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ANOSOV MAPS, POLYCYCLIC GROUPS AND HOMOLOGY 

MORRIS W. HIRSCH~ 

(Receioed 15 Septenlber 1970) 

91. INTRODUCTION 

LET M DENOTE a compact Riemannian manifold. A C’ map f: A4 + M is called Anosoo if 

there exists a continuous splitting TM = E”@ E” of the tangent bundle of M, and constants 

C > 0, 1. > 1, such that Tf(E”) = E”, TJ(E’) c ES, and furthermore for all positive integers 

m and tangent vectors X E TM: 

ITf”(X) I 2 CJ."IXl if XEEU. 

This condition is independent of the Riemannian metric. Anosov maps have been studied in 

[I, 2, 7, 1 I], and elsewhere. 

Examples of Anosov maps can be obtained from a Lie group G, a discrete subgroup I 

with G/T compact, and an endomorphism 4: G ---t G such that #(I) c I; see [8]. If the 

derivative of q5 at the identity of G has no eigenvalues of absolute value one, then the map 

G/I -+ G/lY induced by 4 is an Anosov map. All known Anosov maps are intimately related 

to maps of this type. 

As an example take G = R” and r = Z”, the integer lattice; then $I is defined by an 

n x n integer matrix A and G/T is the n-torus T”. In this case we can identify A with the 

linear transformation 

f*: H,(T”; R) -+ H,(T”; R) 

induced by f on the first homology group with real coefficients. 

John Franks [2] has proved that iff: T” -+ T” is any Anosov diffeomorphism, then I;, 

has no root of unity among its eigenvalues. 

Theorem 1 extends Franks’ result to Anosov maps on a wider class of manifolds which 

includes all nilmanifolds. As an application. many manifolds that do not admit Anosov 

diffeomorphisms are constructed. For example: the Cartesian product of the Klein bottle 

and a torus. 

7 Supported in part by NSF Grant GP 22723. 
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$2. STATEMENT OF RESULTS 

THEOREM 1. Let f: IU -+ M be an Anosoc map of a compact manifold. Let 11 E H'(,Vf ; 2) 

be a nonzero integral cohomology class of dimedon 1 such f/rat (f *)“u = u, for some n E Z, . 

Then the injinire cyclic covering space corresponding to u has infinite dimensional rational 

homology. 

The proof is postponed to $3. 

COROLLARY 2. Let M be a compact manifold such that every infinite cyclic covering 

space has finite dimensional rational homology. Then iff: M --t hf is an Anoscv map, the in- 

duced homomorphism 

f*: N,(M; R) --, H,(M; R) 

has no roof of unity for an eigencalue. 

Proof. The eigenvalues off* are the same as those off* : H ‘(M; R) + H’(M; R), since 

the Kronecker index 
H’(M; R) x H,(M; R) -+R 

is a dual pairing under whichf* andf, are adjoint homomorphisms. A basis for the finitely 

generated free abelian group H’(M; Z) is also a vector space basis for N’(M; R) under the 

natural inclusion 
H’(M; Z) --f H’(M; R) 

and with this basis,f* is defined by an integral matrix. Therefore iff,: H,(M; R) --f H,(M; R) 

has an eigenvalue o with W” = I, there exists a nonzero vector x E H’(M; R) having rational 

coordinates in the basis defined above, such that cf*)“(s) = X. Some nonzero integer multiple 

14 of x lies in H’(M; Z), and a contradiction is reached by applying Theorem 1. 

Polycyclic groups are introduced to ensure the validity of the topological hypothesis on 

M in Corollary 2. 

Definition. A group T[ is polycyclic if it is solvable and every subgroup is finitely 

generated. 

The following lemma collects some facts about polycyclic groups; see [3, 9, 12). 

LEMMA 3. The following conditions are pairwise equivalent: 

(u) n is polycyclic. 

(6) TL is solvable and every Abelian subgroup is finitely generated. 

(c) There exists an exact sequence 

where N is a finitely generated nilpotent group and A is a finitely generated Abelian group. 

(d) 71 is built from cyclic groups by forming afinite number of extensions. 

(e) R is isomorphic to a solvable multiplicative group of integer matrices. 

The following is our main result: 

THEOREM 4. Let M be a compact manijbld such rhat (a) the fundamental group has a 

polycyclic subgroup of finite index; and (b) the universal covering 121 haA finite dimensional 

rational homolog) 
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H*(fi; Q) = 8 Hi(fi; Q). 
i30 

Then if f: Al -+ A4 is an Anosov map, there is no root of unity among the eigenvalues of 

f.,:H,(M; R) + H,(M; R). 

Proof. Follows from Corollary 2 and Lemma 6, below. 

A useful property of polycyclic groups is the following. 

LEMMA 5. Let Q” denote a rational vector space of3nite dimension n. Giuen a representa- 

tion p of a polycyclic group TC in the group GL(Q”) of automorphisms of Q”, the corresponding 

homology group 

H*(n; Q”, P) 
is a finite dimensional vector space over Q. 

ProoJ Let B, be a classifying space for IT. That is, B, = E,/R where E is a contractible 

space on which n operates freely and B, is its orbit space; the natural map E, 4 B, defines a 

covering space. Then B, is connected, r,(B,) 2 TI and zi(B,) = 0 for i > 1; these properties 

characterize B, up to weak homotopy type. 

By definition, 

H,(-n”jQ”p) = H,(&; Q”, P>, 
the total homology group of the space B, with coefficients twisted by the homomorphism 

p: rc,(B,) z 7c 4 Aut(Q”). 

If it is known that B, has the homotopy type of a finite simplicial complex, the lemma 

follows immediately. This is not the case in general but 7~ has a subgroup no ofjnite index 

whose classifving space BnO has the homotopy type of a finite complex. We now show this. 

It is proved in Malcev [3] that II has a subgroup no of finite index such that in the exact 

sequence 

of Lemma 3(c), No and A, are torsion free. For any exact sequence of groups 0 + a L /I & 

y + 0, the homomorphisms i andj determine maps B, + B, --) B, which, with proper choice 

of classifying spaces, may be taken to be a fibration. Therefore B,, is a fibre space over 

BAo with fibre BNO. Now BAO can be chosen to be an n-torus, and BNo has the homotopy type 

of a nilmanifold [4]. It is easily proved by induction on the number of cells in B that if 

F + E -+ B is a fibration over a finite complex B whose fibre F has the homotopy type of a 

finite complex, then so has the total space E. Therefore B,, has the homotopy type of a 

finite complex. 

Now the map p : B,, -+ B, corresponding to the inclusion homomorphism x0 --f x can 

be chosen to be a finite covering space. It is well known that the homomorphism induced by 

p maps H,(B,,; Q”, po) onto H,(B,; Q”, p), where p. denotes the composite homomor- 

phism 

no --+ np - GUQ”). 
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(A right inverse top* can be constructed by considering the inverse image by p of a chain in 

B,.) Therefore H,(ir; Q”, p) is finite dimensional. This proves Lemma 5. 

Remark. It follows immediately from Wang [lo; Corollary 3, p. 171 that a polycyclic 

group x has a normal subgroup x0 of finite index such that B,, is a compact smooth 
manifold. 

LEMMA 6. Let X be ajinite simplicial complex. Suppose (a) tr,(M) has a polycyclic sub- 

group offinite index, and (b) H,(x; Q) isjnite dimensional where 2 is the universal covering 

of X. Then H,(8; Q) isfinite dimensional for any covering 8 of X. 

Proof. By passing to a finite covering of X, we may assume n,(M) is polycyclic. Then 

so is rri(8) = n. Now x acts freely on _? with orbit space 8. In this situation there is a 

spectral sequence with E * = H,(rc; H,(X; Q), p), converging to H,(X; Q); see MacLane 

[5]. Here p: n -+ Aut H,(J?; Q) is the homomorphism determined by the action of rr on 2. 

By assumption H,(z; Q) is finite dimensional, and then by Lemma 4, E* is finite dimen- 

sional. Lemma 6 follows by the usual spectral sequence argument: H,(_?; Q) is exhibited as 

being obtained from E* by passing alternately to subspaces and quotient spaces a finite 

number of times. This completes the proof of Lemma 6. 

$3. PROOF OF THEOREM 1 

It is well known that if f: M + M is an Anosov map then some iterate f m off has a 

fixed point, m 2 1; compare Proposition 1.7 of Franks [l]. Since all the fixed points of an 

Anosov map have the same index + 1, this means that every iterate f mk off m, k 2 1, has 

nonzero Lefschetz number L(f mk). It suffices to proveTheorem 1 for an iterate off; therefore, 

we may suppose L(j) # 0. Theorem 1 is thus a corollary of 

LEMMA 7. Let X be a firzite complex, f: X -+ X a continuous map, and u E H ‘(ICI ; Z) a 

nonzero class such that f *u = u. Let p: Y + X be the infinite cyclic covering corresponding to 

II. If H,( Y; Q) isjnite dimensional then L(f) = 0. 

Proof. The covering space corresponding to u is the one whose fundamental group is 

annihilated by the composite homomorphism 

371(X) 5 H,(X; Z) 2 z 

where h is the Hurewicz map and 4 denotes the Kronecker index with U. 

Sincef*u = U, there is a commutative diagram 

9 
Y-Y 

P I I P 

x-x. f 
Let t : Y -+ Y be a generator for the group of deck transformations of Y over X; then 

t 0 g = g 0 t. Imitating Milnor [6] we consider a commutative diagram of chain complexes 

and chain maps: 
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1-i 

O-CAY; Q)- C,( I'; Q) 2 C,(J’; Q) - 0 

** I YI 

i 

/a I 
O- CAY; Q>- WY; Q> - C,(X; Q) - 0 

The rows are exact. There corresponds a commutative ladder of homomorphisms 

-Hi(Y; Q)- Hi( y; Q) - Hi(X; Q) - Hi-,(Y; Q)- 

I B. ! B. I f. I 
-Hi(Y: Q)- Hit Y; Q) - Hi(X; Q> - Hi-ICY; Q>- 

with exact rows. A well-known computation with traces shows that for such a ladder, the 

Lefschetz number of the middle endomorphism equals the sum of the Lefschetz numbers of 

the outer endomorphisms; in this case: 

-G?) + -w> = -%9. 
Hence UJ) = 0. This proves Lemma 7 and thereby completes the proofs of Theorems 1, 2 

and 4. 

94. APPLICATIONS 

The following is an immediate consequence of Theorem 

THEOREM 8. Suppose M is a compact manifold such thaf 

(a) rr,(M) has a polycyclic subgroup ofjinite index, 

(b) H,(fi; Q) isfinite dimensional, and 

(c) H’(M; Z) g z. 

Then ,bJ does not admit an Anosov diffeomorphism. 

4: 

Proof: If f: M -+ M is any diffeomorphism, condition (c) forcesf* to have f 1 for an 

eigenvalue. 

Examples of such manifolds are easy to construct; for example, the Cartesian product 

of a simply connected manifold with a circle or Klein bottle. Another type comprises the 

solvmanifolds constructed as follows. Let A be an invertible n x n integer matrix acting as a 

diffeomorphism of the n-torus T” in the usual way. Define MA = (T” x R)/Z where the 

generator of Z acts on T” x R by (x, y) H (A(x), y + 1). The fundamental group of MA is 

the semidirect product Z . Z”, the generator of Z acting on Z” by A; its commutator sub- 

group is the range of A - I in Z. If 1 is not an eigenvalue of A, then 

H,(iM,; Z)/torsion S Z 2 H’(M,; Z). 

Clearly A, GS R”+‘, and the exact sequence 

O+Z”-+n,(M,)+Z+O 

proves nr(M,J polycyclic. Therefore by Theorem 4: MA does not admit an Anosov diffeo- 

morphism if 1 is not an eigenvalue of A. 
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The following theorem gives a diFerent method of exploiting ths fundamental group of 

MA. 

THEOREM 9. Scl.Dpose A is an imertible integer marri.r sz:ch tha: Ak f 1 for all k # 0. 

Then : 

(a) iLI, x S’ does not admit a:z Anosov dzfleomorphism; 

(b) If 1 is not nn eigencafzte @‘A then M, x T” does root admit an Atzosor difiomorphisrtz 

for any m 2 0. 

Proof. The hypothesis on A implies that the center of 7r,(hfJ) z Z . Z” is trivial. 

Therefore the center C of ir,(,ld, x Y”) 2 ~l(M,,) x Z’” is Z”‘. and C meets the commuta- 

tor subgroup of Z,(MA x T’“) only in the identity element. Therefore under the Hurewicz 

map C maps isomorphically onto a subgroup C, c H,(M, x T’“: Z) which is invariant 

under every diffecmorphism of Me4 x T”. Under assumption (a), C’, g Z and therefore the 

automorphism f* of 

H,(M, x S’; Z)/torsion 

has + 1 as an eigenvalue. Under assumption (b), C, % Z’” and ffI(&I, x S’ ; Z) E Z”+‘,and 

again f* has an eigenvaiue + 1. Therefore Theorem 4 proves Theorem 9. 

Next we consider the Klein bottle K’. The fundamental group embeds in an exact 

sequence 0 -+ Z’ -+ nl(KZ) -+ Z2 -+ 0 and is therefore polycyclic. 

THEOREM 10. Let M be a compact orientable manifold such that 

(a) n,(M) has a pol)q&c szrbgrozrp of finite index 

(b) H&I%?; Q) is finite dimensional. 

Then K2 x M does rzot admit an Anosov difleonrorphism. 

Proof. Let p : Tz -+ K’ be the double covering of the Klein bottle by the torus. The 

subgroup py(xI(T2)) x x~(M) c n,(K’ x n/r) is represented by loops in K2 x M that 

preserve local orientation; it is therefore preserved by every diffcomorphismf’ of K 2 x M. 

Consequently f is covered by a diffeomorphism g of T’ x M. Now g:” preserves the sub- 

group G c H’(T2 x M; Z) that is the image of@ x I)*: H’(K2 x M; Z) -+ H1(T’ x XI; Z). 

By the Kiinneth theorem, 

H’(K’ x M; 2) = z @ H’(M; Z) 

and 

H’(T2 x M; Z) r z2 @ H’(M; Z). 

Thus G has corank 1, which forces g* : H’(T2 x M; Z) -+ H’(T’ x M; 2) to have + 1 for 

an eigenvalue. By Theorem 4, g cannot be an Anosov diffeomorphism. Therefore f cannot be 

one either. 
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