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I. INTRODUCTION

In this paper we are concerned with the dynamics of a fluid inside a
closed pipe, whose motion is driven by natural convection, i.e., due to
the exchange of heat between the fluid and the ambient environment. The
differences of temperature in different parts of the circuit and gravity
forces initiate the motion of the fluid. Several models of such devices,
usually called thermosyphons, have been derived [9, 5, 6]. Here we ana-
lyze a very general one, though very accurate from the physical point
of view, that has been derived in [9], to which we refer for physical
considerations; see also the references therein.

The equations governing the motion of fluid and the temperature distri-
bution inside the circuit are given, in dimensionless and normalized
form, by

dv
dt

o, 5T _GW)
ot ox €

+ G = (ﬁ 1f, v(0) = v,

&

(r,—- 1), 7(0, x) = Ty(x),
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where £ > 0, x € (0, 1) is the arc length, and $ = [, (1, dx means integration
along the closed path of the circuit. The function f = dz/dx represents
the variation of height along the circuit, and so fintroduces the geometry
of the problem and the distribution of gravity forces. Note that § f = 0.
The unknowns v and 7T represent the velocity and the temperature of
the fluid, and T,(x) is the (given) ambient temperature distribution. The
function G is given by G(v) = g(Re|v))|v], where Re is a Reynolds-like
number that is assumed to be large, and g is a regular strictly positive
function on (0, =) such that g(s) = A/sass =~0and g(s) =~ l as s =

Some simplifying assumptions have been made from the full 3-D prob-
lem, For example, the diameter of the pipe’s cross section is assumed to
be small compared to the dimension of the physical device, so the geometry
has been reduced to a one dimensional one; i.e., the circuit has been
reduced to a closed curve in the 3-D space. In fact the parameter ¢ is
proportional to the diameter/length ratio and is supposed to be small. On
the other hand, the motion of the fluid is assumed to be of turbulent type,

e., the Reynolds number is assumed to be large, so the velocity of the
fluid is assumed to be the same at each point of the circuit. Therefore,
the unknown velocity is a simple space-independent scalar quantity v(r).
However, in our analysis the sizes of € and Re are unimportant.

We will show below that (1.1) defines a unique solution in several spaces
for any initial data for the velocity and temperature. Note that all space-
dependent functions defined on the circuit must be periodic of period one.
The choice of the functional space to work in is given by the properties
of the data fand 7,.

We also exhibit several special solutions that include, besides the sta-
tionary ones, solutions in which the fluid is not moving but the temperature
changes with time and is approaching equilibrium. For this, as well as for
most of the relevant features of the model, special, although not restrictive,
conditions are required for the given functions fand T,.

More surprising is the fact that the model, although containing a trans-
port equation, presents a subtle asymptotic smoothing effect (again de-
pending on f and 7,) that allows us to prove the existence of a global
compact attractor. Some uniform bounds on ¢ € (0, ;) and Re € (0, Re,)
will be given.

Even more, depending again on f and T,, we can show the existence
of an inertial manifold, not necessarily of finite dimension, i.e., an invariant
exponentially attracting manifold for the flow defined by (1.1). It is worth
noting that the existence of the inertial manifold does not rely on the
existence of big gaps in the spectrum of a linear operator. For a similar
result see [1]. We refer the reader to [4, 8, 2, 7] for general dlscussmns
about attractors and inertial manifolds.

Finally, we will show a reduced explicit set of ordinary differential
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equations that captures all the asymptotic behavior of the system. By
properly choosing f and 7, we can have any prescribed odd number of
equations in that system. This result may have important consequences
from the numerical point of view.

2. EXISTENCE AND UNIQUENESS RESULTS

We will introduce some function spaces that will be used in the study
of the existence of solutions of (1.1). Let Q = (0, 1) and consider the spaces

Lo ) ={u€ L (R),u(x+1)=u(x),ae. xER}
WrpQ) = Win?(R) M L5, ()

Ct(Q) = {u € C*R), u(x + 1) = u(x), forall x € R}
Cra ) = {u € CH*(R), u(x + 1) = u(x), for all x € R},

2.n

wherel<p<oo m, k€ N U {0}, « € (0, 1], and u € L{_(R) (or

WP (R)) iff for every open set @ CC R one has « € LP(w) (or W’" P(w),
respectively). We will refer to these spaces as admissible spaces, and for
convenience we will eliminate the reference to ().

Since (1.1) has two components, we will consider a phase space of the
form Y = R X X, where X is an admissible space, i.e., X = L., W7,
Cler, or Ch2. Any particular choice of such a space wxll depend upon the
regularity properties of the given functions T, and f, as stated below. Our
main result in this section is the following.

THEOREM 2.1. Assume either

T,eEX=L},, 1=p<wx, and  fe Wi, wherellp+ 1/g=1,

T,.EX=Wy2 1=sp<w», and fEL},, wherelip+llg=1,

Ta eX= Cper’ and fe Wper'
T,€EX= Cg“r, and fe Lper

and denote Y = R X X. Then (1.1) has a unique solution (v, T) €
C([0, =), Y). Moreover, the mapping S(t)(v,, Ty) = (v(1), T(1), t = 0,
defines a semigroup of class C%in Y.

Even more, assume T,, Ty € X, C X, where X, is as in 2.1). Then T €
C([0, @), X)).

Proof. The proof will be based in a fixed point argument as follows.
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(i) Ifve C[o, 7]is given, then the second equation in (1.1) yields,
through integration along characteristics, to a function T = T(v) given by

1
T(t,x)= To(x - f u(r) dr)e'f(')Gc(r)dr
0

+ f' [Ge(s)e‘ﬂGe"J"’ Ta(x - f‘ u(r) dr)] ds,
0 s

where G,(s) = G(s)/¢ and we have, temporarily, dropped the dependence
of v in G, (u(s)). With this explicit form we get, from the first equation
in (1.1),

2.2)

v(t) = vy + J: [—HE(U(S)) + % (i£ T(v)(s)f)] ds, (2.3)

where H,(s) = G,(s)s. Therefore, the fixed point argument will be worked
out on (2.3).

First, observe that if X is any admissible space and g € X then
lg: + A, = llgl, for every h € R; i.e., for fixed A, the translation is a
linear isometric isomorphism of X. Moreover, for fixed g the translation
map h > g(- + h) is continuous in X. Therefore, if v € C[0, 7] and
T, € X, Ty(x — [} v)e oG js continuous from [0, 7] to X, and for fixed
t € [0, 7] has norm ||T,||,e %% On the other hand, observe that if
T, € X, then for fixed + € [0, 7] the X-valued function s —
G, (5)e hGrT (x — ' vyisin LY(0, ¢, X) (it is in fact continuous) since
its norm is in LY(0, #) and [}4,G,(s)e 5S4 T (x — [* v)|, ds = |T,Jl,(1 —
e N1G.dry Consequently, (2.2) defines, for each ¢ € [0, 7], an element in
X. Moreover, the term [ G,(s)e JsC< T (x — [ v) ds is also continuous
from [0, 7] to X. To prove this it suffices to prove the continuity of
g(t) = [5G (s)eltGe T (x — [t v) ds. To this end, take ¢, < t, and then

lg(t) ~— gy = T.llx f " G,(s)es6. ds

n(=Jt)-n ([

But |7, = Jzv) = T, = [ olly = |T.¢ = [ v) = T,()llx and then,
since v is bounded on [0, 7], and again using the fact that the translation
map is continuous, we see that for every n > 0, if t, — ¢, is sufficiently

ds.

X

I
+ f ' G, (5)elt6.
0
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small then, J} v can be made arbitarily small and therefore 4G (s)
eSiG.0nr|T (« — 2 v) — T,(- — [4 v)l|y ds < n. Thus, g is continuous.
Consequently, (2.2) defines a function T(v) € C([0, 7], X) and it just
remains to prove that (2.3) has a unique globally defined solution.

(i) Now, denote by F(v) the right hand side of (2.3), i.e.,

F(v) = v, + jo' [—Ha(v(s)) + é (4) Tw)s) f)] ds

for v € CI[0, 7], and look for a fixed point of %. To accomplish this,
we fix a positive constant M and denote W = {v € C[0, 7], v(0) = v,
[u(f) — vy| = M}, endowed with the sup norm, denoted || ||. We will
prove below that under certain assumptions on M, 7, T,, and f, ¥ is a
contraction on W. First we show that % maps W into itself. As proved
above, if v € Wand T, T, € X then T(v) € CI0, 7], X), and since by
hypothesis f € X', then § T(v) f € C[0, 7]. Since H, is also continuous,
we get F(v) € C[0, 7]. Moreaver, F(w)0) = v, and

900 ~ul = [ [ 11000 + T ] b

But from (2.2), we get
7@y = [ Toll e 0 + || T, || (1 — e SoGetdsy; (2.4)

hence, we have [T)(1)]x = max{|To|x, [T,lx} for every r € [0, 7]. On
the other hand, since v € W then |v(?)] = |v] + M and denoting K, =
SUD <y +nr He(5), we have |F)0) — v] = 7(Ky + (1/e) max{|Tylly,
IT )N flle); therefore, with fixed M, we can choose 7 small, such that
the right hand side above is less than M. Consequently, F(W) C W.

Now we prove that % is Lipschitz on W. First, we start by proving the
lipchitzness of § T(v) fin two different cases.

(a) Assume either T,, T, € WL2 C X = L5, with 1 = p <= or
T,,T,€Cht CX=C,,.Then WD v~ T(v) € C([0, ], X) is Lipschitz
with constan: L = L(r, M, T,, T,), such that L™="0.

If v, € W, i =1, 2, and denoting T; = T(v;) and again G, (1) =
G(vD)/e, we have for every t € [0, 7]
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b= fo) ([

+ || Tyl x| e~ f0Ges — £~JoGea
! !

Ta('—f U‘) —Ta<-_J' vz)

] ds.

Since T,, TE Wyt CX = Lo, orT,, TiECH CX = C,.:» then there
exist constants ¢, and ¢y, respectively, such that |7(- — &) — T()|y =
clh| for h € R, and then

[Ty = Tofly = e /2Geu X

X

f !
+ [ G, (s)e fsCu
NG

+ Tkl G, ()e~fi6et — G, ,(5)e~HiGe

7, = Tllx = coe~foCen

! !
fv,—fvz
0 0

{
+ f [c“GEJ(s)e‘stell
0

+ 1Tyl lxle 18600 ~ ¢

H I3
J'Ul_fvz
&) 5
t

+ ” TGI’X,Ge,l(s)e- SGB'I - Gsvz(s)e_ﬂcsl

Jo

Introducing the quantities K = supy),+4G.(5), K, = SUP5ijuyl+ G o (5),
we have coe i [} v — [\ vl = cglloy — vl [Tolde i —
) 0 o Ui o U2 CaT iy vall, i follxle -
e 0| < Kot | Tollgllv; — vy, and also fOCaGe,l(S)e'ﬁG“ U; vy -~

J! vl ds = Kicr¥ v, — v,]) and

[ Ta”xfo |G, \(s)eI:Cui — Ge,z(s)e_ﬂ(;“l' ds = K| T | x(K;7+ D], — v,

Putting all these together, we get sup,cio. 17, — Tallx = Liv, — v,
where

L=1(co + K| Tolx + Kic,m +||T,| (K K7 + K))).

Thus, the statement is proved.
Inparticular, if f€ LY., where 1/p + 1/qg = 1, orif f€ L], respectively,

per»
then W 3 v — § T(v) f € C[0, 7] is Lipschitz with constant L||f| = 0.
(b) Assume either T,, T, € X = L5, with ]l = p < xand f €
Wia, where lp + l/lg=1,0rT,, T, E X = C,; and f € W]} . Then

per *
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W 3 v~ § T(v)f € CI0, 7] is Lipschitz with constant L = L(r, M, T,
Ty, f), such that L™= 0.

As above, if v, € W, i=1,2,T; = T(v)), and G, (1) = G(v(n)/e, then,
for every 1 € [0, 7], using § g(x — A f(x) = § g(0) f(x + h), we get

o o ) [
+ e~ f6Ge1 — e7I0Gea) §To (x - folvz) f(x)dx

§ 7,00 <f(x + j vl)

5

! 7
+ f G, (5)e f:Ca
N

e o)

§ 7.5~ || o) fix) dx

+

]Gs_l(S)E'II‘G&'
- Gs_z(s)e‘f-'rccl]] ds.

From here we get the bound

] $ (1, - Tz)fj = e 0| Tyl

(e fm) s+ L)

+ Jefo0r — =% | Tyl £

+[| Gty -+ [ w)
s+ fw)

+ | Tl fllx | G, (s)e™F3Cen — Gs,z(s)e‘f?%] as.

X

X

Now, since there exists a constant ¢, such that [[f(- + &) — fO)llxy =
¢/ for h € R, the rest follows as above and we get sup,ep.) | $(T, —
T f] < Lijv, — vf], with L=0.
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(i) Now, with K = supjy<y+u H.(5), if T, and f are as in case (a)
or case (b) above and from (2.3), we get forv, € W, i =1, 2,

[F(v,) — F(vy)| 5f [[Hs(vl) - H ()| + §(T(vl) - T(vz))fH ds.

t
0
Therefore, % is Lipschitz on W, with Lipschitz constant 7 (K, + L). Hence,

if 7 is sufficiently small, & is a contraction on W and thus it has a unique
fixed point.

(iv) Now we prove that the local solutions found above are actually
defined on [0, =). To see this we follow a classical prolongation argument.
Assume the solution has been prolonged to a maximal interval of time {0,
Tmax)- Then, we have the alternative 7.,, = ® or (v(r), T(¢)) becomes
unbounded as T — ,,,, and from (2.4) this is equivalent to having v(?)
become unbounded. In fact, if 7,, < % but (v(z), T(#)) remains bounded
ast— 7, , we prove below that (v(9), 7(#)) is Cauchy as t— 7, , reaching
then a contradiction with the maximality of 7, .

We first prove that v(¢) is Cauchy as t = 7, and the limit lim,_,,
v(f) = v, exists.With r > s, from the equation for v, integrated in (s, ¢],
we get

v(t) — v(s) = j ' [—Hs(v(r)) + é (f () f)] dr

and then, since (v(r), T(1)) remains bounded |v(¢) — v(s)| = c|t — 5| for
some positive ¢. Now recalling (2.2), and arguing as when proving the
continuity of T(v), we can prove that the limit lim,_,,"m 7, x) = T)(x)
exists in X.

It remains to prove that v(¢) remains bounded for a finite time. From
the first equation in (1.1), we get

t
v(t) = vye foGeds 4 f é (f Tf) e~ 1iGndr g (2.5)
0

and the right hand side is finite on finite intervals, since G, is strictly
positive. The proof is now complete. |

Remark2.1. (i) Observe that the spaces in (2.1) are taken for conve-
nience, but are not the only possible choices. In fact, we can reproduce
the proof above assuming that X is a Banach space of 1-periodic functions
on the line, such that, for every h € Rand g € X, [lg(: + h)lx = gllx
" and, for fixed g, the map h — g(- + h) is continuous in X. Also, we can
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assume that f € X', the dual space of X. In that case, the term $7f should
be understood as a duality product.

(i) Notz that depending on the regularity of 7, and T, the tempera-
ture, given by (2.2), verifies the partial differential equation a.e. (x, ¢) or
is a generalized or integral solution.

3. SPECIAL SOLUTIONS

Below we give several types of special solutions that may occur for (1.1).

ProrPoSITION 3.1.  The set of stationary solutions of (1.1), with v # 0,
is in a one-to-one correspondence with the solutions of the scalar equation

w B b,c,
Rer 10 = ,Ez 2mike + R 3.1)
where R(u) = g(lu|)sig(u), and {b,}, {c;} denote, respectively the complex
Fourier coefficients of T, and f. Moreover, if $T,f = 0 then (0, T,) is a
stationary solution.

Proof. From (1.1) the equation of the stationary solution is

G = 3£ f (3.2)
yIL_GW o _py
ox

Thus, v = 0is only possible if T = T, and verifies $7,f = 0, and in such
acase (0, 7,) is a stationary solution. If v # 0 and assuming the expansion
T(x) = Zic7a,8™> T (x) = Zyezbee™™ =, and f(x) = 2,707, then
(3.2) reduces 0 G(v)v = 2,cz7a,c_, and Qwikv + G(v)/e)a, = (G(v)/e)b,,
k € Z. Since fis real valued then ¢_, = ¢, and plugging the second equation
into the first one yields v = Z,c7(b¢,/Q2mickv + G (v)). Multiplying both
sides by v and recalling that G(v) = g(Re|v|)|v|, and so writing G (v)/v =
g(Rel|v))sig(v). and denoting u = Rev, we get 3.1). |

See [9] for a detailed analysis of the stationary solutions and their
linear stabilitv.

PROPOSITION 3.2.  Assume X is an admissible space such that Theorem
2.1 holds true. Moreover, assume $T,f = 0. Then, for any T, € X such
that $T,f = O, the solution of (1.1) with initial data vy = 0, T,, is such
that for every t = 0

v() =0
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and T is given by
T(t,x) = T,(x) + (Ty(x) — T,(x))e AeRex

In particular, these solutions converge in Y, at the uniform exponential
rate Al/eRe, to the stationary solution (0, T,) as t goes to .

Proof. Just note that from (1.1), v(z) = 0 implies $7(s) f = 0. But at
the same time, since G(0) = A/Re, one must have d7/8t = (A/eRe)(T, —
T). Hence, if one multiplies by fand integrates, a(f) = $T(?) f must verify
a(t) = —(A/eRe)a(1). Therefore, if a(0) = §T,f = 0 then a(r) = $T(1) f =
0 for every t, and (0, T(t, x)) is actually the solution of (1.1). |

PROPOSITION 3.3. Assume T, is constant. Then, there exist solutions
of the form (v(t), T(r)), where T(t) is constant in x. Furthermore, any
solution (v, T) of (1.1) converges exponentially to (0, T,).

Proof. Just note that since §f = 0, then the equations for constants in
x solutions reduce to e(dv/dt) + G)v = 0 and dT/dt = (G(w)/eXT, —
T). Hence, v = vye % and T = T, + (T, — T,)e !0%: and they converge
exponentially to (0, T,) since G, is strictly away from zero.

Now, if (v(?), T(t, x)) is an arbitrary solution, note that by integrating
in (1.1), T(t) = $T(z) is a solution of the second ODE above, since
$T, = T,. Therefore, it goes exponentially to T,. Now, if we denote § =
T — T, and again use §T, = T, 8 verifies 96/3t + v(36/dx) = — (G(v)/€)8
and therefore, integrating along characteristics as in (2.2), we have
o(t, x) = Gy(x — fO' v)e % s0 it goes exponentially to zero in X. Conse-
quently, T and $Tf = $6f = e 1% $6,(x — [} v) f(x) dx go exponentially
to 7, and 0, respectively. Therefore, v verifies e(dv/dt) + G(v)v = $6f
and then, from the expressions above and (2.5), v goes to zero exponen-
tially and the result is proved. |

Remark 3.1. In the next section we will give a proof of this result in
a much more general case for T, than the one above. We have included
this proof because of its simplicity.

4. ATTRACTORS AND INERTIAL MANIFOLDS

In this section we are concerned with the asymptotic behavior of the
solutions of Eq. (1.1). Since we have two parameters (g, Re), we denote
the semigroup generated by (1.1) by S,(s), where A = (g, Re). That explicit
dependence will be dropped unless some confusion may arise. Thus, we
can prove
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THEOREM 4.1. Assume X is an admissible space and T,, f are such
that Theorem 2.1 holds true, and denote ¥ = R X X.

(i) For every A = (g, Re) denote K(\) = |T,||x| fllx-Re/h«, where hsx =
inf.o{g(s)s} >> 0. Then the set

[-K), KMW)] X B0, || Tl

is invariant for S, in Y.
(i) For every Ay = (g9, Rey) and m > 0 the set

(—=K(Ag) = m, K(Xg) + 1) X By(0, || T, | x + m)

is absorbing for S, in Y, for every 0 < A = A, that is, for 0 < ¢ < gy and
0 < Re = Re,.

(iii) Moreover, for every \, there exists a compact connected at-

tractor, d,, in Y. Even more, for every Ay, Uyoazy, 4, is a bounded set
of Y.

Proof. Again recalling (2.?), and denoting, for fixed A\ = (¢, Re), M =
M(A\) = h«/eRe, we have e 7645 < oMt and then we get

ITOlx = 1T x + ATollx — 1 Tl x)+ 7™, 4.1

where (x), denotes the positive part of x. In particular, if || Ty|lx =< || T,/ x
then |T(1)|y = ||T,]ly for every ¢ > 0, while if |Ty|ly = [|7,]x, then
ITx = | Te|lx for £ > 0.

For convenience, we will write hereafter ||| instead of |||, unless we
work in a different space. Analogously, the norm of f will be written || ||
instead of || f] x-.

Now, from (4.1) and (2.5) we get

i) = KA + e M (Jug| = KON + (| Tl = 1 T+ D) 4.2)

From (4.1), (4.2), the first statement is straightforward. If we now fix

A\, = (&, Re,), and a positive constant R, then for any initial data such

that |vy| + |75l = R and any 0 < A = A, we get, in a way analogous to
4.1), (4.2),

ITOI =< T.ll + (R = | T, |, e (4.3)

and

()] = K(Ap) + e MM (R + (R — | T, ). 0. (4.4)
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Now it is clear that, for every 5 > 0, there exists a 7, = 1,(n, R, Ay) >
0 such that S,(vy, Tp) € (=K (Ag) — 1, K(\) + 7) X Byx(0, |T,||x + m) for
t = tyand 0 < A = Ay. Therefore, this set absorbs bounded sets of ¥ and
(ii) is proved.

Finally, from (2.2), (2.5), §,(t)(vp, Ty) = (v(2), T(2, x)) can be decomposed
as 8§, (g, Ty) = Si(w,, Ty) + S3(D)(vy, Ty) with

f
S (Do, Ty) = (voe~ oG, Ty(x ~ fo v)eJi%:)

SNy, Ty) = (foté (f Tf) e~ 4G ds, Jol G.(s)e [iC.T, (x - f' v) ds) .

5

From the estimates above, we have ||S,()(vy, Ty)l| < (Jug| + [Tyl e M.
Now we prove that 5,(¢) is compact. Clearly, if T, € X, where X, is an
admissible space such that the inclusion X, X is compact, then S,(f) is
completely continuous in ¥, since [§ G(s)e | T [, ds =< ||T,fy, so,
S () maps bounded sets of Y into bounded sets of ¥, = R x X,. Note {hat,
in that case, the range of S,(r) is in a fixed compact set of X independent
of ¢.

A closer look at S,(#) will reveal that, even without this compactness
assumption on T, it is a completely continuous operator. For this, we
introduce the following notation. Let s(T,) = {T,(- + h), h € R} be the
set of all translates of T,. Then, s{(T,) is a compact set in X and it is in
fact homeomorphic to the sphere S!'. Also, for an interval I C R, we denote
1-s(T,) = {rT, r € I, T € s(T,)}, which is clearly a compact set in X if I
1s compact.

Now we take a bounded set B in Y. From (4.3) and (4.4) we know that
S(1)B remains in a bounded set for all + = 0. Therefore, there exists
G+ = G«(B) such that 0 = G,(u(s)) = Gx for any initial data in B and any
s = 0. Hence, for fixed 7, the integrand G, (s)e s T, (x — [ v) is continuous
as a function of s and takes values in the compact set [0, G«]- s(T,).
Therefore, using the mean value theorem, we get

[ Gu(s)e toT x - f v) ds € 1-TO(10, G 1 s(T,)),
0 s

where T0([0, G+]- s(T,)) denotes the closed convex hull of the compact
set [0, G«]- s(T,), which thanks to Mazur’s theorem, is also compact in
X. That proves that S,(f) is completely continuous. Moreover, we can
still prove that S,(£)B remains in a fixed compact set independent of ¢
since [4G,(s)e % T,|ly ds = | T,||x and then
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fo' G, (s)e G Ta<x - f' v> ds € 1- (0, G«]- 5(T,)) N B0, | T,I)

s

and the right hand side above is a compact set of X. But since [0, Gx]* s(T),)
is a star shaped domain, with respect to the origin, so is ¢0(0, Gx] - s(7,))
and therefore, for sufficiently large ¢, the set ¢-To(0, Gx]-s(T,)) N
B4(0, | T,|lx) does not depend on t. Since this family of sets is increasing
with ¢, we conclude that the integral above takes values in a fixed compact
set of X independent of ¢.

Using this splitting, the existence of A, follows from [4]. Just note that
if B = 9B, denotes either the invariant set in (i) or the absorbing set in
(ii)} then

d=o@d) =) U sos, @.5)

>0 s>t

see [4, 8]. The property that U .\, d, is a bounded set of Y fol-
lows from the uniform absorbing set (—=K(A)) — m, K(Ay) + ) X
By(0, | T Jx + . 1

Remark 4.1. The idea of splitting the semigroup as § = §, + 5, is by
now a well known trick to handle damped hyperbolic equations; see [4,
10] and references therein, for example.

In what follows we will make use of Fourier expansions for the functions
involved. So, we restrict ourselves to work on admissible spaces X —
L%.. In particular we will consider the cases X = Hp,, where m = 0,
and, for an arbitrary function, we write its Fourier expansion in complex
form as g = 2,c7a,¢™**. We will find below the case in which functions
have Fourier expansions g = Z,cxa,e’™**, with K C Z. Note that all the
functions involved are real, and then a_, = @,, and the sets K C Z are

symmetric, i.e., —K = K. With these notations we have

ProrosiTION 4.1. Let A C Z be any nonempty set. Then, if m = m,
denotes the projection onto this set of Fourier modes, i.e., for g =
2 iez7a €T then m(g) = 2Zycaaie®™ ™, and if (v, T) is a solution of (1.1)
inY =R x X withX>L},, then w(T) verifies

a(T) = ’IT(TO) (X - J: v) e_H)Ge + JOI I:Gﬁ(s)e_f;GEW(Ta)(x - Ll U) ] dS,
(4.6)



DYNAMICS OF A THERMOSYPHON 955
where, again, G (s) = G (v(s))/e. That means 7 (T) is an integral solution of

am(T) + va'rr(T) _ G(v)(
ot dx €

m(T) ~m(T),  «(T)O0) =7 (Ty.

In particular, using the expansions T(t, x) = 2 a, (e, T (x) =
2 iezbie™™ 5, and f(x) = Zcp067™ we have fork € 7

I3
a,() = a (0)e 2mikv+G, 4 p [ G.(s)eSi2mik =G, gs. @.7)
0

i.e.,a,(t)is asolution of a,(t) + Qmikv(t) + Gu(t)) e)a,(t) = (GW())/€)b,.

Proof. The proof is based in the following property of the projection
o for every g and & € R, we have w(g(- + h)) = w(g)(: + k). The rest
is obvious, by projecting (2.2). |

CoROLLARY 4.1. Assume T, and f are such that Theorems 2.1 and 4.1
hold true in Y = R X X with X — L2, Then, if T, € H,

ACRX Hp,
and is a compact set in that space.
Proof. From (4.7), we get
la, (D] = |a (0)|e G4 + |p, |(1 — e~ fiGulords), (4.8)

Let (vy, Ty) € A; then, from (4.5), there exist sequences (v,, T,),
bounded in Y (in fact lying in a bounded invariant set), and ¢, going to =,
such that S(t,)v,, T,) = (v, Ty) in Y as n — . But then, for each k €
Z, we have

[af(e,)| < |ag@)e T85O +|,|(1 — =ity

and |a}(0)| = M, <wand M(\) < G7(s) < M, < =forevery n, s. Therefore,
passing to the limit, we get |a;| < |b,|.That means o C [-K (), K(A\)] X
B, where K()) is as in Theorem 4.1 and B = {T € HI,, |a;| = |b.]},
since | T,[|ym = Q)" (2 1ezk>"|bi|H"? < «. But the set B is compact in
H7, and, therefore, the result is proved. §

Remark 4.2. Observe that the previous result shows the asymptotic
smoothing effect of (1.1), since the attractor is as smooth as T,. Also,
note that the result is optimal in the sense that when (0, T,) is a stationary
solution, then the attractor cannot be more regular than H7. . Also the
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same argument holds if we take the w-limit sets in the weak topology of
a single solution or the weak attractor, given by (4.5), were & denotes
again a bounded absorbing set for (1.1) and the closures are taken in the
weak sense.

Assume now that the ambient temperature is given by

T,(x)= >, bem=e Hn m=0,

per»
kEK

where K C Z. Then, denote by V,, the closed linear subspace of Hp,,
spanned by {¢*™** k € K}, i.e., V,, = span{e’"**, k € K}, and consider
the following spectral decomposition in Hy,.: T = T, + T,, where T,
denotes the projection of T onto V,, and T, the projection onto the space
generated by {*** k & K}, ie., Ty, = m(T)and T, = mpx(T) = T —
7,. Note that (1.1) is formally equivalent to

dv
sE+G(u)u—§(7l+T2)f
T N _GQ@ . _
o= (T, - T (4.9)
oL, L, _ _Gw
ot VT e D2

and that integral equations for T, and 7, are obtained by projecting (2.2)
as in Proposition 4.1.

The following result shows the existence of inertial manifolds for (1.1)
using in an essential way the fact that the equation for the temperature
leaves invariant the Fourier spectrum of the function 7,. Therefore, an
inertial manifold is obtained without requiring large gaps in the spectrum
of a linear operator. A similar idea has been used in [1].

THEOREM «.2.  With the notations above, assume T, and f are such that
Theorem 2.1 holds true. Then Z,, = R X V, is an inertial manifold for
the flow of (1.1)in Y,, = R X HE,.. Moreover, the attraction rate is uniform
for 0 < A =i,

Even more, if f € V,, the inertial manifold Z,, has the exponential
tracking property; that is, for every (v,, T)) € Y,, there exists (v,, T|) €
Z,, such that if (v(1), T(2), i = 0, 1, are the corresponding solutions of
(1.1), then

(vo(), To(’)) = (v (), Tl(t))"" 0

inY,, at a fixed exponential rate, as t — x.
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Proof. From Proposition 4.1, taking 7 = 7, x and usmg mx(T,) =
i, T, =T, T, =0, weget T(t, ) = Ty (x — fv)e fiGe Therefore
if To =0 then Tz(t x) = 0 for every ¢, i.e., Z,, is an invariant manifold.
Now, observe that disty (T, V,,) = [Tyl Hence, if (vy, Ty) € Y,,, then

disty (v(1), T(), Z,,) = disty (T(1), V,,) = | L@, < ||Toz|l,,,e“”‘“’,

where, as above, M(X) = hx/cRe. That proves the uniform exponential
attraction rate for 0 < A = X, since M(A) = M()\,).

To prove the exponential tracking property just note that the flow inside
Y, is given by

dv _
&5+ G —9€T,f

t . £ . t

T,=T, <x—j v) e~ fiG +j Gs(s)e"f:GsTa(x—f v)ds (4.10)
0 0 Q

Tz = 0'

Therefore, if f € V,, then §Tf = $T, f and then if (v(¢), T¢)) E Y, is a
solution of (1.1), then (v(¢), T,(¢)) € Z,, and it is still a solution of (4.10).
Hence, (v(#), T(2)) — (1), T,(£)) = (0, T,(r)) and the right hand side is of
order e ™ Thus, the theorem is proved. |

Remark 4.3. Note that in the proof above, if T, is more regular,
namely, if T, € H{,e, for j > m, then the norm of 7,(¢, x) can be computed
in Hi,,, since |T,(0); < ||T,,|;,e””*" and it converges exponentially to
zero. Therefore, the manifold attracts in a stronger topology.

Assume, as above, that the ambient temperature is given by T,(x) =
2icxhie®™* and the geometry of the loop is given by

f(x) — Z CkeZwkix_
keJ

Moreover, assume T, € Hp,,, m = 0. Consider the flow on ¥,, = R x
H, and recall the spectral decompositionin Hy,., T =T, + T,, as defined
above. We further decompose T, as

T,=1+8,

where 7 is the projection onto the space generated by {¢*™* k€ K N J}
and @ is the projection onto the space generated by {e?"**, k € K\J}.
Finally, denote by P the projection P(v, T) = (v, 7,0,0)and Q=1 — P
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With these notations, and decomposing T,, so T, =T, =7, +6,, T, =
0, (1.1) and (4.9) can be formally decomposed as a system

duv _
BE+G(U)U—<‘)E(T+T2)f
%%+U§I=Q@(Ta—f)
X (4.11)
d ., 90_GW ., _
5t Vax .~ 6
9_Tz+0§12=_§£)27~2
ot Jx €

since $6f = 0. Note that, when one sets T, = 0, the first three equations
give the flow inside the inertial manifold Y,,, i.e., they are equivalent to
(4.10), while the first two are the only nonlinearly coupled ones. Therefore,
once this subsystem is solved the other unknowns are determined through
linear nonhomogeneous equations.

Before working out the general case we go to a special, but important,
case of the above.

PROPOSITION 4.2. Assume K (N J = ; then for every (vy, Ty) € Y,,,
the solution of (1.1) verifies

(), Tt, )= 0, T,(x)

as t — =. In other words, (0, T,(x)) is the global attractor of (1.1).

Proof. From the previous theorem it is enough to prove the result for
the flow inside the inertial manifold Z,,. Since K M J = {J, then the
equation for v in (4.11), when 7, = 0, i.e., on the inertial manifold Z,,,
reduces to e(dv/dt) + G(v)v = 0 so v(t) = yye % and it goes exponentially
to zero. On the other hand, taking s < t as initial time for T = T,, and
denoting T, = T(s, -), we have

t . t " ]
T(t,x)= T,(x -~ ] v) e~1:C +f Gg(z)efoeT,,(x —j v) dz.

We prove below that ! v is uniformly small, so the first term above
decays exponentially, while the second is close to 7, . From the expression
for v, we have |2 v| = [7 |v] = (lug|//M)e Mz, where M = M()) as in
Theorem 4.]1. Consequently, for every & > 0 there exists s, such that, for
every s, = z < t < =, we have |[* v| = &, and then, again using the fact
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that the translation map is continuous, for any n > 0, there exists s, such
that, for every s, < z < ¢, ||T,(- = [' v) ~ T,()l|,, = n. Therefore, taking
the H -norm in the expression

per
t 4 i
T, x)— <l - e‘f:Gs) T.(x)=T, (x —j v) e~ 1iGe

+ f’ G.(e 0T, (x - f’ v) — T,(x)) dz

4

we see that the first term in the right hand side above decays exponentially
to zero, at an e~ rate, while the second can be made as small as needed.
We have therefore proved that the flow on the inertial manifold converges
to(0,T,). 1

COROLLARY 4.2. Assume that either
the circuit lies horizontally,i.e., f=0, or T,is constant;

then all solutions of (1.1) converge to (0, T,(x)).

Now, for the general case, we have the following notation. We denote
by §,(t) the semigroup generated by (1.1) on Y, restricted to the inertial
manifold Z,,. We will find below a reduced semigroup denoted Sg(¢) that,
in a sense, determines the asymptotic behavior of §,(¢) and therefore that
of S(r). Note that S(¢) and §(t) have the same attractor.

THEOREM 4.3. Assume that T, and f verify the assumptions in Theo-
rems 4.1 and 4.2. Then

(i) The system of equations

dv _
8:1'7+ G = %Tf

?I + U‘QZ = G(v)
ot 0x £

(4.12)

(r,—7)

defines a nonlinear semigroup, denoted Sg(t), on Yy = P(Y,), that can
be identified with PS ()P = PS\(t), restricted to Yg.

() If A denotes the maximal attractor of S\(t), then dy = P(A) is
the maximal attractor of Sg(t). Moreover

A = G(dy),
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where G: dg—> sl is continuous. Even more, ifay, = (vy, 7o, 6,,0) € o4, then
S(t)a, = G(t)(vy, 1) = G(t)P(ay),

where G(t) is continuous.

(ii) If the set K N J is finite, (4.12) is equivalent to a system of
complex ODEs of the form

8-49+G(u)v = Y al)e,
dt kERNJ (4.13)

G(v(t))) G(v(r))

af+ <2mkv(t) + a(t) = ———=b,, keKkKnlJ,

wherea_, =@, b_;,and c_; = ¢. Consequently, the asymptotic behavior
of (1.1) is described by an explicit system of ODEs in RN with N = |K N
J| + 1 an odd number.

Proof. (i) The proof of the existence and uniqueness of globally de-
fined solutions for (4.12) follows the same lines as those for (1.1), i.e., as
in Theorem 2.1. Therefore, the semigroup Si(r) is well defined. On the
other hand, from (4.11) it is clear that the projection onto Yy of any
solution of (4.11) lying in the inertial manifold Z,,, i.e., with 7, = 0, is a
solution of (4.12), that is, Sg(t) = PS;(¢). At the same time, it is also clear
that PS,(¢) == PS,(t)P. Note, however, that Yy is not invariant for 5(z).

(ii) The existence of the attractor for Sg(f) is the same as that in
Theorem 4.1. Therefore, dy is well defined. Moreover, since Sg(?) =
PS,(t)P = PS(t)on Yy, and §,(#)d = sd then P(sd) is compact and invariant
for Sg(1), i.e., Sg()P(d) = P(s). To see this, just note that

SR(OP(A) = PS(DP(A) = PSt)(d) = P(A).

Hence, P(A) C sdg, since #y is the maximal bounded invariant set for
Sg(1) [4, 8.

Conversely, if (vg, 7o) € g, we will show below that there exists a
unique 8, such that (v,, 74, 6y, 0) € A. That would prove that s{y C P(sd).
While proving this, we will actually show that 8, = F(v,, 7,), where F is
a continuous function. With this, we will have proved that i = G(dg)
with G = (I, F, 0) and G is continuous.

So, if 8, is such that (vy, 79, 8y, 0) € o then, the solution of (1.1) is
defined on R and then, from the equationfor #in (4.11) and for t > s we have

oG, x) = 6, (x - f v) 011G, 4 J’{Ge(z)e'flzcs 0, <x - j'u) dz, (4.14)

£ S Z
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where we have denoted 6,(-) = 6(s, -). But, since we are on the attractor,
6, is bounded in H,,, so taking ¢ = 0 and letting s go to —=, we get

Bo(x) = Fluy, To)(x) = J_O Gs(z)e‘ﬂz)ce 0, <x - Jo v) dz. 4.15)

Z

Note that this actually defines an element Hp,, since the integral of the
norm verifies

0
| Guae ol dz <0 <=

Conversely, it is easy to check that the solution of (4.11) starting at (v,
7o, 6y, 0) actually exists globally and is bounded in H; . Hence, it lies
on the attractor . Moreover, for this solution, it holds that

t t
o(t, x) = j G.()e .6, <x— f v) dz, tER.  (4.16)

From this, we see that if a; = (vg, 74, 8y, 0) € &, then S(t)ay, = G(t)(v,,
7o) = G(t)P(ay).

It just remains to prove that F is continuous. To this end, we denote,
for M > 0,

0
Fplvg, 1) = f_

Z

[Gg(z)e‘f(z'ceoa (x - f ’ v)] dz.

We will prove in the lemmas below that F,, is continuous. Assuming
this, for a moment, we can prove that F,, — F uniformly on #; and this
proves that F is continuous. In fact, from (4.14), withr = 0and s = — M,
we have F(v,, 1) — Fp(vy, 7o) = 0_p(x — f_M v)e /uC:, so the right hand
side goes to zero at a uniform exponential rate, as M goes to «, since
(10_ 4l is uniformly bounded.

(iii) The proof is obvious. Just note that K N J is a symmetric set
and 0 ¢ K N Jsince § f=0, so |[K N J|is even. Also, the equations for
a, and a_, = @, are conjugate, so when going to real variables, a, =
x; + iy,, we have a system in RN with N = |[K N J| + 1 odd. |

Now we prove that F), is continuous. For this, we first need the fol-
lowing.
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LEMMA 4.1. For every M > 0 there exists a constant Cy > 0 such
that for every (v,, 7,) and (vy, 75) lying in Ay, it holds that

o)1) = va(0)] = Cyloy — vg + |7 — ), for every t € [-M, M].

Proaf. Note that by changing ¢ to —¢ in (4.12), and integrating along
characteristics, we find that the solution starting at (v,, 7y) € dy is given,
in [-M, M], by

t 1 t
T(t, x) =14 (x + f U)etféos‘”’ ¥ I G (v)e Gy (x + j v) ds
0 0

S

and v(t) = v, + for [=H (v(s)) F (l/e)@rf)] ds for t = 0, where the upper
symbol corresponds to backward integration and the lower to forward
integration. Let (v, 7,) and (v,, 7,) be on ; then

! . t o
T{t, x) = Tolt, x) = 7 (x + j v,)etﬂ)"evl -7 (x + j vz)e-focel
0 0

f
F ] G, e 1\Geir, (x + jt v,) ds
0 s
! . 1
tj G, e G, xJ v, ) ds.
0 s

Now, we proceed as in Theorem 2.1, using the fact that v (z) are uniformly
bounded, but instead of making the bounds dependent on supjgq vy —
v,|(s) we let fot lu, — v,] appear, and then we get |$ (r, — 7)f| = ¢, (M)
(fry = 7l + J§ lvy — v)). Then, from the expression for the velocity, we
get [v,(8) — vy(D] = Ju; = vy + (M) |l = Tl + (M) [ vy — v,y We
conclude by using Gronwall’s lemma.

We finally have

LeMMA4.2. Thefunction Fy,, defined above, is continuous. Moreover,
if 8, is such that |8,(- + h) — 6,( ) =< c, |h| for every h € R, then Fy is
a Lipschitz function.

Proof. Let (v, 7)) and (v,, 7,) be on dg; then denoting 6, =

Fyfv;, 7;), we have
b))

+16Jl [G,1(s)e75Cea — Ge,z(s)e-f?Gc.q] ds

0
1p1 — O1ll = f_M [Ga.l(s)e_j(”a"'
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and note that ||6,(- — fso v) — 0, fso vl = |6, — f (v, — vy)) ~
6,()|l. Since the solutions lie on the attractor, there exist constants such
that 0 < GC.I = Cy and le.l - 5,2' = 6y IU] - Uzl for ~-M =1 = 0.

Therefore, we get
( j @ —v,)) —oa(-)'

+ 18 coM) vy = v,

where v, ~ vyl = sup_pg v} — vzl(s) On the other hand, If (v, —
vy = M v, — vyl and, from the previous lemma, this quantity is small
if v, — vy + |Ir, — 74| is small. Since the translation map is continuous,
we see that [0, — [ (v, — vy)) — 6,(-)||is also small. Moreover, if 8, is
such that ||8,(- + &) — 6,0 =< c, lh[ for every h € R, then |8,(: fo
) —v)) = 8,0 = e M v, - 02]|ac and then, again using the previous
lemma, we get |6, — Gmll =< cs(M)|v; — vy + v — 7,f)) and the lemma
is proved. |

Uom OMZH—C3(M) SUP

Remark 4.4. Note that when F,, is Lipschitz, the Lipschitz constant
may blow-up with M; therefore we are not able to prove that F itself is
Lipschitz. If this last situation were true, then the statement of Theorem
4.3 would be improved to saying that & and s have the same dimension.
Finally, note that the proofs above hold in any admissible space.

5. FINAL REMARKS

Although we have worked out all the results on (1.1) and we have
certainly used some of the particularities of that system, the existence of
attractors holds for similar but more general systems of transport equations
under periodic boundary conditions. To be more precise, consider the
system

b=F@, T), v(0) = v,
%T +aW) VT =GWXT, - T),  T(O,x) = Tyx), 5-D

where T, T,, T, are periodic functions in R¥; i.e., they satisfy
T(x + Lie;) = T(x) for every i = 1, ..., N, where {¢;}Y, is a basis in R",
Moreover, in (5.1) we assume that v € R™ and

a: R™— RV, G:R”— R
are locally Lipschitz and G(v) = G, > 0.
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If we denote Q = {x € RY, x = 2, x;e;, 0 < x; = L;}, an admissible
function space for (5.1) will be a Banach space X of {)-periodic functions
defined on R", i.e., satisfying T(x + L,e;) = T(x) for everyi =1, ..., N,
such that for every h € RN = | gl and, for fixed
g, the map A «»> g(- + h) is continuous in X. For example

Lo () ={u€E LY (RY), u(x + Lie;) = u(x),a.e. xERN, Vi=1,..., N},

endowed with the norm of L?((}) and W;.2(Q) = WrP(RM N L5 (Q) with
the norm of W™?({}), verify those assumptions. Analogously, we can
consider the spaces C5%(Q2) with the obvious definitions.

Now we assume that

FFR"xX—>R™

is locally Lipschitz and moreover we assume that (5.1) has a unique,
globally defined solution for any initial data in ¥ = R” X X and T is given

by mtegran(m along charactenstlcs e, T@, x) = Tyx -
IN a(v))e fiG6w) +f Gv)e 16OT (x - f a(v)) ds Note that again we have
1T, = [Tolee~fs6@ + |TJl, (1 = e 5@ = || T, + (| Toll. — 17~

e~ Y. So, we just need to control the velocity components to have dissipa-
tivity. Therefore, we can prove

THEOREM 2.1. With the above notations assume

(i) There exists a constant K = 0 such that for every (vy,T,) € Y
there exists t. = 0 such that [v(t)| < K for every t = t,,.

(ii)y For every (vy, Ty) € B, and B any bounded set in Y, the set
{lu®)|, 1 = 0} is bounded.
Then, (5.1) has a compact attractor 4 in ¥ = R"™ X X.

Proof. Note that (i) implies that the solution map for (5.1), S(t)(v, T),
is point dissipative, i.e., there exists a bounded set B C Y, such that for
every (v, T) € Y, there exists ¢, = 0 such that S(t)(v, T) € B for every
t = t,. At the same time, (ii) implies that for every bounded set B C Y,
the trajectory {S(¢)B, t = 0} is bounded in Y. Finally, following the same
lines as those in Theorem 4.1, we again decompose S (t)(v(,, Ty = S,(t)N vy,
Ty + () (v,, Ty), where the part of the temperature in §, is given by
Tox — J/a@)e /i and the part in S, by Jy Glvye OO (x —
J! a(v)) ds. Using now the fact that s(T,) = {T,(- + h), he RN}is compact,
since it is homeomorphic to the torus TV, we conclude that S, is completely
continuous. Again using the results in [4], we complete the proof. |

Finally, ncte that the above can be immediately extended to systems
of the form
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v=FQ@, T, .., T, v(0) = vy

T’ n VTi=G Ti — Ti Ti0 =T G.2)
= a;(v) = G;(v)(T, ) (0, x) = T}H(x)

with j = 1, ..., n and periodic boundary conditions. Now the phase space
would be of the form ¥ = R™ X X, X --- X X, where X; are admissible
spaces as above. We can also consider different dimensions and different
periods for the space variables in the X spaces.
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