0,+∞;H1(Rn)),

(v − V , u − U)x(t, x) ∈ L2(0,+∞;H3(R)),
(1.14)

and

lim
t→+∞

sup
x∈R

v(t, x)− V R(t, x), u(t, x)− UR(t, x)
 = 0. (1.15)

Remark 1.1. A similar argument can be applied to the full (non-isentropic) compressible Navier–Stokes–Korteweg system.

Remark 1.2. Since no smallness condition is required for the strength of the rarefaction wave in Theorem 1.1, we obtain
the stability of strong rarefaction for the compressible Navier–Stokes–Korteweg system. However, we need the initial
perturbation to be small, thus another interesting problem is how to get a similar result for the isentropic compressible
Navier–Stokes–Korteweg system under large initial perturbation, which is left for the future.

Now we recall some related work and make some comments on the analysis in this paper. It is well known that
there are many interesting results on the large time behavior of solutions to the compressible Navier–Stokes system,
which are characterized by those of solutions of the corresponding Riemann problems for the Euler system. Here, we only
mention the rarefaction wave case for the Euler system. The study on the stability of rarefaction waves for the compressible
Navier–Stokes systemwas started byMatsumura andNishihara [12], where the nonlinear stability of weak rarefactionwave
for the isentropic compressible Navier–Stokes system under small perturbations was proved. Since then, many interesting
results in this aspect were obtained, see [13–18,11,19,20] and the references therein. Compared with the case of the
compressible Navier–Stokes system, the main difficulty we encounter here is due to the appearance of the Korteweg tensor
κ 1
v
( 1
v
( 1
v
( 1
v
)x)x)x in the Eq. (1.2)2, which results inmore regularity for the density than themomentum (see (1.14) for details).

In order to show the stability of the rarefaction wave defined in (1.7), we need to prove the global existence of solutions to
problem (3.1)–(3.2). The key step is to derive the a priori estimates (3.6). To achieve this, we frequently use the Eq. (3.1)1 and
the a priori assumption (3.5). Then Theorem 1.1 follows by the standard continuation argument based on the local existence
and the a priori estimate.

The reminder of this paper is organized as follows. After stating some notations, we recall in Section 2 the properties of
a smooth approximate solution of the Riemann problem for later use. The proof of Theorem 1.1 will be given in Section 3.
Notations: Throughout this paper, for simplicity, wewill omit the variables t, x of functions if it does not cause any confusion.
C denotes a generic constant which may vary in different estimates. If the dependence need to be explicitly pointed out, the
notations Ci (i ∈ N) are used. H l(Rn) denotes the usual lth order Sobolev Space with its norm

∥f ∥l =


l

i=0

∥∂ ixf ∥
2

 1
2

with ∥ · ∥ , ∥ · ∥L2 .
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2. Properties of smooth approximate solution of the Riemann problem

As [15], we start with the Riemann problem for the typical Burgers equation:w
R
it + wR

i w
R
ix = 0,

wR
i (x, 0) = wR

i0(x) =


wi−, x < 0,
wi+, x > 0

(2.1)

for each i ∈ {1, 2}. Ifwi− < wi+, then the above Riemann problem (2.1) admits a unique rarefaction wave solution

wR
i (x, t) = wR

i

x
t


=


wi−, x ≤ wi−t,
x
t
, wi−t < x < wi+t,
wi+, x ≥ wi+t.

(2.2)

We approximate wR
i (

x
t ) by the solution wi(t, x) of (1.10). Then by the method of characteristic, wi(t, x) has the following

properties, cf. [11,13].

Lemma 2.1. For each i ∈ {1, 2}, the Cauchy problem (1.10) admits a unique global smooth solutionwi(t, x) which satisfies
(i) wi− < wi(t, x) < w+, wix > 0 for (t, x) ∈ R+

× R.
(ii) For any 1 ≤ p ≤ +∞, there exists a constant Cp depending only on p such that for t ≥ 0,

∥wix(t)∥Lp ≤ Cp min{w̃iϵ
1− 1

p , w̃
1
p
i t−1+ 1

p }, ∂ j∂xjwi(t)

Lp

≤ Cp min{w̃iϵ
j− 1

p , ϵ
j−1− 1

p t−1
}, j ≥ 2.

(iii) limt→+∞ supx∈R
wi(t, x)− wR

i (t, x)
 = 0.

Notice that (V ,U) satisfies
Vt − Ux = 0,
Ut + p(V )x = g(V )x,

(2.3)

where g(V )x = p(V )−p(V1)−p(V2)+p(v̄). Based on this and Lemma 2.1, from (1.11), (1.12), we have the following lemma.

Lemma 2.2. Let δ̃ = |v+ − v−| + |u+ − u−|, the smooth approximations (V ,U)(t, x) constructed in (1.11), (1.12) have the
following properties:
(i) Vt = Ux > 0, |(Vt ,Ut)| ≤ C |(Vx,Ux)|, ∀(t, x) ∈ R+

× R.
(ii) For any 1 ≤ p ≤ +∞, there exists a constant Cp depending only on p such that for t ≥ 0,

∥(Vx,Ux)(t)∥Lp ≤ Cp min

δ̃ϵ

1− 1
p , δ̃

1
p (t + t0)

−1+ 1
p

, ∂ j∂xj (V ,U)(t)


Lp

≤ Cp min

δ̃ϵ

j− 1
p , ϵ

j−1− 1
p (t + t0)−1


, j ≥ 2.

(iii) There exists a positive constant α depending only onwi± (i = 1, 2) given in (1.10) such that

|g(V )x(t)| ≤ Cϵ exp{−αϵ(|x| + t + t0)}.

Furthermore,
+∞

0
∥g(V )x(t)∥Lpdt ≤ Cϵ−

1
p exp{−αϵt0} ≤ Cαnϵ

n− 1
p , ∀n ∈ Z+.

(iv) limt→+∞ supx∈R
(V ,U)(t, x)− (V R,UR)(t, x)

 = 0.

3. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. First, define
ϕ(t, x) = v(t, x)− V (t, x), ψ(t, x) = u(t, x)− U(t, x).

Then the problem (1.2), (1.3) is reformulated as
ϕt − ψx = 0,

ψt + [p(ϕ + V )− p(V )]x = µ


ux

v
−

Ux

V


x
+ F

(3.1)

with initial data
(ϕ, ψ)|t=0 = (ϕ0, ψ0)(x) = (v − V , u − U)(0, x), (3.2)
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where

F = κ
1
v


1
v


1
v


1
v


x


x


x

+ µ


Ux

V


x
− g(V )x. (3.3)

We look for the solution (ϕ, ψ) in the solution space XM(0,+∞) for some positive constantM > 0,where for 0 ≤ T ≤ +∞,
we define

XM(0, T ) =

(ϕ, ψ)(t, x)

ϕ(t, x) ∈ C(0, T ;H4(R)) ∩ C1(0, T ;H2(R)),
ψ(t, x) ∈ C(0, T ;H3(R)) ∩ C1(0, T ;H1(Rn)),

(ϕx, ψx)(t, x) ∈ L2(0, T ;H3(R)),
sup

t∈[0,T ]

{∥ϕ(t)∥4 + ∥ψ(t)∥3} ≤ M,

 . (3.4)

Under the assumptions listed in Theorem 1.1, we have the following local existence result.

Proposition 3.1 (Local Existence). Under the assumptions of Theorem 1.1, suppose that ∥ϕ0∥4 + ∥ψ0∥3 ≤ M, then there
exists a positive constant t1 depending only on M such that the Cauchy problem (3.1)–(3.2) admits a unique smooth solution
(ϕ, ψ)(t, x) ∈ X2M(0, t1).

The proof of Proposition 3.1 can be done by using the dual argument and iteration technique, which is similar to that of
Theorem 1.1 in [6], the details are omitted here.

In order to get the global existence of the Cauchyproblem (3.1), (3.2),weneed to establish the following a priori estimates.

Proposition 3.2 (A Priori Estimates). Under the assumptions of Theorem 1.1, suppose that (ϕ, ψ)(t, x) ∈ XM(0, T ) is a solution
of the Cauchy problem (3.1), (3.2) for some positive constants T and M, and satisfies

N(T ) := sup
t∈[0,T ]

{∥ϕ(t)∥3 + ∥ψ(t)∥2} ≤ δ (3.5)

for some suitably small constant δ > 0, then there exist three positive constants ϵ0 ≪ 1, δ0 ≪ 1 and C0 which are independent
of T such that for 0 < δ ≤ δ0 and 0 < ϵ ≤ ϵ0, it holds that

∥ϕ(t)∥2
4 + ∥ψ(t)∥2

3 +

 t

0


∥(

Vtϕ)(τ )∥

2
+ ∥(ϕx, ψx)(τ )∥

2
3


dτ ≤ C0


∥ϕ0∥

2
4 + ∥ψ0∥

2
3 + ϵ

2
3


(3.6)

for all t ∈ [0, T ].

Proposition 3.2 can be proved by a series of lemmas below. Before proving the a priori estimate (3.6), we have from the a
priori assumption (3.5) and the Sobolev inequality

∥f (t)∥L∞ ≤ ∥f (t)∥1, ∀f (t) ∈ H1(R)

that

∥(ϕ, ϕx, ϕxx, ψ,ψx)(t)∥L∞ ≤ δ, ∀t ∈ [0, T ]. (3.7)

Furthermore, by the smallness of δ,

v(t, x) = ϕ(t, x)+ V (t, x) ≥
1
2
min{v−, v+} > 0. (3.8)

With (3.7) and (3.8) in hand, we now give the following key lemma.

Lemma 3.1. Under the assumptions of Proposition 3.2, there exists a positive constant C > 0 such that for 0 ≤ t ≤ T , it holds

∥(ϕ, ψ, ϕx)(t)∥2
+

 t

0

(Vtϕ,ψx)(τ )

2 dτ ≤ C


∥(ϕ0, ψ0, ϕ0x)∥
2
+ ϵ

 t

0
∥ϕx(τ )∥

2 dτ + ϵ
2
3


(3.9)

provided that ϵ and δ are suitably small.

Proof. Multiplying (3.1)1 by [p(V )− p(V + ϕ)], (3.1)2 by ψ , then combining the two resulting equations, we have
Φ(v, V )+

ψ2

2


t
+ Vt


p(V + ϕ)− p(V )− p′(V )ϕ


+ Hx + µ

ψ2
x

v

= κ
1
v


1
v


1
v


1
v


x


x


x

ψ + µ
Uxψxϕ

vV
+ µψ


Ux

V


x
− g(V )xψ, (3.10)
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where

Φ(v, V ) = p(V )ϕ −

 v

V
p(s) ds,

H = [p(V + ϕ)− p(V )]ψ − µ


Ux + ψx

v
−

Ux

V


ψ.

(3.11)

Using Eq. (3.1)1, we have

1
v


1
v


1
v


1
v


x


x


x

ψ = {· · ·}x −


ϕ2
x

2v5


t
+
ψxVxx

v5
−

5ϕ2
xUx

2v6
−

5ψxV 2
x

2v6
. (3.12)

Here and hereafter, {· · ·}x denotes the terms which will disappear after integrating with respect to x.
Putting (3.12) into (3.10) gives rise to

Φ(v, V )+
ψ2

2
+
κϕ2

x

2v5


t
+ Vt


p(V + ϕ)− p(V )− p′(V )ϕ


+ µ

ψ2
x

v

= −
5κϕ2

xUx

2v6
+
κψxVxx

v5
−

5κψxV 2
x

2v6
+ µ

Uxψxϕ

vV
+ µψ


Ux

V


x
− g(V )xψ + {· · ·}x. (3.13)

Due to [11],

Φ(v, V ) ≥ C1


1 −

v
V

2
1 +

v
V

≥ C2ϕ
2 (3.14)

for some constants C1 > 0 and C2 > 0. Integrating (3.13) with respect to t and x over [0, t] × R, we have from (3.8), (3.14)
and the assumption (1.13) that

∥(ϕ, ψ, ϕx)(t)∥2
+

 t

0
∥(

Vtϕ,ψx)(τ )∥

2dτ ≤ C


∥(ϕ0, ψ0, ϕ0x)∥

2
+

3
i=1

Ii


(3.15)

where

I1 =

 t

0


R

|ϕ2
xUx|dxdτ ,

I2 =

 t

0


R
(|Uxx| + |VxUx| + |g(V )x|)|ψ | dxdτ ,

I3 =

 t

0


R


|ψxVxx| + |ψxV 2

x | + |Uxψxϕ|

dxdτ .

(3.16)

By Lemma 2.2, it is easy to see

I1 ≤ Cϵ
 t

0
∥ϕx(τ )∥

2dτ . (3.17)

It follows from the Sobolev inequality, the Cauchy inequality, the a priori estimates (3.7) and Lemma 2.2 that

I2 ≤

 t

0
∥ψ(τ)∥

1
2 ∥ψx(τ )∥

1
2 (∥Uxx(τ )∥L1 + ∥(VxUx)(τ )∥L1 + ∥g(V )x(τ )∥L1) dτ

≤ η

 t

0
∥ψx(τ )∥

2dτ + Cη

 t

0
∥ψ(τ)∥

2
3


∥Uxx(τ )∥

4
3
L1 + ∥Vx(τ )∥

4
3
L∞∥Ux(τ )∥

4
3
L1 + ∥g(V )x(τ )∥

4
3
L1


dτ

≤ η

 t

0
∥ψx(τ )∥

2dτ + Cηδ
2
3

 t

0
(τ + t0)−

4
3 dτ

≤ η

 t

0
∥ψx(τ )∥

2dτ + Cηϵ
2
3 , (3.18)
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and

I3 ≤ η

 t

0
∥ψx(τ )∥

2dτ + Cη

 t

0
(∥Ux(τ )∥

2
L∞∥ϕ(τ)∥2

+ ∥Vxx(τ )∥
2
+ ∥Vx(τ )∥

4
L4)dτ

≤ η

 t

0
∥ψx(τ )∥

2dτ + Cη

 t

0
(δ2(τ + t0)−2

+ ϵ(τ + t0)−2) dτ

≤ η

 t

0
∥ψx(τ )∥

2dτ + Cηϵ2. (3.19)

Here and in the rest of this paper, η > 0 denotes a suitably small constant. Substituting (3.17)–(3.19) into (3.15), one can
immediately get (3.9) by the smallness of η. This completes the proof of Lemma 3.1. �

For the L2-estimate on ϕx(t, x), we have

Lemma 3.2. Under the assumptions of Proposition 3.2, there exists a positive constant C > 0 such that for 0 ≤ t ≤ T ,

∥ϕx(t)∥2
+

 t

0
∥ϕx(τ )∥

2
1dτ ≤ C


∥ϕ0∥

2
1 + ∥ψ0∥

2
+ ϵ

2
3


(3.20)

provided that ϵ and δ are suitably small.

Proof. From (3.1)2, we have
µ
ϕx

v
− ψ


t
= −µ


Vx

v


t
− κ

1
v


1
v


1
v


1
v


x


x


x

+ [p(ϕ + V )− p(V )]x + g(V )x. (3.21)

Multiplying (3.21) by ϕx
v

yields
µ

2

ϕx

v

2
− ψ

ϕx

v


t
− p′(ϕ + V )

ϕ2
x

v
=
ψ2

x

v
−
ψψxVx

v2
+
ψϕxUx

v2
− µ

Uxxϕx

v2
+ µ

Vxψxϕx

v3

+µ
VxUxϕx

v3
+ {· · ·}x − κ

1
v


1
v


1
v


1
v


x


x


x

ϕx

v
+ [p′(ϕ + V )− p′(V )]

ϕxVx

v
+ g(V )x

ϕx

v
. (3.22)

By a direct computation, we obtain

−
1
v


1
v


1
v


1
v


x


x


x

ϕx

v
= −

ϕ2
xx

v6
−

Vxxϕxx

v6
+

2ϕx(ϕx + Vx)(ϕxx + Vxx)

v7

+
3(ϕx + Vx)

2ϕxx

v7
−

6(ϕx + Vx)
3ϕx

v8
+ {· · ·}x. (3.23)

Combining (3.22) with (3.23), and integrating the resultant equation in t and x over [0, t] × R, we have

∥ϕx(t)∥2
+

 t

0
∥ϕx(τ )∥

2
1dτ ≤ C


∥(ϕ0x, ψ0)∥

2
+ ∥ψ(t)∥2

+

 t

0
∥ψx(τ )∥

2dτ +

7
i=4

Ii


(3.24)

where

I4 =

 t

0


R
(|ψψxVx| + |ψϕxUx|) dxdτ ,

I5 =

 t

0


R


|ϕx(ϕx + Vx)Vxx| + |(ϕx + Vx)

3ϕx|

dxdτ ,

I6 =

 t

0


R
(|ϕϕxVx| + |Uxxϕx| + |ϕxVxψx| + |ϕxUxVx| + |ϕxg(V )x|) dxdτ ,

I7 =

 t

0


R


|ϕxxVxx| + |ϕx(ϕx + Vx)ϕxx| + |(ϕx + Vx)

2ϕxx|

dxdτ .

(3.25)

and we have used the fact that
R

ψϕx

v
dx ≤

µ

4


R

ϕ2
x

v
dx + C


R
ψ2 dx. (3.26)
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By Lemma 2.2, (3.7) and the Cauchy inequality, the terms I4–I7 can be estimated as follows:

I4 ≤ η

 t

0
∥(ψx, ϕx)(τ )∥

2 dτ + Cη

 t

0
∥(Vx,Ux)(τ )∥

2
L∞∥ψ(τ)∥2 dτ

≤ η

 t

0
∥(ψx, ϕx)(τ )∥

2 dτ + Cηϵ, (3.27)

I5 ≤ C
 t

0
∥(ϕx, Vx)(τ )∥L∞


∥ϕx(τ )∥ ∥Vxx(τ )∥ + ∥ϕx(τ )∥L∞∥ϕx(τ )∥

2
+ ∥ϕx(τ )∥ ∥Vx(τ )∥

2
L4

dτ

≤ C(ϵ + δ)

 t

0


∥ϕx(τ )∥

2
+ ∥Vxx(τ )∥

2
+ ∥Vx(τ )∥

4
L4

dτ

≤ C(ϵ + δ)

 t

0
∥ϕx(τ )∥

2 dτ + Cϵ, (3.28)

I6 ≤ η

 t

0
∥ϕx(τ )∥

2 dτ + Cη

 t

0


∥Vx(τ )∥

2
L∞∥ϕ(τ)∥2

+ ∥Uxx(τ )∥
2

+ ∥Vx(τ )∥
2
L∞∥ψx(τ )∥

2
+ ∥Vx(τ )∥

2
L∞∥Ux(τ )∥

2
+ ∥g(V )x(τ )∥2 dτ

≤ η

 t

0
∥ϕx(τ )∥

2 dτ + Cηϵ2
 t

0
∥ψx(τ )∥

2 dτ + Cηϵ, (3.29)

and

I7 ≤ η

 t

0
∥ϕxx(τ )∥

2 dτ + Cη

 t

0


∥Vxx(τ )∥

2
+ ∥(ϕx + Vx)(τ )∥

2
L∞∥ϕx(τ )∥

2

+ ∥ϕx(τ )∥
2
L∞∥ϕx(τ )∥

2
+ ∥Vx(τ )∥

4
L4

dτ

≤ η

 t

0
∥ϕxx(τ )∥

2 dτ + Cη(ϵ + δ)

 t

0
∥ϕx(τ )∥

2 dτ + Cηϵ. (3.30)

Combining (3.24), (3.27)–(3.30), using Lemma 3.1 and the smallness of η, ϵ and δ, we can get (3.20). This completes the
proof of Lemma 3.2. �

As a consequence of Lemmas 3.1 and 3.2, we obtain

Lemma 3.3 (Basic Energy Estimates). Under the assumptions of Proposition 3.2, there exists a positive constant C > 0 such that
if ϵ and δ are suitably small, it holds for 0 ≤ t ≤ T that

∥(ϕ, ψ, ϕx)(t)∥2
+

 t

0


∥(

Vtϕ,ψx)(τ )∥

2
+ ∥ϕx(τ )∥

2
1


dτ ≤ C


∥(ϕ0, ϕ0x, ψ0)∥

2
+ ϵ

2
3


. (3.31)

Next, we derive the higher order energy type estimates on (ϕ, ψ).

Lemma 3.4. Under the assumptions of Proposition 3.2, there exists a positive constant C > 0 such that for 0 ≤ t ≤ T ,

∥(ψx, ϕxx)(t)∥2
+

 t

0
∥ψxx(τ )∥

2 dτ ≤ C

∥ϕ0∥

2
2 + ∥ψ0∥

2
1 + ϵ

2
3


(3.32)

provided that ϵ and δ are suitably small.

Proof. Multiplying (3.1)2 by −ψxx and using Eq. (3.1)1, we have
ψ2

x

2
+
κϕ2

xx

2v5


t
+ µ

ψ2
xx

v
= [p′(ϕ + V )− p′(V )]Vxψxx + p′(ϕ + V )ϕxψxx − µ

Uxxψxx

v
+ µ

ψxψxx(ϕx + Vx)

v2

+µ
Uxψxx(ϕx + Vx)

v2
+ κ

ψxxVxxx

v5
− 5κ

ϕ2
xx(ψx + Ux)

2v6

− 5κ
(ϕx + Vx)(ϕxx + Vxx)ψxx

v6
− 5κ

ψxxVxx(ϕx + Vx)

v6

+ 15κ
(ϕx + Vx)

3ψxx

v7
+ g(V )xψxx + {· · ·}x. (3.33)
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Integrating (3.33) with respect to t and x over [0, t] × R, we get

∥(ψx, ϕxx)(t)∥2
+

 t

0
∥ψxx(τ )∥

2 dτ ≤ C


∥(ϕ0xx, ψ0x)∥

2
+

11
i=8

Ii


, (3.34)

where

I8 =

 t

0


R
(|Uxxψxx| + |Uxψxx(ϕx + Vx)|) dxdτ ,

I9 =

 t

0


R
(|ϕVxψxx| + |ϕxψxx| + |ψxψxx(ϕx + Vx)| + |g(V )x|ψxx) dxdτ ,

I10 =

 t

0


R


|ψxxVxxx| + |(ϕx + Vx)

3ψxx| + |ψxxVxx(ϕx + Vx)|

dxdτ ,

I11 =

 t

0


R


|(ϕx + Vx)(ϕxx + Vxx)ψxx| + |ϕ2

xx(ψx + Ux)|

dxdτ .

(3.35)

Similar to the estimates of Ii, i = 1, . . . , 7 in Lemmas 3.1 and 3.2, we have

I8 ≤ η

 t

0
∥ψxx(τ )∥

2 dτ + Cηϵ2
 t

0
∥ϕx(τ )∥

2 dτ + Cηϵ, (3.36)

I9 ≤ η

 t

0
∥ψxx(τ )∥

2 dτ + Cη

 t

0
∥(ϕx, ψx)(τ )∥

2 dτ + Cηϵ, (3.37)

I10 ≤ η

 t

0
∥ψxx(τ )∥

2 dτ + Cηδ2
 t

0
∥ϕx(τ )∥

2 dτ + Cηϵ, (3.38)

and

I11 ≤ (ϵ + δ)

 t

0
∥(ϕxx, ψxx)(τ )∥

2 dτ + Cϵ. (3.39)

Substituting (3.36)–(3.39) into (3.34), then (3.32) follows by Lemma 3.3 and the smallness of η, ϵ and δ. Thus the proof of
Lemma 3.4 is completed. �

Now, we estimate ∥ψxx(τ )∥.

Lemma 3.5. Under the assumptions of Proposition 3.2, there exists a positive constant C > 0 such that for 0 ≤ t ≤ T ,

∥(ψxx, ϕxxx)(t)∥2
+

 t

0
∥ψxxx(τ )∥

2 dτ ≤ C


∥ϕ0∥
2
3 + ∥ψ0∥

2
2 + ϵ

2
3 + (ϵ + δ)

 t

0
∥ϕxxx(τ )∥

2 dτ


(3.40)

provided that ϵ and δ are suitably small.

Proof. Differentiating (3.1)2 twice with respect to x, thenmultiplying the resultant equation byψxx, and using the Eq. (3.1)1,
we have by a long calculation that

ψ2
xx

2
+
κϕ2

xxx

2v5


t
+ µ

ψ2
xxx

v
= R1 + R2 + R3 + {· · ·}x, (3.41)

where

R1 =

p′′(ϕ + V )ϕxVx + p′′(ϕ + V )V 2

x − p′′(V )V 2
x + [p′(ϕ + V )− p′(V )]Vxx

+ p′′(ϕ + V )ϕx(ϕx + Vx)+ p′(ϕ + V )ϕxx + g(V )xx

ψxxx,

R2 = −µ
Uxxxψxxx

v
+ 2µ

(Uxx + ψxx)(ϕx + Vx)ψxxx

v2

+µ
(Ux + ψx)(ϕxx + Vxx)ψxxx

v2
− 2µ

(Vx + ϕx)
2(ψx + Ux)ψxxx

v3
,

R3 = −
5κϕ2

xxx(ψx + Ux)

2v6
+ κψxxx


Vxxxx

v5
− 5

(Vx + ϕx)Vxxx

v6
− 10

(Vxx + ϕxx)
2

v6

− 10
(Vxxx + ϕxxx)(ϕx + Vx)

v6
+ 105

(Vxx + ϕxx)(ϕx + Vx)
2

v7
− 105

(ϕx + Vx)
4

v8


.

(3.42)
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Integrating (3.41) with respect to t and x over [0, t] × R, we have

∥(ψxx, ϕxxx)(t)∥2
+

 t

0
∥ψxxx(τ )∥

2 dτ ≤ C


∥(ϕ0xxx, ψ0xx)∥
2
+

 t

0


R
(|R1| + |R2| + |R3|) dxdτ


. (3.43)

Similar to the estimates in previous lemmas, we obtain t

0


R

|R1| dxdτ ≤ η

 t

0
∥ψxxx(τ )∥

2 dτ + Cη

 t

0
∥ϕx(τ )∥

2
1 dτ + Cηϵ, t

0


R

|R2| dxdτ ≤ η

 t

0
∥ψxxx(τ )∥

2 dτ + Cη(ϵ + δ)

 t

0
∥(ϕx, ψx)(τ )∥

2
1 dτ + Cηϵ, t

0


R

|R3| dxdτ ≤ η

 t

0
∥ψxxx(τ )∥

2 dτ + Cη(ϵ + δ)

 t

0
∥ϕx(τ )∥

2
2 dτ + Cηϵ.

(3.44)

Combining (3.43) with (3.44), we have (3.40) by the smallness of η and Lemmas 3.3 and 3.4. This completes the proof of
Lemma 3.5. �

To close the a priori estimates, we control the term
 t
0 ∥ϕxxx(τ )∥

2 dτ in the following lemma.

Lemma 3.6. Under the assumptions of Proposition 3.2, there exists a positive constant C > 0 such that for 0 ≤ t ≤ T ,

∥ϕxx(t)∥2
+

 t

0
∥ϕxxx(τ )∥

2 dτ ≤ C

∥ϕ0∥

2
3 + ∥ψ0∥

2
2 + ϵ

2
3


(3.45)

provided that ϵ and δ are suitably small.

Proof. Differentiating (3.1)2 with respect to x, then multiplying the resultant equation by ϕxx
v
, and using the Eq. (3.1)1, we

have 
µϕ2

xx

2v2
− ψx

ϕxx

v


t
+ κ

ϕ2
xxx

v6
= A1 + A2 + A3 + A4 + {· · ·}x, (3.46)

where

A1 = −
ψxψxxx

v
+
(Ux + ψx)ψxϕxx

v2
,

A2 =

[p′(V )− p′(ϕ + V )]Vx − p′(ϕ + V )ϕx − g(V )x

ϕxxx

v
−
ϕxx(ϕx + Vx)

v2


,

A3 = µϕxx


−

Uxxx

v2
+

Vxx(ψx + Ux)

v3
+ 2

(ψxx + Uxx)(ϕx + Vx)

v3
− 2

(ϕx + Vx)
2(ψx + Ux)

v4


,

A4 = −κ
Vxxxϕxxx

v6
+ κϕxxx


10
(ϕx + Vx)(ϕxx + Vxx)

v7
− 15

(ϕx + Vx)
3

v8


+ κϕxx(ϕx + Vx)


ϕxxx + Vxxx

v7
− 10

(ϕx + Vx)(ϕxx + Vxx)

v8
+ 15

(ϕx + Vx)
3

v9


.

(3.47)

Integrating (3.46)with respect to t and x over [0, t]×R, by the similar estimates as Lemma3.5, using (3.40) and the smallness
of ϵ and δ, we can get (3.45). The details are omitted. Thus the proof of Lemma 3.6 is completed. �

Combining Lemmas 3.3–3.6, we have

Lemma 3.7. Under the assumptions of Proposition 3.2, there exists a positive constant C3 > 0 such that for 0 ≤ t ≤ T ,

∥ϕ(t)∥2
3 + ∥ψ(t)∥2

2 +

 t

0


∥(

Vtϕ)(τ )∥

2
+ ∥(ϕx, ψx)(τ )∥

2
2


dτ ≤ C3


∥ϕ0∥

2
3 + ∥ψ0∥

2
2 + ϵ

2
3


(3.48)

provided that ϵ and δ are suitably small.

By the same argument as above, we also obtain

Lemma 3.8. Under the assumptions of Proposition 3.2, there exists a positive constant C > 0 such that for 0 ≤ t ≤ T ,

∥ϕxxx(t)∥2
1 + ∥ψxxx(t)∥2

+

 t

0
∥(ϕxxxx, ψxxxx)(τ )∥

2dτ ≤ C

∥ϕ0∥

2
4 + ∥ψ0∥

2
3 + ϵ

2
3


(3.49)

provided that ϵ and δ are suitably small.
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Proof of Proposition 3.2. Proposition 3.2 follows immediately from Lemmas 3.7 and 3.8. �

Now, we begin to prove our main theorem.

Proof of Theorem 1.1. Since Proposition 3.2 is proved, we can close the a priori estimates (3.5) by choosing ∥ϕ0∥
2
3 +∥ψ0∥

2
2

and ϵ sufficiently small such that

∥ϕ0∥
2
3 + ∥ψ0∥

2
2 <

δ2

4C3
, ϵ < min


δ3

(4C3)
3
2
, ϵ0


.

Then by the standard continuity argument, one can extend the local solution to be a global one, i.e., T = +∞. Thus, (1.14)
follows immediately from (3.6). Moreover, the estimate (3.6) and the system (3.1) imply that

+∞

0


∥(ϕx, ψx)(t)∥2

+

 ddt ∥(ϕx, ψx)(t)∥2
 dt < ∞, (3.50)

which as well as (3.6) and the Sobolev inequality lead to the following asymptotic behavior of solutions

lim
t→+∞

sup
x∈R

{|(v(t, x)− V (t, x), u(t, x)− U(t, x))|} = 0. (3.51)

From (3.51) and (iv) of Lemma 2.2, we have (1.15) at once. This completes the proof of Theorem 1.1. �
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