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Abstract

When the interaction potential is suitably reordered, the Moyal field theory admits two types of Galilean symmetries,
the conventional mass-parameter-centrally-extended one with commuting boosts, but also the two-fold centrally
“exotic” Galilean symmetry, where the commutator of the boosts yields the noncommutative parameter. In the free c
gets an “exotic” two-parameter central extension of the Schrödinger group. The conformal symmetry is, however, b
the interaction.
 2003 Elsevier Science B.V. Open access under CC BY license.
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1. Introduction

In a recent paper [1] Bak et al. consider a sca
field theory on the noncommutative plane, describ
by the actionS = S0 + S�int = ∫

d2�x dt L,

L= L0 − V �

(1.1)=
(
iψ̄∂tψ + ψ̄ ∆ψ

2

)
− λ

2
ψ̄ � ψ̄ � ψ � ψ,

where the star means the Moyal product associ
with the noncommutative parameterθ . Although this
looks like a nonrelativistic theory, Bak et al. me
tion (without proof) that both the Galilean and sca
invariance are lost. Our aim here is to point o
that the Galilean symmetry can be restored by s
ably reordering the interaction potential. Then
find that the symmetry can be implemented intwo
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different ways: while the conventional one yield
the usual, one-parameter central extension, ano
“Moyal-type” implementation yields the “exotic” two
parameter centrally extended Galilean symme
found before in a point particle context [2]. We co
firm that any nontrivial interaction does indeed bre
the scale invariance, but in the free case the symm
actually extends to a novel type of “exotic” (i.e., tw
parameter-centrally-extended) conformal (Schröd
ger) symmetry.

2. Exotic Galilean symmetry

Let us start with the boosts, whose infinitesimal
tion on nonrelativistic space–time,δb �x = �bt , δbt = 0,
is conventionally implemented as

(2.1)δ0bψ = i �b · �xψ − t �b · �∇ψ.
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This changes the free part of the Lagrange den
in (1.1) by a surface term,δL0 = −t �b · �∇L0. In the
commutative case the general potential isV (ρ) with
ρ = ψ̄ψ . δ0ρ = −t �b · �∇ρ, and hence the potenti
changes in the same way as the free part,δ0V =
V ′δρ = −t �b · �∇V. In conclusion,

(2.2)δ0bL = −t �b · �∇L

implying the Galilean invariance of the action.
the noncommutative case, however, the interac
potential in (1.1) is equivalent rather to

(2.3)

V ∗ = (λ/2)ρrρl, ρr = ψ̄ � ψ, ρl =ψ � ψ̄.

Then the relations

f � (xig)= xi(f � g)− iθ
2
εij ∂j f � g,

(2.4)(xif ) � g = xi(f � g)+ iθ2 εij f � ∂j g
readily inferred from the definition of the Moya
product allow us to establish

(2.5)δ0bρa = ±θ
2

�b× �∇ρa − t �b · �∇ρa
with the plus sign fora = r and the minus fora = l.
Hence the potential changes as

(2.6)

δ0bV
∗ = θλ�b× ( �∇ρr � ρl − ρr � �∇ρl)− t �b · �∇V ∗.

Owing to the sign change above, the first term her
not a surface term. The invariance is therefore brok
as stated by Bak et al. [1].

Now we argue that, in the Moyal context, (2.
is not the correct way to act for a boost. Rememb
that the imaginary factor in front ofψ is in fact a[n
infinitesimal] “compensating gauge transformatio
which, in the present context, acts by the Moyal, rat
then by the ordinary multiplication,ψ → g � ψ , g ∈
U(1)∗ [3]. (2.1) should therefore be modified as

δ�bψ = i �b · �x � ψ − t �b · �∇ψ
= i �b · �xψ − θ

2
�b× �∇ψ − t �b · �∇ψ,

(2.7)

δ�bψ̄ = −i �b · ψ̄ � �x − t �b · �∇ψ̄
= −i �b · �x ψ̄ − θ

2
�b× �∇ψ̄ − t �b · �∇ψ̄.
The sign change in front of the first term here
consistent with the formulaf � g = ḡ � f̄ .

Let us first investigate the free theory. The n
implementation (2.7) changesL0 again by a surface
term

(2.8)δ�bL0 = −t �b · �∇L0 − θ
2

�b× �∇L0,

cf. (2.2), so that the free actionS0 is left invariant.
Hence, the free theory admits our new type of Galile
symmetry.

The new term in (2.7) contributes to the conserv
quantity associated through Noether’s theorem, wh
says that if L changes asδL = ∂αKα under an
infinitesimal coordinate changeδ�x, then

(2.9)
∫ (

δL
δ(∂tψ)

δψ + δψ̄ δL
δ(∂t ψ̄)

−Kt
)
d2�x

is a constant of the motion. For a boost, implemen
as in (2.7), we get

(2.10)Gi = −
∫
d2�x xi |ψ|2 + tPi + θ

2
εijPj ,

wherePi = −i ∫ d2x ψ̄∂iψ is the momentum. Ou
clue is that the extra piece proportional toθ changes
the commutator of the boost components

(2.11){Gi ,Gj } = εij k, k ≡ θ
∫
d2x |ψ|2,

where the Poisson bracket is

(2.12){F ,G} = (−i)
∫
d2�x

(
δF
δψ

δG
δψ̄

− δG
δψ

δF
δψ̄

)
.

Adding the energy, the angular momentum, and
mass,

(2.13)H0 =
∫
d2�x 1

2
| �∇ψ|2,

(2.14)J = −i
∫
d2�x εij xiψ̄∂jψ,

(2.15)M =
∫
d2�x ρr =

∫
d2�x |ψ|2

(also derived by Noether’s theorem), we obtain
“exotic” two-fold centrally extended Galilei alge-
bra [2], whose commutation relations only differ fro
those of the usual, singly-extended Galilean alge
in that the boosts yield the second central chargk
in (2.11). The usual central term is the massM, as-
sociated with the phase invariance.
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It is worth noting that the conventional impleme
tation (2.1) used by Hagen [4] yields instead (2.1
without the extra piece, so that the boost compon
commute.1

We conclude that, for a free particle, both (2.1) a
(2.7) act as symmetries.

Let us mention that the infinitesimal action asso
ated with a conserved quantityG is

(2.16)δ�Gψ = {ψ,G}.
Interestingly, choosing the equivalent express

−iψ∂t ψ̄ in the free action, the phase invariance wo
yield

∫
d2�x ρl instead of

∫
d2�x ρr ; due to the integra

property
∫
d2�x f � g = ∫

d2�x fg, this is, however, the
same as our previousM. Note also that while theρa
are not positive definite, their integral,M, is positive.

Both densities satisfy a continuity equation

∂tρa + �∇ · �a = 0, �r = �∇ψ � ψ̄ −ψ � �∇ψ̄,
(2.17)�l = ψ̄ � �∇ψ − �∇ψ̄ � ψ.

This could be used as the starting point for a n
commutative hydrodynamics [6]. Note that while t
coordinate-space densities have complicated com
tation relations, in momentum-space they satisfy
trigonometric algebra [7]

(2.18)
{
ρ̃a(�q), ρ̃a( �p)

} = ±2 sin

(
θ

2
�q × �p

)
ρ̃a(�q + �p)

with the positive/negative sign fora = r and a = l,
respectively.

3. Exotic conformal symmetry

The 2-parameter conformal extension of the Gal
group (called the Schrödinger group) [8] can now
considered. The new generators are the dilations
expansions, implemented infinitesimally according

δ∆�x =∆�x, δ∆t = 2∆t,

δ0∆ψ = −∆[
ψ + �x · �∇ψ + 2t∂tψ

]
,

δκ �x = κt �x, δκ t = κt2,

(3.1)

δ0κψ = −κ
[(

− i
2
x2 + t

)
ψ + t �x · �∇ψ + t2∂tψ

]
,

1 This corrects an error in calculating the commutator, comm
ted in [5].
respectively, where∆ > 0 andκ is real. (∆�x means
�x multiplied by∆ and∆t meanst multiplied by∆.)
More generally, an infinitesimal Schrödinger transf
mation is of the formδxi = fi(x, t), δt = g(t) with
fi(x, t)= Fi(t)+xiG(t). When implemented conven
tionally

δ0ψ(x, t)= ih(x)ψ(x, t)− fi(x, t)∂iψ(x, t)
(3.2)+ [

k(t)− g(t)∂t )
]
ψ(x, t),

where the coefficients are suitable real functions
leaves invariantL0 and is therefore a symmetry for
free field. The associated conserved quantities s
w.r.t. the Poisson bracket (2.12) the one-parame
centrally-extended Schrödinger algebra [8].

With hindsight to the noncommutative case, let
consider instead2

δ�ψ(x, t)= ih(x) � ψ(x, t)− fi(x, t)∂iψ(x, t)
(3.3)+ [

k(t)− g(t)∂t
]
ψ(x, t).

The “exotic” dilatations act in the same way as t
conventional ones in (3.1); for the “exotic” expansio
we find

δ∗κψ = −κ
[(

− i
2
x2 + t

)
ψ + t �x · �∇ψ + t2∂tψ

]

(3.4)− κ
[
θ

2
�x × �∇ψ + θ

2

4
∂tψ

]
.

The new transformation is readily seen to be sti
symmetry that extends the “exotic” Galilei algebra
adding the two conformal generators3

D = −2tH0 + 1

2i

∫
d2�x xi

(
ψ̄∂iψ − (∂i ψ̄)ψ

)
,

(3.5)

K = t2H0 + tD − 1

2

∫
d2�x �x2|ψ|2 + θ

2
J − θ

2

4
H0.

Unlike in the commutative case,D,H0 andK do
not close to an o(2,1) [8] but yield

{D,H0} = 2H0 {D,K} = −2K+ θJ − θ2H0,

(3.6){H0,K} =D.

2 According to [9] one should take−(1/2)(fi � ∂iψ + ∂iψ � fi)
for the second term. But whenfi is at most linear in�x, this reduces
to our expression. For̄ψ the first term becomes−iψ̄ �h(x), cf. (2.7).

3 Note that (3.1) is also consistent with (2.16).
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When added to the Galilean generators we get a clo
algebra, though, since the nonvanishing brackets r

{K,Gi} = θεijGi , {K,Pi} = Gi ,
(3.7){D,Gi} = −Gi + θεijPj .

The relations (2.11), (3.6), (3.7) define a new, tw
parameter central extension of the Schrödinger alg
which seems to have escaped attention so far. We
it the “exotic Schrödinger algebra”.

4. Symmetry properties of the potential

We now turn our attention to the potential. Let
first consider a boost, implemented “exotically” i.
as in (2.7). It follows readily (cf. (2.5)) that the righ
and left densities transform differently

δ�bρr = −t �b · �∇ρr ,
(4.1)δ�bρl = −t �b · �∇ρl − θ �b× �∇ρl.

Hence, forV ∗ = ρrρl we get

(4.2)δ�bV
� = −t �b · �∇V ∗

r − θ �b× (ρr � �∇ρl).
Here the term proportional toθ is not exact. Therefore
the Galilean invariance is broken by the potentialV �

even for the new implementation (2.7).
Let us remember, however, how the potential com

about [11]. One starts with the second-quanti
expression for the interaction

(4.3)
∫
d2�x d2�x ′ ψ̄(�x)ψ̄(�x ′)U(�x − �x ′)ψ(�x)ψ(�x ′),

whereU is a two-body potential. Choosing the conta
interactionU = (λ/2)δ(�x − �x ′) yields a quarticV =
(λ/2)ρ2.

Promoting the commutative theory into a nonco
muting one requires to replacing the ordinary pro
ucts by Moyal products. This requires particular ca
though. For example, putting naively Moyal stars b
tween the various factors in (4.3) while keeping t
original order would lead to inconsistency: expre
sions of the formψ(�x) � ψ(�x ′) that should be define
due to associativity, would require us to redefine
Moyal product. Our clue is that this procedure isam-
biguous, as the order of the factors is irrelevant in t
commutative theory, but not in its Moyal version. R
arranging as, e.g.,

(4.4)

∫
d2�x d2�x ′ ψ̄(�x) � ψ(�x) � U(�x − �x ′) � ψ̄(�x ′) � ψ(�x ′)

(where the various productsare well-defined) would
yield, instead ofV ∗ in (1.1),

(4.5)Ṽ ∗ = λ
2
ψ̄ � ψ � ψ̄ � ψ

equivalent to(λ/2)ρ2
r or to ˜̃V ∗ = (λ/2)ρ2

l (which
could also be obtained by a suitable reorderin
Remarkably, it is this expression that had been use
Lozano et al. in their noncommutative nonrelativis
Chern–Simons vortex construction [12], and also
Langmann et al. [13] in their recent exact scalar fi
solution in a background magnetic field.

The important fact for us is that the new interacti
is Galilei invariant, since, by (4.1)

(4.6)δ∗bṼ ∗ = −t �b · �∇Ṽ ∗.

Similarly, for ˜̃V ∗ we getδ∗b
˜̃V ∗ = −t �b · �∇˜̃V − θ �b ×

�∇˜̃V ∗ which is again a surface term, so that t
Galilean symmetry is again restored. Clearly, the sa
statement holds for any “pure” function ofρr or of ρl
alone. For a mixture,ρ = εrρr + εlρl where theεi are
real coefficients, the cross term would break, howe
the symmetry, wheneverεrεl �= 0.

We failed to find a natural way to reproduce t
potentialV ∗ = ψ̄ � ψ̄ � ψ � ψ in (1.1), proposed by
Bak et al. [1].4 Another argument in favor of ou
choice (4.5) is that it is, unlike that of Bak et a
V ∗, renormalizable as well as invariant w.r.t. deform
U(1) transformations [14, p. 25]. It is, therefore, (4.
that we shall adopt in what follows.

Interestingly, the modified potential̃V ∗ also allows
the conventional symmetry (2.1).5 (2.5) indeed implies
that

(4.7)δ0bρ
2
a = ±θ

2
�b× �∇ρ2

a − t �b · �∇ρ2
a ,

a = r, l. Finally, theconventional interaction in terms
of ρ is alsoδ∗-invariant, proving the Galilean symm
try also in this case. In conclusion, any of the “pur

4 Their potential could be obtained by inserting furtherδ factors.
5 But this is not a surprise as (2.1) and (2.7) just differ by a spa

translation term.
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expressionsV ∗(ρa) as well as the standard potent
V = ρ2 provide us with a theory which isGalilei-
invariant in two ways: the conventional implemen
tation yields the usual one-parameter extension w
commuting boosts, and the “star-implementatio
yields the exotic two-parameter extension with no
commuting boosts.

Let us the record for completeness the equatio
motion associated with our potential (4.5): either
variation or using the Hamiltonian structure, we g
the “Moyalized” nonlinear Schrödinger equation

(4.8)i∂tψ = −∆
2
ψ + λρl � ψ = −∆

2
ψ + λψ � ρr .

For comparison, for the choiceV ∗ of Bak et al.,
the nonlinear term is(λ/2)(ρr � ψ + ψ � ρl). The
commutative counterpart of (4.8) is known to
non-integrable; coupling our system to an exter
magnetic field, yields exact solutions [13], however

The “ordinary” conformal symmetry is also co
sistent with adding a quartic potentialV (ψ) = ρ2. In
fact, using (3.1) we find thatδ0∆ρ =∆(2ρ − �x · �∇ρ −
2t∂t ρ) andδ0κρ = κ(2ρ − �x · �∇(tρ)− t2∂tρ), so that

δ0∆ρ
2 = −�∇ · (∆�xρ2) − ∂t

(
∆2tρ2) for a dilatation,

(4.9)

δ0κρ
2 =−�∇ · (κt �xρ2)−∂t

(
κt2ρ2) for an expansion.

The associated conserved quantities, that still fo
a representation of the one-parameter centrally
tended Schrödinger algebra, only differ from the f
expressions in thatH0 is replaced byH = H0 +
V [10].

As the “exotic” action of a dilatation is the same
the conventional one in (3.1) we find, using (2.4),

δ∗∆ρr = δ0∆ρr =∆{2ρr − �x · �∇ρr − 2t∂t ρr }
(4.10)−∆iθεij ∂iψ̄ � ∂jψ

which differs fromδ∗∆ρ in the second term behindθ .
Thus, owing precisely to this term,ρ2

r cannot change
by a surface term. The scaling symmetry is theref
broken, as stated in [1]. (The same statement h
also for ρ2

l and ρrρl .) More generally, (3.3) readily
implies that

δ�ρr = (2k − g∂t )ρr − fi∂iρr
− [
(fi∂iψ̄) � ψ + ψ̄ � (fi∂iψ)

]
,

δ�ρl = (2k− g∂t )ρl − fi∂iρl
(4.11)− [

(fi∂iψ) � ψ̄ +ψ � (fi∂i ψ̄)
]
.

As the second brackets involve here expressions o
form

xi∂iρ ± iθεij ∂i ψ̄∂jψ +O(
θ2)

the additional terms are not given by a surface te
that never vanish unlessG(t) = 0. In conclusion, any
potential made of products ofρr and ρl necessarily
breaks the conformal invariance.

5. Discussion

An interesting feature of the model studied he
is the two-way Galilean symmetry, and one can
puzzled how this can happen. Let us consider
“Moyalized” counterpart ofL0, namely

(5.1)L�0 = iψ̄ � ∂tψ − 1

2
�∇ψ � �∇ψ̄.

Now the conventional implementation (2.1) of t
boosts is natural forL0, as is (2.7) forL�0. But the
integral property

∫
f � g = ∫

fg implies thatL0 and
L�0 are equivalent, so one can use either of them
describe a free field. This resolves the paradox wh
says that noncommutativity does not alter the f
theory.
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