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Abstract 

In this paper we consider successive orthogonal projections onto m hyperplanes in 
R”, where m > 2 and n > 2. A limit cycle is defined to be a sequence of points formed by 
projecting onto each of the hyperplanes once in a prescribed order, with the last pro- 
jection giving the starting point. Several examples, including triangles, quadrilaterals, 
regular polygons, and arbitrary collections of lines in R*, are solved for the limit cycle. 
Limit cycles are found in various ways, including by a limiting process and by solving an 
mn x mn linear system of equations. The latter approach will produce all the limit cycles 
for an arbitrary ordered set of m hyperplanes in R”. 0 1998 Elsevier Science Inc. All 
rights reserved. 

1. Introduction 

In this paper we consider successive orthogonal projections onto m subsets 
of R”, where m and n are integers which are at least 2. These subsets take the 
form of translated (n - 1) dimensional subspaces of KY’. We denote orthogonal 
projections onto hyperplanes by Q or Qi, i = 1,2, . . . , m; if the hyperplanes are 
subspaces (i.e. if they contain the origin) we will often denote the projections by 
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P or fl instead. A limit cycle is defined to be a sequence of points formed by 
projecting a point of one of the hyperplanes onto the next hyperplane (in a given 
ordering of the hyperplanes), then projecting that point onto the next hyperplane, 
and continuing in this way until each of the hyperplanes has been projected onto 
once, with the final projection giving the starting point. We will show that if one 
starts with an arbitrary point in [w” and projects successively onto the hyperplanes 
in a specified order, the points of projection will converge to the points of a limit 
cycle; further, this limit cycle will be unique, independent of the starting point, if 
and only if there is no line which is parallel to all the hyperplanes. 

One can determine limit cycles iteratively by choosing any starting point in 
R” and computing projections in the prescribed order until convergence occurs, 
as nearly as it can occur in the presence of roundoff error. One can also 
compute limit cycles noniteratively by solving the system of linear equations 
developed in Section 5. If n = 2, one can also use the formulas in Theorem 3.1, 
or its corollaries in Theorems 2.1 and 2.2. If n = 2, the hyperplanes define a 
regular polygon, and the projections are done on adjacent (extended) sides, 
then Corollary 4.1 can also be used. In this paper we have tried to select ex- 
amples which (a) illustrate or delimit the results in the paper, (b) have hyper- 
planes which define common figures from geometry, namely triangles, 
trapezoids, pentagons, regular polygons, and a tetrahedron, (c) have limit cycles 
which are relatively easy to determine exactly by noniterative means, and (d) 
produce interesting pictures. As a generalized example of a slightly different type, 
we note that if the hyperplanes have a unique common point of intersection, then 
by the result of Ref. [l], all points of the unique limit cycle will be just this point. 

We need to recall the formulas for projecting a point xo E [w” onto a 
hyperplane H = {x: aTx = d}. Since the projection is to be orthogonal, and a is 
orthogonal to the hyperplane, the projection Qxo of x0 onto H must have the 
form Qxo = x0 + Aa for some real number ;1. Substituting this into the equation 
aTx = d to determine A gives 

exo=xo+ 

where ]]a]] denotes the Euclidean norm of a. Note that we can break this into 

exo=f--o+L 

where Pxo is the projection of x0 onto the subspace {x : aTx = 0) which is 
parallel to the hyperplane H, that is 

Pxo=xo- ($)a and [= (&)a, 
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We will also denote by the letter P the matrix representation of the projection, 
i.e., 

The case n = 2 is of special interest; using (x, y) to represent a vector in R*, 
we have that if H is not vertical we can write H in the form 
{(x,y) : y = mx + b} for real numbers m and 6. Thus a = [-m, llT and we get 

Q(xo,yo) = j&z (Xo + ~YO - mb, mo + m2yo + b). 

In matrix form, we have 

a([;]) =&[I ;][;] +iA-rb]~ 

(2) 

(3) 

where 

1 1 m 

[ 1 1 +m* m m* 

is the matrix representation of P. 

Example 1.1. Consider the straight lines y=x and y= -2x,-oo <x< co. 
There are the graphs of the subspaces HI = {(x, y) : y = x} and 
H2 = {(x,y) : y = -2x}, respectively. Then for arbitrary (XC,, yo) E R2 we have 

S(Xo,Yo) = i(xo fyo,xo +yo), (4) 

p2(xo,Yoyo) = +o - 2Y0, -Go - 2Yo)), 

For all (xo,yo) E R2 we have limk+M(PZPr)k(xO,yO) = (0,O) since 

This agrees with non Neumann’s theorem [2], which states that alternating 
projections onto two closed subspaces of a Hilbert space X converge in norm to 
the projection onto the intersection of the subspaces, for any initial point 
x E X. This result was later generalized to m closed subspaces by Halperin [I]. 
The projection method of Kaczmarz [3] is described in the next example, in 
which the solution of a linear system of equations is determined by an iterative 
procedure using alternating projections. Tanabe [4] has shown that the method 
converges for singular or inconsistent linear systems of equations. We note that 
it follows from Theorem 1.1 that the limit cycle is unique if the linear equations 
describe lines in R2 which are not all parallel, but in general the limit cycle 
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could depend on the initial guess. An example of nonuniqueness is given by the 
system of equations x = 1 ,x = - 1, y = 1, and y = - 1 in Iw3, where the limit 
cycle depends on the choice of z. in the initial point (x0, yo,zo). 

Example 1.2. Consider the 3 x 2 linear system 

[; f,]r:1= [il. (6) 

One can construct an iterative procedure to solve (6) by sequential projec- 
tions on the hyperplanes Hi = {(x,y): y= 1},H2 = {(x,y): x+y= l}, and 
H3 = {(x, y) : x - y = 1). The procedure of Tanabe [4] defines the function 

F(x) = QmCQm-I(. . . @I (4) . . .). (7) 

The iteration procedure of Kaczmarz [3] is given by 

x(~+I) = F(x@)), k = 0, 1,2,. . . , (8) 

where x(O) is an arbitrary initial guess. This is an example of fixed-point iter- 
ation; the objective is to find a solution of the equation x = F(x) (i.e. a “fixed 
point” of F). In this example we have 
a2 = [l, 11T,a3 = [l, -llT,dl = d2 = d3 = 1, so 

n = 2, m = 3, aI = [0, llT, 

QCI) = [i :I [;I + [;I- 
Q([j) =1[‘1 Y][;] +;[:I- 
Q3([j) =i[i :][;I +f[IJ 

H2 and H3 are orthogonal, and so one can see geometrically that the iteration 8 
converges to the point (1, 0) after at most two projections onto H3, regardless 
of the initial guess. Performing two more projections yields the other two 
points in the limit cycle (1, l), and (l/2, l/2). Due to the numbering of the 
hyperplanes we have done the projections in a counterclockwise manner; if we 
instead do them in a clockwise manner, the limit cycle is 
{ (1, 0), (1, l), (3/2,1/2)}, which illustrates the fact that the limit cycle is de- 
pendent on the order in which the projections are done. Fig. 1 depicts the 
situation. 

We now prove a result which allows one to compute one of the points of a 
limit cycle; once this has been done, the remaining points can be determined by 
doing one projection on each of the remaining hyperplanes. This is similar to 
the computation giving Eq. (8) in Ref. [4]. 
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Fig. 1. The two limit cycles. 

Lemma 1.1. Let hyperplanes HI, HZ,. . . , H,,, c R” be given and let the projections 
Qt of a point onto Hi be given by PiX + ri for i = 1,2, . . . , m, where P is the 
projection onto the subspace parallel to Hi. Let Q = Q,,,Q,,-1 . . . Qr, 
P = P,P,_1 , . . PI, and B = 5, + P&,-l + P,&-I&,_~ + . . . + P,,,P,,-I . . . P25,. 
Then for every positive integer k and every x E R” 

k-l 

@x=Pkx+CP$+fL 
i=l 

(9) 

Proof. We first prove by induction on m that Qx = Px + fl. For m = 1, this 
statement just says Qrx = PIX + cl, which is true by the definition of Qr . 
Now suppose that for some j> 1, Q~~..Q~x=~...P,x+[~+P~~~_, +... 
+PjPj_I ’ ’ .P&l. Then Qj+rQj...Qr~ =Pj+tQj...Qr~+cj+r =pj+lpj...Plx 
+Pj+l[j + Pj+lPjcj_l + . . . + Pj+lPj . . .P251 + [j+l as desired, completing the 
induction. Now note that @x = P(Px + fi) + fl= P2x + PB + fl, and one can 
show that Eq. (9) is true by a second induction argument on k. 0 

The following theorem guarantees the existence of a limit cycle and gives the 
conditions under which it is unique. 

Theorem 1.1. Consider the ordered collection of m hyperplanes in R” of the form 
{x E l&Y : a;x = dj}, where aj # 0 for all j. Then successive projections onto the 
hyperplanes will converge to a limit cycle. This limit cycle will be unique, 
independent of the starting point, tf and only if there is no line which is parallel to 
all the hyperplanes. 

Proof. First consider the case where there is no line which is parallel to all the 
hyperplanes. This is equivalent to each of the following three assertions: There 
is no aE W,a#O, with aTaj=O for j= l,..., m;{al,az ,..., a,} spans R”; 
and the matrix A whose jth row is a; has rank n. The result in Ref. [4] state that 
this last condition implies that llP/l < 1, where P is the matrix representation of 
P and 11 II represents the 12 matrix norm. This condition implies that I - P is 
non singular (where I is the n x n identity matrix), limk+, pk = 0 and 
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limk,, Cfzi P’ = (I - P)-' . From this and Eq. (9) it follows that 
limk,oo @x = (I - P)-‘fi for every x E R”. It now follows that Q(I - P)-‘fi 
= (I - P)-‘j3, so (I - P)-‘p is the point on the mth hyperplane of a limit cycle, 
and the projections onto the other hyperplanes also converge to the points of 
this limit cycle which lie on those hyperplanes. Since (I - P)-' fl is independent 
of x, this limit cycle is unique. 

Now consider the case where there is a line which is parallel to all the 
hyperplanes. Let x be any point in R”, and let H be the unique (n - l)-di- 
mensional hyperplane which is perpendicular to the line and contains x. Since 
His perpendicular to all the given hyperplanes, all the projections starting with 
x must lie in H. Consider the m(n - 2)-dimensional hyperplanes formed by 
intersecting the original hyperplanes with H, and by translating and rotating 
the axes (if necessary) and deleting an axis, consider H to be R”-’ . If n > 2, and 
there is no line IW’ which is parallel to all the new hyperplanes, then by the 
earlier part of this proof, successive projections starting with x will converge to 
a limit cycle. If on the other hand there is a line in [w”-’ which is parallel to all 
the new hyperplanes, then repeat the process to reduce W’ to lV2. Con- 
tinuing this way, we will eventually show that successive iteration starting with 
x converges to a limit cycle, or else we will reduce the space all the way to IR’, 
but in this latter case it follows geometrically that the first m projections will 
produce the m points of a limit cycle, so again we will have convergence to a 
limit cycle. 

It only remains to show that if there is a line which is parallel to all the 
original (n - 1)-dimensional hyperplanes, then the limit cycle is not unique. To 
see this, defining Has before, choose a second starting point x’ which is not in 
H, and let H’ be the unique (n - 1)-dimensional hyperplane which is perpen- 
dicular to the line and contains x’. Then Hand H’ have empty intersection, so 
that limit cycles starting from x and x’ are not the same, so there is no unique 
limit cycle independent of the starting point. El 

Example 1.3. Again consider Example 1.2. Here we have 

P=P3P2P,=;[: ;I$ ;l][A J = [; J 

so by Lemma 1.1. we have Q [x, ~1’ = [ 1, OIT for all positive integers k and all 
(X,Y) E R2Y verifying our earlier geometrical observation that the iteration 
converges after at most two projections onto H3. 
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In the next two sections we derive formulas for general triangles, quadri- 
laterals, and collections of lines in the plane. In Section 4 we consider regular 
polygons, and derive a simple real-value function g such that the limit of the 
iteration 

XCkfl) =g(x(k)), k=0,1,2... (10) 

determines the location of the points of the limit cycle. In that section we also 
verify geometrically for convex figures in the plane with all interior angles at 
least 90” that the figure formed by the limit cycle has the same interior angles as 
the original figure, but the new figure is rotated 90”; however the side lengths of 
the new figure are not necessarily proportional to the side lengths of the 
original figure. In Section 5 we formulate a linear system of equations whose 
solutions give the points of all limit cycles for m hyperplanes in n-dimensional 
space. 

2. Triangles and Quadrilaterals 

In this section we give formulas for one of the points of a limit cycle for two 
situations. The first one is the triangle with vertices (0, yr ), (a, 0), and 
(yi/m~ + cr,yr) whereyl = --1)21c(,y~ > 0, tx > O,yl/mz + c1 > 0, so the triangle is 
determined by the lines y = mix + yI,y = mz(x - cr),y = y1 (see Fig. 2). 

A 

Y = Yl 

Fig. 2. 
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Any nondegenerate triangle can be put into this position by rotating and 
translating axes, if necessary. We note that the location of the limit cycle points 
is independent of the placement of the axes since the points are determined by 
orthogonal projections, which are geometrically independent of the placement 
of the axes; thus one could rotate/translate the axes to get the triangle in the 
desired position, compute the limit cycle points using the formula given in this 
section, then rotate/translate the axes back to their original position. Similar 
comments apply to the other figures considered in this paper. 

The proof of the following theorem will be given later in Example 3.1 as a 
corollary of Theorem 3.1. 

Theorem 2.1. For the triangle described above, regardless of the starting point 
(xo,B), counterclockwise iteration converges to a unique limit cycle; the point of 
projection on the side y = y1 is given by 

( mz(l + m:)(yl + m2cI) 
(1 +mT)(l +mi) - (1 +m,mz)~Y1 . > 

(11) 

Remark 2.1. If the triangle is a right triangle, then it follows from Remark 3.1 
in Section 3 that the point in Eq. (11) will be achieved after at most two 
projections on the line y = yi. 

Example 2.1. Consider the triangle formed by the lines, y = -x + 2, y 
=:(x-2), andy=2 ( see Fig. 3). We have ml = -1,~ = 2,mz = l/3,01 = 2, 
so substituting into Eq. (11) gives the point of the limit cycle on y = 2 as 

( ‘j(l + 1)(2+f(2)) 
(1+1)(1+$)-(1-f)’ 

2)=(&)=($,2). 

Fig. 3. Original triangle with limit cycle. 
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The remaining two points of the limit cycle are computed as follows using 
Eq. (2): 

As a check, we have Qj(8/7, -2/7) = (8/7,2), the first point of the limit cycle. 
Note that the limit cycle forms a triangle which is similar to the original tri- 
angle, but is rotated 90’ clockwise. 

We now suppose that a nondegenerate quadrilateral is formed by the lines 
y=nflx+yl, y=m2(x--~), y=m3(x-M), and y=yz, so the vertices are 
((~2 -.YI)/(w, ~2)~ (h +mcO/b2 -ml), m2C.n + mu)/(m2 -ml)), (601, 

and (yz/rnj + c(,y2) (see Fig. 4). 
Any nondegenerate quadrilateral which contains a side which is not per- 

pendicular to any other (extended) side can be put into this form by selecting 
such a side and rotating the axes to make this side horizontal, then translating 
the axes so that the right-most vertex not on this side is on the x-axis. We note 
that there are quadrilaterals which are not covered by Theorem 2.2, e.g. rect- 
angles and the quadrilateral with vertices (0, 0), (1, l), (1, 2), and (-2, 2). Such 
quadrilaterals can be dealt with in other ways, e.g., by inspection or by using 
Theorem 3.1. One can prove the following theorem directly by the techniques 
used to prove Theorem 3.1, but instead we will give the proof later in Example 
3.2 as a corollary to Theorem 3.1. 

Fig. 4. 
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Theorem 2.2. For the quadrilateral described above, regardless of the starting 
point (xo,~), counterclockwise iteration converges to a unique limit cycle; the 
point of projection on the side y = y2 is given by 

([~~:(l+m:)(l+m:)+amz(m*-m~)(1+m~) 

+Yl(m2 -MI)(l fm2m3) +m,B(l +m,m2)(1 +m2m3)] 

A(1 + m:)(l + 40 + m:, - (1 + wmz)(l + m2w)],y2). (14 

Remark 2.2. If the quadrilateral contains a right angle, then it follows from 
Remark 3.1 in Section 3 that the point in Eq. (12) will be achieved after at most 
two projections on the line y = y2. 

Example 2.2. Consider the trapezoid formed by the lines y = x,y = 0, 
y=4-x, and y=l-t, where -1 < t < 1 (see Fig. 5(a)). We have 
mt=l, yl=O, m2=0, c1=4, m2=-l,yz=l-t,sothepointofthelimit 
cycle which is a projection onto the line y = 1 - t is given by 

( 4(-1)2(1+12)(1+02)+O+O+1(1-t)ll 

(1 + 12)(1 +02)(1 + (-1)2) - 1. 1 
,l -t 

) 

= (Y,l -t). (13) 

The remaining three points of the limit cycle are computed as follows, using 
Eq. (2): 

(4 (t = - $1 

Fig. 5. 

(b) (t = -1) 
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1 

( 

9-t 
=- -+l.(l-t)-l.O,l . 

lf12 3 ( 
9$+1.(1+) 

> > 
+0 

Z -- 

6 - 2t =( 1 -,o 1 3 
6 - 2t 

Q+) 
1 

= 1 + (-1)2 ( 
y+ (-l)(O) - (-l)(4), (-1) (Y + (-l)(O)) + 4) 

Now as t--l, the points of the limit cycle approach 
(10/3,2), (g/3, g/3), (g/3,0), and (10/3,2/3), respectively. At first glance this 
seems to be a discontinuity in the limit cycle as a function oft as t approaches 
- 1, since when t = - 1 the original trapezoid collapses to the right triangle with 
vertices (0, 0), (4, 0), and (2, 2), and the limit cycle for this triangle (traversed 
counterclockwise) consists of the points (2, 2), (2, 0), and (3, 1). The discon- 
tinuity disappears, however, if we consider the original figure to be a degen- 
erate trapezoid with a horizontal side of length 0; in this case one can verify 
geometrically from Fig. 5(b) that the four-point limit cycle given above is 
correct. Note that although the trapezoid formed by the limit cycle has the 
same angles as the original trapezoid and is rotated 90° clockwise from it, it is 
not similar to the original trapezoid since the lengths are not proportional. 

3. Arbitrary collections of lines in R* 

In this section we consider an arbitrary ordered collection of lines in R2. The 
only restrictions we impose in part (i) of Theorem 3.1 below are that the lines 
are not all parallel, and none of them are vertical. If the lines are parallel, then 
one can see geometrically that the limit cycle depends on the initial point of the 
iteration. It consists of the points on the intersection of the given lines (in the 
given order) with the line which contains the initial point and is perpendicular 
to the given lines. If one or more of the lines are vertical, one could rotate the 
axes so the lines become nonvertical, compute the unique limit cycle, then 
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rotate the axes back to their original position; an explicit formula in the case of 
exactly one vertical line is given in part (ii) of Theorem 3.1 below. The method 
of proof in part (ii) could also be used to derive formulas when more than one 
line is vertical. 

Theorem 3.1. Consider an ordered collection of m lines in E@, where m > 2 and 
the lines are not all parallel to one another. Then regardless of the starting point 
(xo,yo), the iteration converges to the unique limit cycle. Furthermore, 

(i) if none of the lines are vertical, then the lines can be expressed by the 
equations y = mix + bi (mi, bi real) for i = 1,2,. . . , m. In this case the point of 
projection on the line y = m,x + b, is given by 

1 

nz,(l +m:) - (1+ mlm,) n,“_l’ (1 + mjmj+l) 

x 
( 

ebt-l(ml - mt_l)jri(l + rnf)fi(l + mjmj+l) 
1=2 i=l jd 

m-l m-l 

+b, mln(l + mjmj+l) - mmn(l + mf) 
j=l i=l 

m-l 

m,ebt-l(w - mr-l)fi(l + mf)n(l + mjmj+l) 
I=2 i=l j=l 

m-l m-1 

+bm JJ(l + mf) - n(l + mjmj+l) , 
i=l j=l 

(14) 

where as usual if i, > i2 we define Cy+ (.) = 0 and n:‘_,, (.) = 1. 
(ii) If exactly one of the lines is vertical, we can assume that it is the mth line, 

and that the lines are given by y = mix + bi(mi, bi real) for i = 1,2,. . . , m - 1 
and x = x’ (x’ real). In this case the point of projection of the limit cycle on the 
mth line hasJirst coordinate x’ and second coordinate given by 

1 

ny=!* (1 + rnf) - mlm,-1 nyLf(l + mjmj+l) 

X 

( 

m-1 l-2 m-2 

m,,-l~b~-l(m, - m,-l)n(l + mf)n(l + mjmj+l) 
1=2 i=l j=l 

m-2 m-2 

+b,-lJJ(l +m:) +x’m,-ln(l +mjmj+l) 
i=l j=l 

(15) 

Proof. (i) By Eq. (3) the projection of an arbitrary point (XO, yo) onto the line 
y = mix + bi is given by 
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We compute 

So defining 

we have 

Thus 

P2 = y2(1 + m,mrn) 
[A nz*l = y( 1 + rnlrn,)P 

p3 = y2( 1 + mp7z,)2P = y’( 1 + vbJZ 
[A mzl 

. . 

P = y[y(l + w%n)]k-’ [h ?nzJ 

(16) 

(17) 

Now we wish to show that the scalar quantity in square brackets in Eq. (17) is 
less than one in absolute value. Letting ai = [-I?z~, llT for i = 1,2,. . . , m we 
have by the Cauchy-Schwarz inequality 
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Ml + mlm,)l = 
(1 +m~m~)(l +m21713)...(1 +m,-~m,)(l +mim,) 

(1 +m:)(l +mz)*...(l +mt) 

la1 . amI +’ laj . aj+lI m-l 

= lb llllamll j=l Ilajllllaj+l II n < 1. Hl = 1, 
j=l 

(18) 

with equality if and only if a,, a*, . . . , a, are all parallel, i.e., if and only if 
ml = m2 =. . . = m,. Since we have assumed the lines are not parallel, we have 

Iv(l +mlm,)l < 1. (19) 

From this and Eq. (17) it follows that 

Now in order to use Lemma 1.1 we need to compute the quantity 

p = (I, + P?&_, + PmPm-15m-2 + . . + pmpm-1 . . .p251. 

Arguing as above, for 2 6 I < m we have 

P,P,_, . . .P&_, = fi i=, &EC1 + “?im,+,) [ irn 
’ /=I 

myAm] * 
I 1 -1721-1 

[ 1 
m-l 

X 
1 

= bl_l(m, - ml-l) fi -n(l + mjmj+l) ’ i=,-l ’ + mF j=[ [ 1 . mm 
Thus 

Tbi-1 (ml - ml-l) 
I=2 

1 
X 

[ 1. mm 

Letting 

hi, 
p=lf> 

we have 

B= 
0 - md 

[ I m,a+p ’ 



J. Angeles zt al. /Linear Algebramdits Applications285 (1998) 201-228 215 

Thus, from Lemma 1.1, and also using Eqs. (17) and (19) we have that the 
point of projection of the limit cycle on the line y = m,x + b, is given by 

lim @[:I =I_p[z] +pP+B= [,” J [z] 
ktoc, 

+ 2 y[y( 1 + mmJk-l 
k=l 

Y 

[ 

-mmp+ml(mm~+p) 
= 1 - y(1 + me,) m,(o - m,p) + rnm&n,~ + p) l+[~:iyl 

1 
= 1 - y(1 + mlm,) [ 

ymrp( 1 + mi) - f&d + 0 

m,b + P - yp(l + mI) 

rI:,u +m:> 

II I 

a+& ymi 

= nE,(l +mf) - (1 + 
( -*) 

ml m,) nyil’ (1 + mjmjt i ) mm~+bm(&-Y) 

and now using Eqs. (16) and (20a) leads to Eq. (14). 
(ii) If we replace the mth line x = x/ by the line y = m, (x - x'> (m, real) we 

can apply part (i) with b, = -m,x’, and then divide the numerator and the 
denominator by rni and let m, + cq the result is the point 

1 

( ( 
m-2 m-l 

0 -x’ mlm,_l nC1 + mjm_i+l) - n( 1 + mf) , 

j=l i=l 1 

m-1 1-2 m-2 

mm-l~hl--l(W - ml-l)n(l + mf)JJ(1 + mjmj+l> 

1=2 i=l j=i 
m-2 

( 

m-2 

+bm-ln(l -trnf> -.I! 0 - m,_J$l + mjmj+l) , 

i=l j=l )I 

and this leads directly to Eq. (15). To validate this computation we need to 
verify that the denominator is nonzero, but this follows from the fact that 
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Now we have shown that the point (x6, y’,) of the limit cycle for 
{vi = mix + bi: i = 1,2,. . . , m} which is a projection on the line y = m,x + b, 
approaches the point (x’, y’) given in Eq. (15) on the line x = x’ as m, + 00; 
thus by continuity of the projections, we have Qr (XL,&) + QI (x’, y’), 

QZQI (4,oy’,) --) QzQl +‘,.Y’), . . . ,QmQm-1 . ..QI(~..Y;) + QmQm-I ‘+~Q,(~,Y’,, 
where in the last step we also used the fact that the line y = m,x + b, 
approaches the line x = x’ in the region of interest. Since 
QmQm-l . ..Ql(xk.V’,) = (XL,.&), we also have QmQm-l ..~QI@‘,Y’) = (x’,Y’), so 
we do indeed have a limit cycle. This limit cycle must be unique, for if there 
were another limit cycle one could rotate the axes slightly and get a con- 
tradiction to the uniqueness in part (i). Note that uniqueness also follows from 
Theorem 1.1. 0 

Remark 3.1. From Eq. (18) we see that 

~(1 + mlm,) = cos 0 ,2 cos 823 . . . cos em_,,* cos &I, 

where 8ij is the angle between ai and aj, and is thus also the angle between the 
lines y = mix + bi and y = mjx + bj. Thus if any two adjacent lines (in the given 
ordering) are perpendicular, we have y( 1 + mlm,) = 0, so 

pk = 
0 0 

[ 1 0 0 

for k > 2 by Eq. (17), so the point in Eq. (14) or Eq. (15) will be achieved after 
at most two projections onto the mth line. Even if no two adjacent lines are 
perpendicular, one would except the convergence to be faster if two adjacent 
lines are nearly perpendicular. 

Example 3.1. We can now prove Theorem 2.1 as a corollary to Theorem 3.1 (i). 
Thus we take m = 3, m3 = 0, bl = yl, bz = -mza, b3 = ye and substitute into 
Eq. (14), getting 

(1 + m:)(l + m’:, - (1 + mlmd 
x (yl (m2 - ml)(l + m2 .O) 

-m2cr(O - m2)(1 + m:) +ylml(l + mlm2)(1 + m2 .O), 

YI ((1 + mf)(l + m:) - (lmlmz)(l + m2 .O))) (24 

which reduces to Eq. (11). 

Example 3.2. We can now prove Theorem 2.2 as a corollary to Theorem 3.1(i). 
Thus we take m = 4, rnq = 0, bl = ~1, bZ = -mza, b3 = -m3a, bq = y2 and 
substitute into Eq. (14) getting 
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(1 +m:p +m2)2(1 +M:) - (1 +m*mz)(l +m*ms) 

x (/v,(mZ -ml)(l +mZ+) + (-m2a)(m3 -m2)(1 +m;, 

+(-m3c0(+3)(1 +m:) (l+&)+y2f%(l +mlm2>(1 +m2m3), 

y2((1 +m:)(l +m;)(l +m:) -(I +mlm2)(1 +m2m3))) (23) 

which reduces to Eq. (12). 
Note that once the first component x* of Eq. (14) has been computed, the 

second component y* can be computed more simply as y’ = m,,,x* + 6, since 
(x*, y’) must be on the line y = m,x + b,. 

4. Regular polygons 

In this section we consider the case of a regular polygon with m sides, where 
m > 3. We will assume the projections are done successively on adjacent sides. 
The next theorem gives a simple relationship between the projection on one 
(extended) side and the projection on the next (extended) side which holds even 
if the projections are not part of the limit cycle. 

Theorem 4.1. Let a denote the position of a point on an extended side of an 
m-sided regular polygon relative to the midpoint of that side, that is, /aI = 
distance of thepointfrom the midpoint, a 3 0 ifthepoints is at the midpoint or on 
the side of the midpoint away from the next side, and a < 0 otherwise. let b be the 
position of the projection of thefirstpoint on the next side relative to the midpoint 
of the next side. Let c be the distance from the center of the polygon to the 
midpoint of any side. Then 

~=~cOs(~) + sin($). (24) 

Proof. Consider Fig. 6, which is drawn for the case a > 0 and m > 4; for the 
other cases the proof is essentially the same, although the pictures look a little 
different. Without loss of generality, we can assume that the origin is at the 
center of the polygon and the top side is horizontal. Let A be the first point, let 
B be its projection onto the (extended) second side, let C be the midpoint of the 
second side, let E be the intersection of the two sides considered, and let 0 be 
the origin (see Fig. 6). Let D be the intersection of the line AB with the line 
through the origin which is parallel to the line BC. Now the measure of LAEC 
is (m - 2)x/m, so the measure of LAEB is 2n/m, and thus the line OD makes 
an angle of 2z/m with the positive x-axis. Therefore the point 
(cos 27c/m, sin 2x/m) is on the (extended) line OD. Now since OD and CB 
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are parallel by construction, and OC and DB are perpendicular to CB, it 
follows that ODBC is a rectangle, and DB (and thus AD) are perpendicular to 
OD, so lOD\ is the component of vector OA in the direction of the vector 
[cos 2x/m, sin 2n/mlT. Therefore 

IODI = [a,~] :p,“E [ 1 

2n 27l 
=a cos-+c sin-. 

m m m 

Thus 

b = ICB( = 1ODI = ‘,” 
27c 

a cos - + c sin - 
m 

and dividing by c completes the proof. 0 

Theorem 4.1 suggests that we consider the function g defined by 

27t 2n: 
g(x) = x cos - + sin - 

m m 

and the iteration 

x@+‘) = g(.a+), k = 0, 1,. . . 

(25) 

(26) 

Fig. 6. 
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since if xck) gives the position of a point in a sequence of projected points 
relative to the midpoint of the (extended) side onto which it was projected, then 
x@+t) will give the position of the next point relative to the midpoint of the 
(extended) next side. Thus if x* is a fixed point if g (i.e. x* = g(x*)), then if we 
start at a position x* relative to the midpoint of a side and do m successive 
projections onto successive sides, we will return to the starting point, so we will 
have a limit cycle. Thus the following theorem is of interest. 

Theorem 4.2. The function g given by (25) has a uniquefixedpoint X* = cot x/m. 
The iteration (26) will converge to cot x/m for any starting approximation x0, 
with rate of convergence given by the equations 

X(k+l) _ cot 2 = 
( 
X(k) - cot 4 

> 
27c 

cos- 
m’ 

k=0,1,2,... 
m m (27) 

xP+m) _ cot E = XW) _ 
m ( 

cot E 
m > 

2X 
cosm- 

m’ 
k = 0,1,2,. . . (28) 

Proof. Solving the linear equation x* = g(x*) gives 

x*(1-cos$)=sin$, 

x* = 2 sin ; cos g _ 
cot5 

2 sin’; - m 

Nowfork=0,1,2,...wehave 

xCk+‘) - cot ; = g(x(k)) - g( cot ;) = (x(“r - cot ;) cot z 
so Eq. (27) holds. Eq. (28) now follows by induction on m. 0 

We next prove result relating the limit cycle of certain polygons to the 
original polygon. 

Theorem 4.3. Let S be a convex polygon in which every angle has measure at least 
90 degrees, and let S’ be a limit cycle for S created by doing projections on 
adjacent sides. Then S’ preserves the angles of S, and S’ is rotated 90” from S in 
the direction opposite the direction in which projections are done; that is, each 
angle of S’ has the same measure as the corresponding angle of S, but the rays 
forming the sides of the angles are rotated 90” clockwise (counterclockwise) if the 
projections are done counterclockwise (clockwise). 



220 J. Angelos et al. I Linear Algebra and its Applications 285 (1998) 201-228 

Proof. Without loss of generality, assume the projections are done counter- 
clockwise. We first claim that at least one of the vertices of S’ is either on the 
(unextended) side of S onto which it is the projection, or else is located 
clockwise from that side. Suppose this were not the case, so that every vertex of 
S’ be located counterclockwise from the side onto whose extension it is a 
projection. For such a point x @I, let d (x(~)) be the distance of xck) from the 
counterclockwise endpoint of the side onto whose extension xck) is a projection 
(see Fig. 7(a)). Then the points xck) and x(~+‘), together with the counter- 
clockwise endpoint of the side onto whose extension xck) is a projection, are 
vertices of a right triangle with hypotenuse of length (dxck)). Now d xck+‘) 

! ) 
is 

the length of part of one leg of this right triangle, so d(x(k+l)) < d(x k)). Now 
letting m be the number of sides of S, we have by induction that 
d(x( kfm)) < d(xck)), but the assumption that S’ is a limit cycle implies 
x(~+“‘) = ~(~1, so we have a contradiction, which establishes the claim. 

Now let s’ be a vertex of S’ which is on or clockwise from the (unextended) 
side of S onto whose extension it is a projection (see Fig. 7(b)). Since the angle 
between this side of S and the next side of S counterclockwise from it has 
measure between 90” and 180”, the next vertex of S’ will be at or clockwise from 
the (unextended) side of S onto whose extension it is a projection, and by 
continuing the projections one can see that all vertices of S’ must satisfy this 
condition. Each side of S’ is formed by projecting onto (the extension of) a side 
of S, and we consider these two sides to be corresponding. Each vertex of S’ is 
located at the intersection of two sides of S’, and we consider this vertex to 
correspond to the vertex formed by the intersection of the two corresponding 
sides of S. Thus each vertex of S’ will correspond to the counterclockwise 
endpoint of the side onto whose extension it is a projection. 

64 

Fig. I. 
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Now consider a vertex s of S and the corresponding vertex s’ of S’. Then s 
and s’ lie on the same (extended) side of S, with s’ clockwise from s. If we were 
to translate s along this side to s’, then rotate the angle at s clockwise 90”, then 
the rays which form the sides of s will coincide with the rays which form the 
sides of s’. This is because the rays which form the sides of s’ are (when ex- 
tended) perpendicular to the corresponding (extended) rays for s, and the fact 
that s’ is clockwise from s guarantees that the corresponding rays will point in 
the same (not opposite) directions. Thus the angles of S and S’ at s and s’ 
respectively have the same measure, but the angle at s’ is rotated 90” clockwise 
from the corresponding angle at s. Cl 

Remark 4.1. Under the hypotheses of Theorem 4.3, one can see by drawing a 
picture that S’ will surround S, but the conclusions of Theorem 4.2 may hold 
even if S has acute angles, and in this case S’ might not surround S (e.g. see 
Example 2.1). If S has acute angles, however, then the theorem may fail; for 
example, if in Example 2.2, t is chosen sufficiently close to 1 but less than 1 
then, although S is a trapezoid, one can see by using the results of Example 2.2 
or by sketching projections until the approximate location of the limit cycle 
becomes apparent that S’ is a quadrilateral which intersects itself, so angles are 
not preserved (see Fig. 8). The problem in this example is that the vertex of S’ 
which lies on the extended side of S which has negative slope is located 
counterclockwise from the corresponding vertex of S. 

Fig. 8. (t = f), 
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Remark 4.2. Even under the hypotheses of Theorem 4.3, the limit cycle need 
not be similar to the original polygon. For example, if S is the pentagon with 
vertices (-l,O), (l,O), (4,3), (0,7), and (-4,3), then one can verify geometrically 
that S’ is the pentagon with vertices (-4,3), (-4,0), (-3/2,5/2), (4,3), and (0,7). 
Since the side lengths of S are 2, 3~5, 4v’2, 4~5, and 3v?, and the 
corresponding side lengths of S’ are 3, (5/2)&, (1 l/2)&, 4v’?, and 4~15, the 
side lengths of S’ are not proportional to those of S, so the polygons are not 
similar (see Fig. 9). 

We now use the results of this section to give a complete description of the 
limit cycle for a regular polygon. 

Corollary 4.1. The unique limit cycle for a regular polygon, assuming the 
projections are done on adjacent sides, is a similar regular polygon with the same 
center but rotated 90” in the direction opposite that in which the projections were 
done. If these polygons have m sides, then the length of a side of the limit cycle is 
cot(n/m) times the length of a side of the original polygon, and the distance from 

Y 

Fig. 9. 
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the center to a vertex of the limit cycle is also cot(n/m) times the distance from 
the center to a vertex of the original polygon. 

Proof. From Theorems 4.1 and 4.2 we have that if the location of a point on an 
(extended) side is given by a/c = cot(rr/m), then b/c = cot(7c/m) also and 
successive projections will bring us back to the starting point, so we have a 
limit cycle. Preservation of angles and the 90” rotation follow from Theorem 
4.3 when m > 4; for m = 3 we have a/c = cot ~13 = 118, and a picture shows 
that again preservation of angles and rotation hold. Now from Fig. 6 if m > 4 
or from a similar picture if m = 3 or m = 4 we see that the distance from the 
origin to each vertex of the limit cycle is lOAl = J&7 
=c cot2(rt/m) + 1 = c csc(rr/m). Now triangle AOB is isoceles with vertex 
angle 2x/m (since the limit cycle is a regular polygon with m sides), so the 
length of a side of the limit cycle is (ABI = 2(1OAI sin(rt/m)) 
= 2c csc(rc/m) sin(rt/m) = 2c. But from triangle EOC in Fig. 6 (or a similar 
figure if m = 3 or 4), the length of a side of the original polygon is 
2(CEI = 2c tan(rc/m), so the ratio of the side length of the limit cycle to the 
side length of the original polygon is 2c/(2c tan(rt/m)) = cot(rc/m), as claimed. 
Also, from triangle EOC the distance from the origin to a vertex of the original 
polygon is c set (rc/m), so the ratio of the corresponding distance in the limit 
cycle to this is c csc (n/m/c) set (n/m) = cot (n/m). Finally, uniqueness of the 
limit cycle follows from Theorem 4.2, since if there were a different limit cycle 
then it would have a vertex whose location relative to the midpoint of the side 
on whose extension it was a projection would be some number x other than 
cot (n/m), but by Eq. (28), after m projections we would arrive at a point with 
location given by cot (n/m) + (X - cot (n/m)) COS”’ (2n/m) # x, so we would 
not have a limit cycle. Note that uniqueness also follows from Theorems 1.1 
and 3.1. Cl 

Remark 4.3. This proof contains the striking fact that the side length of the 
limit cycle is the constant 2c, independent of m. 

Remark 4.4. For z > 0, z small, we have, by using Taylor’s Theorem with 
cos z/ sin z, cot z = l/z + O(z) so cot (n/m) = m/n: + 0(x/m), so the distance 
from the center to a vertex of the limit cycle grows like m as m increases. 

Fig. 10 shows the original figure and limit cycle for two regular polygons. 

Remark 4.5. We note that if projections are done on other than adjacent sides 
the limit cycles can look quite different from the original polygons. For 
example, if we project onto every kth side where k < m/2 and k is relatively 
prime to m, then a similar function g to that in (25) can be constructed. In this 
case we obtain 
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Fig. 10. Pentagon and dodecagon with limit cycle. 

g(x) = xcos$+ sin:. (29) 

A similar analysis as in Corollary 4.1 shows that the distance from the origin to 
each vertex of the limit cycle is c csc kTc/m. One can show that the limit cycle 
will be contained within the original polygon if and only if 
cot kx/m 6 tanrt/m, and its convex hull will contain the original polygon if 
and only if k < m/4. Fig. 11 shows several of these limit cycles. 

5. General solution to the limit cycle problem 

This section contains one of the main results of this paper: The solution of 
the limit cycle problem through the solution of a linear system of equations. 
Although Lemma 1.1 allows solution of the problem by a limiting process, here 
we present an exact solution which can be obtained in finitely many steps (e.g., 
by Gaussian elimination). 

Theorem 5.1. Let n 2 2 and m > 2 integers, and suppose ai E R”, ai # 0, di E R 
for i= 1,2 ,..., m. Then ~1~x2 ,... ,x, E R” forms a limit cycle for the 
hyperplanes {x E R”: ai . x = di} (in this order) if an only if x1, x2,. . . ,x, 
satisfies the following mn x mn system of linear equations: 
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Xi - Xi-1 + 
aj . xi-1 4 
wai=- jlai1/2 ai1 

2<i<m, 

(30) 

Proof. First we show that XI, x2,. . , ,x,, forms a limit cycle if and only if there 
exist real numbers cq , ~2, . . . , tl, such that the following m(n + 1) x m(n + 1) 
linear system is satisfied. 

ai . xi = d,, l<i<m, (314 

Fig. 11. Pentagon (k = 2), 13-gon (k = 3), dodecagon (k = 5), and 16-gon (k = 3) with limit cycles. 
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xi - X,-l = clia;, 2 < i < m, Plb) 

xl.- x, = cclal. (31c) 

This is true because xl, x2, . . . , x, will be a limit cycle if and only if each x, is on 
the ith hyperplane, and the vector from one of the xi’s to the next (or form x, 
to XI) is orthogonal to the hyperplane containing the next point. The condition 
for xi being on the ith hyperplane is just (31a), while xi - xi-l being orthogonal 
to the ith hyperplane (respectively xl - x, being orthogonal to the first 
hyperplane) is equivalent to xi - xi-l being parallel to ai (respectively xl - x, 
being parallel to al), and these conditions are equivalent to Eqs. (31b) and 
(31c). 

Now suppose there exist real numbers al, ~2,. . . , CI, such that Eqs. (31a)- 
(31~) are satisfied. Taking the dot product of each side of Eqs. (3 lb) and (3 lc) 
with the ai vector which appears there, using Eq. (31a), and solving for ai gives 

ai Xi - 2li . X,-l d, - aj . xi_l 
cli = 

11412 = llail12 
, 2<i<m, (32) 

al . xl - al . x, dl - al . x, 
c(I = 

lb1 II2 
= 

Ilal II2 
, 

and substituting back into Eqs. (31b) and (31~) gives Eq. (30). Finally if 
x1,x2,..., x, satisfy Eq. (30), then Eq. (31b) and Eq. (31~) are satisfied with 
a,,i= 1,2,... , m as in Eq. (32), and taking the dot product of each side of 
Eq. (30) with the appropriate ai yields Eq. (31a). 0 

We can also prove a characterization of limit cycles consisting of only 2m 
equations in mn unknowns in which half of the equations are quadratic instead 
of linear. The proof will be omitted as it is identical to the proof for Eqs. (31a)- 
(31c), except that the criterion used for two vectors vl and v2 being parallel is 
related to the Cauchy-Schwarz inequality, i.e. vI and v2 are parallel if and only 
if Iv1 .v2I = llhIlllv2lI. 

Theorem 5.2. Let n 3 2 and m > 2 be integers, and suppose ai E R”, 
ai#O,diERfori=1,2 ,..., m. Thenxl,xz ,..., x,~W’formsalimitcycle 
for the hyperplanes {x E R” : ai . x = di} (in this order) if and only if 
x1,x2,..., x, satisfies the following 2m x mn system of equations: 

ai ’ xi = di, l<i<m (334 

(a, . Cxi - xi-l))2 = Ilail1211Xi - X,-i 112, 2<i<m, (33b) 

(al (XI - x,)j2 = Jlal 1121)x1 - ~~11~. WC) 
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Example 5.1. In this example we compute the limit cycle of the equations that 
form the faces of a regular tetrahedron. The equations are given by 
Fi: -x+y+z=a, F2: x-y+z=a, F3: x+y-z=a, and F4: -x-y-z 
= a, where a > 0. These are the faces of the regular tetrahedron with vertices 
(u,u,u),(-u,-~,a),(-u,u,-u), and (a,-~,-a). Let X; = [Xi,yi,ZilT, i 

= 1,2,3,4 be the limit cycle, where xi is on the (extended) face E;;. If we let 
x= [xT,x~,x~,x~,al,a2,a3,a41T, then the solution of Eq. (30) is given by 

xl = [-2u/3, u/3, OIT, x2 = [0, -u/3, 2u/31T, 

x3 = [2u/3, u/3, OIT, x4 = [0, -u/3, -2u/31T, 

and 

2u 
c(] = ~(2 = a3 = a4 =-, 

3 

Fig. 12. Tetrahedron with limit cycle (convex hull). 
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Note that the convex hull of the limit cycle is not a regular tetrahedron. Four of 
the edges have length 2613 and two of the edges have length 4al3. Fig. 12 
depicts the situation. 
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