ENGINEERING PHYSICS AND MATHEMATICS

Integral representations for the product of certain polynomials of two variables

Mumtaz Ahmad Khan, Abdul Hakim Khan, Sayed Mohammad Abbas *

Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202 002, UP, India

Received 20 December 2012; accepted 8 February 2013
Available online 3 April 2013

KEYWORDS
Laguerre polynomials of two variables; Jacobi polynomials of two variables; Generalized Bessel polynomials of two variables; Generalized Rice polynomials of two variables; Krawtchouk polynomials of two variables; Meixner polynomials of two variables; Gottlieb polynomials of two variables; Poisson–Charlier polynomials of two variables

Abstract The main object of this paper is to investigate several integral representations for the product of two polynomials of two variables, e.g. Laguerre, Jacobi, Generalized Bessel, Generalized Rice, Krawtchouk, Meixner, Gottlieb and Poisson–Charlier polynomials of two variables.

1. Introduction
In 1938, Watson [1] gave the integral representation for the product \(L_n^a(x)L_n^b(y) \), which was generalized by Carlitz [2] in the form

\[
L_n^a(x)L_n^b(y) = \frac{2^{a+b+2m+n}}{\pi^2} \frac{\Gamma(z + m + 1)\Gamma(b + n + 1)}{\Gamma(z + b + m + n + 1)} \times \\
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{i(m+b)\phi + (a-b)\psi} \cos^{m+a} \phi \cos^{b+n} \psi \times \\
L_{m+n}^{a+b} \left(\frac{e^{i(\theta - \phi)} + e^{i(\theta - \psi)}}{\cos \phi} \right) \cos \theta \, d\phi d\theta, \tag{1.1}
\]

where \(L_n^a(x) \) denotes the general Laguerre polynomials of degree \(n \).

The Jacobi polynomials of two variables $L_n^{(a,b)}(x,y)$ are defined as:

$$L_n^{(a,b)}(x,y) = \frac{(1 + 2z)(1 + \beta)_n}{(n!)^2} \sum_{r=0}^{n} \frac{(-n)_r (1 + x)_r (1 + \beta)_r}{(r!)^2} x^r y^r.$$

(1.2)

The Laguerre polynomials of two variables $L_n^{(a,b)}(x,y)$ are defined as:

$$L_n^{(a,b)}(x,y) = \frac{(1 + 2z)(1 + \beta)_n}{(n!)^2} \sum_{r=0}^{n} \frac{(-n)_r (1 + x)_r (1 + \beta)_r}{(r!)^2} x^r y^r.$$

(1.3)

The Krawtchouk polynomials of two variables $K_n^{(a,b)}(x,y)$ are defined as:

$$K_n^{(a,b)}(x,y) = \frac{(-x)_n (1 - y)_n}{(x)_n (y)_n} \left(\frac{1}{x} \right)^a \left(\frac{1}{y} \right)^b.$$

(1.6)

The Meixner polynomials of two variables $M_n^{(a,b)}(x,y)$ are defined as:

$$M_n^{(a,b)}(x,y) = \frac{(-x)_n (1 - y)_n}{(x)_n (y)_n} \left(\frac{1}{x} \right)^a \left(\frac{1}{y} \right)^b.$$

(1.7)

The Gottlieb polynomials of two variables $G_n^{(a,b)}(x,y)$ are defined as:

$$G_n^{(a,b)}(x,y) = \frac{(-x)_n (1 - y)_n}{(x)_n (y)_n} \left(\frac{1}{x} \right)^a \left(\frac{1}{y} \right)^b.$$

(1.8)

The Poisson–Charlier polynomials of two variables $C_n^{(a,b)}(x,y)$ are defined as:

$$C_n^{(a,b)}(x,y) = \frac{(-x)_n (1 - y)_n}{(x)_n (y)_n} \left(\frac{1}{x} \right)^a \left(\frac{1}{y} \right)^b.$$

(1.9)

2. Integral representations for the product of two variables polynomials

For the polynomials $I_n^{(a,b)}(x,y)$ defined by (1.2), we begin by considering the following product:

$$I_n^{(a,b)}(x,y) = \frac{(-x)_n (1 - y)_n}{(x)_n (y)_n} \left(\frac{1}{x} \right)^a \left(\frac{1}{y} \right)^b.$$

Now we notice the results [4]

$$I_n^{(a,b)}(x,y) = \int \frac{e^{x+y}}{\pi} \int e^{(x+y) \cos \theta} \cos \phi \, d\theta d\phi, \quad (\mu + v > -1)$$

and

The Bessel polynomials of two variables $Y_n(x, a_1, b_1; y, a_2, b_2)$ are defined as:

$$Y_n(x, a_1, b_1; y, a_2, b_2) = \frac{(-x)_n (1 - y)_n (a_1 - 1 + n)(a_2 - 1 + n)}{n!} \left(\frac{x}{b_1} \right) \left(\frac{y}{b_2} \right)^n.$$

(1.5)
\[\Gamma(\mu) \Gamma(\nu) = \int_0^1 t^{\mu-1}(1-t)^{\nu-1} dt, \quad (\mu > 0, \nu > 0). \]

(2.3)

It therefore follows from (2.1) that

\[I_{m,n}^{(x,y)}(x,y) = \frac{2^{x+y+2+\delta+\epsilon} m! n!}{\pi^3} \frac{\Gamma(x + m + 1)\Gamma(\beta + m + 1)\Gamma(\gamma + n + 1)\Gamma(\delta + n + 1)}{m!n!(m+n)!\Gamma(x + \gamma + 1)\Gamma(\beta + \delta + 1)} \times \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{i(m-n)\phi+i(\beta-\gamma)\psi+i(\delta-\beta)\theta} \]

\[\times \cos^{m+n}\psi \cos^{x+y}\phi \cos^{\delta+\beta}\theta \times \sum_{\nu=0}^m \sum_{\omega=0} n \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (m-n)_{x+k+z+1} \left(x e^{i(\beta-\phi)\psi} \cos \phi \cos \psi \right)^{x} \left(y e^{i(\gamma-\phi)\psi} \cos \theta \cos \psi \right)^{y} d\phi d\theta d\psi. \]

(2.4)

Since

\[\sum_{m,n=0}^\infty f(m+n) \frac{y^m}{m!} \frac{x^n}{n!} = \sum_{N=0}^\infty f(N) \frac{(x+y)^N}{N!}, \]

(2.5)

so that

\[I_{m,n}^{(x,y)}(x,y) = \frac{2^{x+y+2+\delta+\epsilon} m! n!}{\pi^3} \frac{\Gamma(x + m + 1)\Gamma(\beta + m + 1)\Gamma(\gamma + n + 1)\Gamma(\delta + n + 1)}{m!n!(m+n)!\Gamma(x + \gamma + 1)\Gamma(\beta + \delta + 1)} \times \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{i(m-n)\phi+i(\beta-\gamma)\psi+i(\delta-\beta)\theta} \]

\[\times \sum_{\nu=0}^m \sum_{\omega=0} n \frac{(m-n)_{x+k+z+1} M(1+x+\gamma)_{x+k+z+1}(1+\beta+\delta)_{x+k+z+1}}{M!N!(1+x+\gamma)_{x+k+z+1}(1+\beta+\delta)_{x+k+z+1}} \left(x e^{i(\beta-\phi)\psi} \cos \phi \cos \psi \right)^{x} \left(y e^{i(\gamma-\phi)\psi} \cos \theta \cos \psi \right)^{y} d\phi d\theta d\psi. \]

(2.6)

which by virtue of (1.2), yields

\[I_{m,n}^{(x,y)}(x,y) = \frac{2^{x+y+2+\delta+\epsilon} m! n!}{\pi^3} \frac{\Gamma(x + m + 1)\Gamma(\beta + m + 1)\Gamma(\gamma + n + 1)\Gamma(\delta + n + 1)}{m!n!(m+n)!\Gamma(x + \gamma + 1)\Gamma(\beta + \delta + m + n + 1)} \times \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{i(m-n)\phi+i(\beta-\gamma)\psi+i(\delta-\beta)\theta} \]

\[\times \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(x e^{i(\beta-\phi)\psi} \cos \phi \cos \psi \right)^{x} \left(y e^{i(\gamma-\phi)\psi} \cos \theta \cos \psi \right)^{y} d\phi d\theta d\psi. \]

(2.7)
For $\alpha = \beta = \gamma = \delta = 0$, (2.7) reduces to

$$L_m(x,y)L_n(u,v) = \frac{2^{m+n}}{\pi^3} \frac{m!n!}{(m+n)!} \int_0^1 \int_0^1 \int_0^1 \int_0^1 e^{(m-n)\phi + (m-n)\psi} \cos^{m+n} \phi \times L_m(x,y) \left(\frac{xe^{(\theta-\phi)} + u}{\cos \phi} \right) \cos \phi, \frac{xe^{(\theta-\phi)} + u}{\cos \phi} \cos \theta \right) d\phi d\psi d\theta. \tag{2.8}$$

In a similar manner, we can derive the following integral representations for the product of two polynomials of two variables defined by (1.3)-(1.9):

$$P_m(x,y)P_n(u,v) = \frac{2^{m+n}}{\pi^3} \frac{m!n!}{(m+n)!} \int_0^1 \int_0^1 \int_0^1 \int_0^1 e^{(m-n)\phi + (m-n)\psi} \cos^{m+n} \phi \times P_m(x,y) \left(\frac{1 - (1-x)e^{(\theta-\phi)} + (1-u)(1-t)e^{(\phi-\psi)}}{\cos \phi} \right) \cos \phi, \frac{1 - (1-x)e^{(\theta-\phi)} + (1-u)(1-t)e^{(\phi-\psi)}}{\cos \phi} \cos \theta \right) d\phi d\psi d\theta dt, \tag{2.9}$$

As a particular case of (2.9) we note that

$$P_m(x,y)P_n(u,v) = \frac{2^{m+n}}{\pi^3} \frac{m!n!}{(m+n)!} \int_0^1 \int_0^1 \int_0^1 \int_0^1 e^{(m-n)\phi + (m-n)\psi} \cos^{m+n} \phi \times P_m(x,y) \left(\frac{1 - (1-x)e^{(\theta-\phi)} + (1-u)(1-t)e^{(\phi-\psi)}}{\cos \phi} \right) \cos \phi, \frac{1 - (1-x)e^{(\theta-\phi)} + (1-u)(1-t)e^{(\phi-\psi)}}{\cos \phi} \cos \theta \right) d\phi d\psi d\theta dt, \tag{2.10}$$

$$H^{(\alpha+\beta,\gamma+\delta)}_{m,n}(x_1,z_1,p_1,q_1,x_2,z_2,p_2,q_2) = \frac{2^{m+n}a^{m+1}b^{n+1}c^{m+1}d^{n+1}}{(m+n)!} \Gamma(z_1 + m + 1) \Gamma(z_2 + n + 1) \Gamma(x_1 + 1) \Gamma(x_2 + 1) \Gamma(p_1 + 1) \Gamma(q_1 + 1) \Gamma(p_2 + 1) \Gamma(q_2 + 1) \cos^{m+n} \phi \cos^{m+n} \psi \left(1 - (1-z)e^{(\theta-\phi)} \right) \cos \phi, \frac{1 - (1-z)e^{(\theta-\phi)}}{\cos \phi} \cos \theta \right) d\phi d\psi d\theta dz df, \tag{2.11}$$
As a particular case of (2.11) we note that

\[H_m(\xi_1, \xi_2, p_1, p_2, x, y) = \frac{2^{n_1+n_2} \pi^{n_1}}{m_{n_1}} (m+n)! \left(\frac{\Gamma(\xi_1+n_1) \Gamma(\xi_2+n_2) \Gamma(p_1) \Gamma(p_2) \Gamma(q_1) \Gamma(q_2)}{\Gamma(\xi_1) \Gamma(\xi_2) \Gamma(p_1+q_1-1) \Gamma(p_2+q_2-1)} \right) \times \frac{1}{2} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} e^{(m-n)(x-y)+(x+y)(p_1-q_1)+(p_2-q_2)} \phi \cos \phi \psi \cos \psi \, d\phi \, d\psi \, dx \, dy \]

\[\times \left(\xi_1 + \xi_2 + p_1 + q_1 - 1, p_2 + q_2 - 1, \frac{4(4 \pi \sqrt{2} \pi e^{(\theta+\varphi+\lambda)/(\psi+\phi+\mu)+y(1-\tau)} e^{(\theta+\varphi+\lambda)/(\psi+\phi+\mu)+y(1-\tau)}}{\cos \theta \cos \phi} \right) \, d\theta \, d\phi \, d\psi \, d\lambda \, dx \, dy \]

(2.12)

\[Y_m(x, a_1, b_1; y, a_2, b_2) Y_a(u, c_1, d_1; v, c_2, d_2) = \frac{2^{n_1+n_2} \pi^{n_1}}{m_{n_1} n_{n_2}} \left(\frac{\Gamma(a_1+c_1+m+n-2) \Gamma(a_2+c_2+m+n-2)}{\Gamma(a_1+1) \Gamma(a_2+1) \Gamma(c_1+1) \Gamma(c_2+1)} \right) \times \frac{1}{2} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} e^{(m-n)(x-y)+(x+y)(a_1-c_1)+(a_2-c_2)} \phi \cos \phi \psi \cos \psi \, d\phi \, d\psi \, dx \, dy \]

\[\times \left(x_1 + a_1, y_1 + b_1 e^{(1-\tau)/(\psi+\phi+\mu)+y(1-\tau)} e^{(1-\tau)/(\psi+\phi+\mu)+y(1-\tau)}}, b_2 y, c_2, d_2 \right) \, d\theta \, d\phi \, d\psi \, d\lambda \, dx \, dy \]

(2.13)

\[K_m(x; \lambda_1, \lambda_2; M_N; \lambda_1, \lambda_2; M_N) = \frac{2^{n_1+n_2+m_{n_1}} \pi^{n_1+m_{n_1}}}{m_{n_1}} \left(\frac{M_1+1}{M_1} \right)^{m_{n_1}} \Gamma(\lambda_1+1) \Gamma(\lambda_2+1) \Gamma(\lambda_1+n+1) \Gamma(\lambda_2+n+1) \times \frac{1}{2} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} e^{(m-n)(x-y)+(x+y)(\lambda_1-c_1)+(\lambda_2-c_2)} \phi \cos \phi \psi \cos \psi \, d\phi \, d\psi \, dx \, dy \]

\[\times \left(x+y, \lambda_1, \lambda_2; M_1, M_2 \right) \, d\theta \, d\phi \, d\psi \, d\lambda \, dx \, dy \]

(2.14)

\[M_m(x; \beta_1, \beta_2; \lambda_1, \lambda_2; M_0) = \frac{2^{n_1+n_2+m_{n_1}} \pi^{n_1+m_{n_1}}}{m_{n_1}} \left(\frac{M_1+1}{M_1} \right)^{m_{n_1}} \Gamma(\beta_1+1) \Gamma(\beta_2+1) \Gamma(\lambda_1+1) \Gamma(\lambda_2+1) \Gamma(\beta_1+\lambda_1+n+1) \Gamma(\beta_2+\lambda_2+n+1) \times \frac{1}{2} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} \int_{-\frac{1}{2}}^{1} e^{(m-n)(x-y)+(x+y)(\beta_1-c_1)+(\beta_2-c_2)} \phi \cos \phi \psi \cos \psi \, d\phi \, d\psi \, dx \, dy \]

\[\times \left(x+y, \beta_1+\lambda_1-1, \beta_2+\lambda_2-1 \right) \, d\theta \, d\phi \, d\psi \, d\lambda \, dx \, dy \]

(2.15)
\[I_m(x; \lambda; y; \mu) I_n(u; \nu; \delta) \]
\[= \frac{2^{2x+y+\mu+\nu+m+n}}{\pi^4} \frac{m!n!x!y!u!v!}{(m+n)!(x+u)!(y+v)!} \times \int \frac{2}{2} \int \frac{2}{2} e^{\lambda e^{y+y} + \mu e^{-y-y} + \nu e^{-u-u} + \delta e^{u+u}} \frac{\cos \psi \cos \phi \psi \cos^{n+1} \theta}{\cos \phi} \]
\[\times I_{m+n}(x+u, y+v, \log \left(\frac{1 - (1 - e^{y+y})e^\psi \cos \phi}{2 \cos \psi \cos \phi} \right), y+v, \log \left(\frac{1 - (1 - e^{-y-y})e^{-\psi} \cos \phi}{2 \cos \psi \cos \phi} \right)) \, d\psi d\phi d\theta \quad (2.16) \]

and

\[C_m(x; z_1; y; z_2) C_n(u; \beta_1; v; \beta_2) \]
\[= \frac{2^{2x+y+z_1+z_2+m+n}}{\pi^3} \frac{m!n!x!y!u!v!}{(m+n)!(x+u)!(y+v)!} \times \int \frac{2}{2} \int \frac{2}{2} e^{z_1 e^{y+y} + \beta_1 e^{-y-y} + z_2 e^{u+u} + \beta_2 e^{-u-u}} \frac{\cos \psi \cos \phi \psi \cos^{n+1} \theta}{\cos \phi} \]
\[\times C_{m+n}(x+u, z_1 e^{y+y} + \beta_1 e^{-y-y} + z_2 e^{u+u} + \beta_2 e^{-u-u}) \, d\psi d\phi d\theta. \quad (2.17) \]

References

Abdul Hakim Khan is working as Associate Professor in Department of Applied Mathematics, Faculty of Engineering, Aligarh Muslim University, Aligarh, India from last 25 years. He has to his credit 25 published and 07 accepted research papers in national and international journal of repute. He has successfully guided 05 Ph.D. and 06 M.Phil. students. He is member of several mathematical societies.

Sayed Mohammad Abbas has secured M.Sc. with 1st division in 2005 from Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh. He did his M.Phil. in 2008 and submitted Ph.D. at Department of Applied Mathematics, Faculty of Engineering, Aligarh Muslim University, Aligarh, India. He has published 07 papers, 03 accepted papers and 10 papers under consideration in national and international reputed journals. He has attended one international conference.

Mumtaz Ahmad Khan is currently working as Professor and Chairman of Department of Applied Mathematics, Faculty of Engineering, Aligarh Muslim University, Aligarh, India. He has to his credit 140 published and 10 accepted research papers in international journal of repute. He has successfully guided 16 Ph.D. and 11 M.Phil. students. He is member of several mathematical societies. He has evaluated more than 20 Ph.D. thesis of various other Universities. He has acted referee and reviewer of several research journals and is one of the editors of international transactions in mathematical sciences and computer.