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1. Introduction

In the last few decades, many researchers have studied preserver problems on operator algebras
motivated by theory and applications. For example these problems are strongly connected to the
Kaplansky’s problem concerning the characterization of invertibility preserving linear maps. While a
lot of interesting results have been obtained, there are still many open problems. It is well-known that
nilpotents, idempotents and projections are all very important subsets in operator algebras and related
preserver problems that refer to those subsets have been studied (cf. [1,15-17]. In recent years, several
authors have considered preserver problems concerning certain properties of products of operators
and some linear and non-linear maps preserving commutativity, spectrum, spectral radius, nilpotency
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or idempotency of products of two operators on operator algebras are extensively studied and some
interesting characterizations are given (cf. [3-5,8-12,14] and the references therein). We consider maps
preserving operator pairs whose products are nonzero projections on the algebra of all linear bounded
operators on a complex Hilbert space. We have considered linear maps with this property in [11]. In
this paper, we consider those not necessarily linear maps preserving operator pairs whose products
or triple Jordan products are nonzero projections in both directions. We will find that the operator
pairs whose products or triple Jordan products are nonzero projections are isometric invariants of
B(H).

Let H be a complex Hilbert space with dim >2 and let B(#) be the algebra of all bounded
linear operators on . dim + denotes the dimension of . For a subset S of #, [S] denotes the closed
subspace of H spanned by S. For every pair of vectors x,y € H, (x,y) denotes the inner product of
x and y. The symbol x ® y stands for the rank-1 linear operator on H defined by (x ® y)z = (z,y)x
for any z € H. The rank-1 operator x ® x is a projection for any unit vector x. Rank-1 operator x ® y
is idempotent (resp. nilpotent) if (x,y) = 1 (resp. (x,y) = 0). For a finite rank operator A we denote
by rankA the rank of A. Given two projections P, Q € B(H), we say P<Q if PQ = QP = P and we
say P < Q if P<Q and P +# Q. Projections P and Q are orthogonal if PQ = QP = 0. We recall that
a conjugate linear bijective map U on A is said to be anti-unitary if (Ux, Uy) = (y,x) for all x,y €
‘H. Throughout this paper, we will denote by I the identity operator on any Hilbert space without
confusion.

In this paper, we consider surjective maps on B(#) which preserve operator pairs whose products
or triple Jordan products are nonzero projections in both directions.

2. Maps preserving operator pairs whose products are nonzero projections

Let ¢ be a map on B(H). If for any A, B € B(H), ¢(A)¢(B) is a nonzero projection whenever AB
is, then we say that ¢ preserves operator pairs whose products are nonzero projections. If for any
A, B € B(H),¢(A)¢(B) isanonzero projection if and only if AB is, then we say that ¢ preserves operator
pairs whose products are nonzero projections in both directions. Of course ¢ preserves operator pairs
whose products are nonzero projections in both directions if and only if both ¢ and <,0_l preserve
operator pairs whose products are nonzero projections if ¢ is bijective.

Theorem 2.1. Let H be a Hilbert space with dimH > 2 and let ¢ be a surjective map on B(H). Then ¢
preserves operator pairs whose products are nonzero projections in both directions if and only if there exist
a unitary or an anti-unitary operator U on H and a constant A with A> = 1 such that @(A) = AU*AU for
allA € B(H).

We note that the sufficiency is clear. To prove the necessity of this theorem, we need some lemmas.
We next assume that ¢ is a surjective map on B(#) preserving operator pairs whose products are
nonzero projections in both directions.

Lemma 2.2. Let A, B € B(H) be nonzero operators. Then the following assertions are equivalent:

(i) A=B.
(it) Forevery T € B(H), BT is a nonzero projection whenever AT is.
(iii) Forevery T € B(H), TBT is a nonzero projection whenever TAT is.

Proof. The implications from (i) to both (ii) and (iii) are obvious.

(i) = (i) Take any x € H. Suppose that Ax #= 0. Put T = "l‘%‘l’é, then AT is a nonzero projection.

This implies that BT is. Note that BT = m‘%ﬁz" so that Ax = Bx. If Ax = 0, then there is a vector y €

H such that Ay # 0 and A(x + y) # 0 since A # 0. Then by the proof above we have Ay = By and
A(x +y) = B(x 4+ y), which means that Bx = 0. Thus, A = B.
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(iify = (i) Let x € 1 be a unit vector. If (Ax, x) # 0, then \/’%A\/’% = x @ x is a nonzero

L : xX®x X®X
projection, where 4/ (Ax, X) is a square root of (Ax, x). It follows that «/MB NG T ® x and then

(Ax, x) = (Bx, x). Suppose that (Ax, x) = 0. We may take a unit vector sequence {x,} in H such that
lim,_, o0 X, = x and (Axp, x,) # 0. Thus, we also have (Bx,x) = 0 = (Ax, x). Hence, A = B. The proof
is complete. [

Corollary 2.3. ¢ is bijective.
Proof. This follows from Lemma 2.2. [l
Lemma 2.4. ¢(0) = 0and ¢(I) =loro(I) = —I.

Proof. Let A € B(H) such that ¢(A) = 0.If A # 0, then there exists a vector x € # such that Ax # 0.

LetB = l"‘%“’; .Then AB s a nonzero projection, which implies that ¢ (A) ¢ (B) alsois. But ¢ (A)¢(B) = 0,

a contradiction. Thus, A = 0.
Suppose ¢(I) = A. If A ¢ ClI, then there exists a nonzero vector x € H such that x and Ax are

linearly independent. Put B = l’“ﬁ’n’é , then AB is a nonzero projection. So is ¢~ (A)¢ 1 (B) = ¢~ 1(B).

Moreover, ¢~ ' (B)p 1 (B) = ¢~ 1(B) is a nonzero projection, too. Thus, B> is a nonzero projection.

Now B? = ﬁ’;{:"l‘ix ® Ax. Then x and Ax are linearly dependent. This contradiction shows that A =

al for some constant a. A> = a®I must be a nonzero projection. Then a®> = 1 which completes the
proof. [

We may replace ¢ by —¢ if ¢ (I) = —I. Without loss of generality we may assume that ¢(I) = I.
Then ¢ preserves nonzero projections in both directions. We observe that if projections P, Q satisfy
that both PQ and QP are projections, then they commute. Moreover, if rankP = 1 and PQ, QP are both
nonzero projections, then P < Q.

Lemma 2.5. Let ¢ (I) = I. Then ¢ preserves rank-n projections in both directions for any n > 1.

Proof. Let E be a nonzero projection. Then ¢ (E) = P is a nonzero projection, too. Forany z € C\{0, 1},
putA(z) = E + z(I — E) and B(z) = ¢(A(z)). We will complete the proof by three steps.

Step 1. ¢ preserves rank-1 projections in both directions.

Let E = e ® e for some unit vector e € H. Since A(z)E = EA(z) = E is a nonzero projection, both

B(z)P and PB(z) are, too. Under the direct sum decomposition # = PH @ P17, wehave P = (1 0)

0 O
Bi1(z) Bn2(2) Bu(z) O Bi1(z) B12(2)
and B(z) = <321 7) B (z))' Then B(z)P = <321 @) 0) and PB(z) = ( 0 0 ) It fol-
lows that both B13(z) and By1(z) are 0. It is also known that By1(z) is a nonzero projection.

Put P(z) = PB(z) = B(z)P. Then P(z) is a nonzero projection with P(z) <P and P(z)P = PP(z) =
P(z).Let E(z) = ¢~ '(P(2)).Itis known that E(z) is a nonzero projection by assumption. Then E(z)E =
@ 1 (P(2))¢~ 1 (P)and EE(z) = ¢~ ' (P)¢~!(P(z)) are nonzero projections. Hence, E(z)E = EE(z) = E.
Since P(z)B(z) = B(z)P(z) = P(z), both E(z)A(z) and A(z)E(z) are nonzero projections, too. How-
ever, E(z)A(z) = E(z)E + z(E(z) — E(z)E) foranyz € C\{0, 1}. ThenE(z) — E(z)E = 0, thatisE(z) =
E(z)E = E and therefore P(z) = P for any z € C\{0, 1}. This implies that B(z) = ((I) Bzzo(z)>' If
rankP>2, then for any rank-1 projection Q with 0 < Q < P, we similarly have that both ¢ ~1(Q)¢ ' (P) =
¢ 1 (Q)E and ¢~ '(P)¢~1(Q) = E¢~1(Q) are equal to E. On the other hand, QB(z) = B(z)Q = Q.
Soforanyz € C\{0, 1}, we have ¢ 1 (Q)A(z) = ¢ ' (Q)E + z(¢~'(Q) — ¢~ 1(Q)E) is also a nonzero
projection. Thus, ¢ ~1(Q) = ¢ ' (Q)E = Eand Q = ¢(E) = P, a contradiction. Therefore, rankP = 1.

Step 2. B(z) = ¢(A(z)) = P + (I — P)B(z)(I — P) for for any nonzero projection E.
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Since A(z)E = EA(z) = E are nonzero projections, both B(z)P and PB(z) are nonzero projections,
too. It easily follows that B(z) = PB(z)P 4+ (I — P)B(z)(I — P) such that P(z) = PB(z) = PB(z)P is a
nonzero projection. Since P(z)B(z) = P(z) and P(z)P = P(z) are nonzero projections, both
go’l (P(2))A(z) and (p’1 (P(2))E are also nonzero projections. However,

¢ (@)A@) = ¢ ' (P@)E +2(¢7 (P(2)) — ¢~ ' (P(2))E),

which implies that ¢ =1 (P(2)) = ¢~ (P(2))E for any z € C\{0, 1}. Therefore, ¢~ (P(2)) <E.

For any rank-1 projection E; <E, Step 1 shows that ¢(E;) is a rank-1 projection. Since E1E =
EE1 = E1, (E1)@(E) and ¢ (E)@(E1) are nonzero projections and rank(¢ (E1)¢@(E)) <rankg(Ey) = 1.
We thus have that rank(¢(E1)@(E)) = 1, that is ¢ (E1)@(E) = @(Eq). It follows that 9 (Eq) < @(E) =
P. Note that E1A(z) = E; = A(z)E1, so ¢(E1)B(z) is a rank-1 projection. ¢(E1)P(z) = ¢(E1)B(2) is
a rank-1 projection. Thus, ¢(E;) <P(z) and E;¢~'(P(z)) is also a nonzero projection. Since E; is
of rank-1, E; <@~ 1(P(z)). We can get E< ¢~ 1(P(z)) from the arbitrariness of E;. Thus, we have
E<¢ 1 (P(2)) <E, that is E = ¢~ 1(P(2)). Thus, P = @(E) = P(z), which means P = PB(z). Hence,
B(z) =P+ (I — P)B(z)(I — P).

Step 3. ¢ preserves rank-n projections in both directions.

Step 1 shows that this assertion holds when n = 1. If dim H = 2, then the proof is complete. We
assume that dim H > 3.

Now we assume that ¢ preserves rank-k projections in both directions for any k < n and we prove
that ¢ preserves rank-(n + 1) projections in both directions. Let E be a rank-(n 4 1) projection, then
rankP>n + 1.¢(A(z)) = B(z) = P + (I — P)B(z)(I — P) from Step 2. Take any projection Q < P with
rankQ = n + 1. Then rankp~'(Q) >n + 1. Since QP = PQ = Q, both ¢~ 1(P)¢~1(Q) = E¢~'(Q)
and ¢~ 1(Q)¢~1(P) = ¢ 1(Q)E are nonzero projections. We also have that QB(z) = B(z)Q = Q,
which implies that ¢ 1 (Q)A(z) is a nonzero projection, too. However, ¢~ (Q)A(z) = ¢~ (Q)E +
2(¢71(Q) — ¢ 1(Q)E), so ¢~ 1(Q) = ¢~ 1(Q)E <E. By the inductive assumption, rank E = n + 1,
we have ¢~ 1(Q) = E and Q = ¢(E) = P. Hence, rankP = n + 1. Thus, ¢ preserves rank-(n + 1)
projections and so does ¢~ !. The proof is complete. [J

Lemma 2.6. Let ¢(I) = I. Then ¢ preserves the order as well as the orthogonality of projections in both
directions.

Proof. We firstly show that ¢ preserves the order of projections in both directions. Let E be a nonzero
projection and ¢ (E) = P. Take any nonzero projection F < E and set Q = ¢(F). Then FE = EF = F. So
@(F)p(E) = QP and ¢ (E)¢(F) = PQ are nonzero projections. Hence, PQ = QP.

Take any rank-1 projection Q; < Q. Then ¢~ '(Q;)F is a rank-1 projection by Lemma 2.5. Thus,
©~1(Q1) <F <E, which means that ¢ ~1(Q; )E is a rank-1 projection. It follows that Q; P is also a rank-1
projection. Thus, Q; < P. By the arbitrariness of Q;, we have Q <P.

Next we prove that ¢ preserves the orthogonality of rank-1 projections in both directions. Suppose
dim H > 3 and there are orthogonal unit vectors e, e; € H suchthatep(e; ® e1) and p(e; ® ey) are not
orthogonal. Take any unit vectores € H & {eq, e;}. We know that there are unitvectors {f; : i = 1,2, 3}
such that ¢ (e; ® e;) = f; ® fi fori = 1,2, 3 by Lemma 2.5. It is easy to see that f1, f, and f; are linearly
independent. Let P;; (resp. Q;j) be the projection from 7 onto [e;, e;] (resp. [f;, fj]) (1 <i < j < 3).Thenwe
have that Q; = ¢(Py) forall 1 <i < j <3 from Lemma 2.5. It follows that Q12Q13 = Q13Q12 = f1 ® f1
since P1;P13 = P13P1; = e1 @ eq. Putf, = afy +yand f3 = Bf; @ zforsomey,z € {f1}J-. It is clear
that Q1y = y and Q3z = z. We then have that @ # 0 by the assumption and Thus, f; = = (f, — ¥).
Note that Sf; = Q12Q13f3 = Q12(Bf1 + z2) = Bfi + Qi2z. Then Q12z = 0, which implies that y 1 z.
Hence, f; = ﬂa_1f2 — ﬂa_ly + z. We similarly have that Q12Q23 = Q23Q12 = fo» ® f>. Thus,

Q23Q12f3=Q23Q2(Ba ™ 'fo — Ba 'y + 2)
=Qs(Ba”'fo — Baly)
=pa”'f, — fa Quay
=0Q12Q23f3 = Q12f3
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=Qn(Ba ' — Baly +2)
=Ba"'f, — Ba"ly.

It follows that Ba~1Q3y = Ba~'y. Note that f; ¢ Qu3H = [f2, f3]. Thus, we have that 8 = 0, that
is f; and f3 = z are orthogonal. Note that y_| z. We then have that f, and f; are orthogonal.
On the other hand, we also have that Q13Q23 = Q23Q13 = f3 ® f3. Then Q13Q23f1 = 0. However,

Q13Q2f1 = Qi3Qu3 (@' (. — ¥))

= o 'Q13Qasf =« 'Qisfe
= o 'Qis(afi +y)

=fi+a lQuy=A

sincey € {fi, z}* = {f1,f3}*. This is a contradiction. Thus, f; and f, are orthogonal.

Suppose dim H = 2.Itis known that ¢ preserves rank-1 projections in both directions from Lemma
2.5. Let E be a rank-1 projection and P a rank-1 idempotent such that PE = E (resp. EP = E). We claim
that ¢(P) is a rank-1 idempotent such that ¢(P)@(E) = ¢(E) (resp. ¢(E)¢(P) = ¢(E)). In fact, we
may assume thatE #+ P,E = e ® eand P = e ® x with (e,x) = 1. Note that E and ¢(E) are unitarily
similar. Without loss of generality, we may assume that ¢ (E) = E. Take a unit vector f € H such that
(e,f) =0.Then P = ((1) %) (6§ #£0).PutA=¢(P) = (2; Z;i) It is known that a;; = 1 and
ap; = Osince PE = E.Itis enough to show thatay; = 0.Otherwise, ifay, # 0, thenAis invertible with

—1
inverse A”1 = 1 013022 . We also have that 97147 1) = 1ox since A"'E = E. However,
0 ay 0 vy

(p_1 (A~Y)P = P s not a projection. This is a contradiction since A~'A = I. Hence, a5; = 0. Note that
¢~ ! has the same property.
Suppose that F is a rank-1 projection such that EF = 0. As above we may assume that ¢ (E) = E.

If (F) # F, then ¢(F) = H]W (1 z > for some nonzero constant z. Put Q = (; 8) Then

zZ |z
Q@ (F) = ¢(F), EQ = E and P = ¢~ 1(Q) is a rank-1 idempotent just as we have proved such that
PF = F and EP = E. This is a contradiction. Therefore ¢ (F) = F. Consequently, ¢(E) and ¢(F) are
orthogonal whenever E and F are.

Now let E and F be two orthogonal projections and set P = ¢(E) and Q = ¢(F). If P and Q are
not orthogonal, then there are two rank-1 projections P; <P and Qq < Q such that P; and Q; are not
orthogonal. However, E; = go_l (P1) <Eand F; = ¢~1(Qy) <F.This is a contradiction. Thus, P and Q
are orthogonal. By considering ¢ ~!, we know that ¢ preserves orthogonality of projections in both
directions. The proof is complete. []

If dim H > 3, then ¢ is a bijection on the set of all projections of B3(#) preserving orthogonality in
both directions. It follows from the Uhlhorn’s theorem in [18] that there is a unitary or an anti-unitary
operator U on H such that

@(E) = UEU*

for any projection E € B(#). Next lemma shows that this form holds when dim # = 2 by use of the
Wigner's fundamental theorem (cf. [13,19]).

Lemma 2.7. Suppose that dim H = 2 and ¢ (I) = I. Then there is a unitary or an anti-unitary operator U
on H such that ¢ (E) = UEU* for any projection E € B(H).

Proof. We firstly claim that there is a function on C such that ¢ (zP) = f(z)¢(P) forallz € C and any
idempotent P.

let E=e®eand F = f ® f be arbitrary two rank-1 projections such that EF = 0. By Lemma
2.6, ¢(E) and ¢(F) are orthogonal such that ¢(E) + ¢(F) = I. We may assume that ¢(E) = E and
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@(F) = F. There is a function f, on C \ {0, 1} such that ¢(zE + F) fe(2)E + F from Step 2 in the

proof of Lemma 2.5 forany z € C \ {0, 1}. It is clear that f, (%) i (Z) We show that ¢ (zE) = fe(2)E.

In fact, ¢ (zE)@ ( E+ F) = @(zE) (fe ( )E + F) is a rank-1 projection. Put ¢(zE) = (;‘; ;‘Z)

Then ¢(zE) (e ( )E + F) (e Ef% ;(" ;ﬁz) is a rank-1 projection and thus, fe ( )x21 = X12.
elz)Xn X

0 0
Suppose that x;; # 0. Put Q = ( o(1)xn 1) then ¢(zE)Q = ¢(zE) (fe( )E+F>Q ¢ (zE)

X22

(e < )E + F) that is, ¢ (zE)Q is a rank-1 projection. However, ¢ ~1(Q) = <S

from the proof of Lemma 2.6 and zE¢ ~1(Q) = 0.Thus, X33 = 0and ¢ (zE) = f.(2)E = f.(z)¢(E). Then
@D fe < ) @ (E) is rank-1 projection for any rank-1 projection E since (zI) (;E) = E. This means that

@z @(E) = fe(2)@(E) for any rank-1 projection E. Thus, ¢(z]) is a multiple of the identity I and f¢(z)
is a constant f(z) independent on e such that ¢(zI) = f(z)I. It is also shown that ¢ (zE) = f(z)¢(E)
for any rank-1 projection E by the arbitrariness of E.

On the other hand, if ¢(E) = E and P(z) = <(]) 0> then ¢ (P(z)) = P(h(z)) for some h(z) € C
from the proof of Lemma 2.6 again. Note that a projection which is not orthogonal to E has the form
E(z) = 1+1W (; |Z|2> for some z € C\{0, 1}. It follows that ¢(E(z)) = E(g(z))for some g(z) €
¢\{0, 1}. We have that h(z) = g(z) for all z € C\{0, 1} since E(z)P(z) = E(z). Similarly we have that

@ (P(2)*) = (¢(P(2)))*for any z. Put ¢ (WP(2)) = @;1 §Z>.Itis known thaty; = f(w) andy21 =
¥22 = 0. On the other hand, ( E(z))(WP) = E(z) for any w € C\{0}. This means that go(E(z))
@ (WP(z)) is a nonzero projection. It follows that y1» = f(w)g(z). Hence, p(WP(2)) = f (w)<p(P(z))
Put f(0) = 0 and f(1) = 1. Then ¢(WP) = f(w)¢(P) for any idempotent P and any z € C

?) for somey € C

Next we assume that ¢ (E) = E and ¢(F) = F again. Put N(w) = w

-1
We show that ¢(N(w)) =N ((g (%)) ) In fact, it is easily known that ¢ (N(w)) is of rank-1.

Otherwise, if ¢ (N(w)) is invertible, then there is a rank-1 projection Q and a constant « such that

@(N(W))(«Q) is arank-1 projection. Since N(w)F = 0,9~ 1(Q) = E(z) for some z € C. It follows that

N(w)g~'(¢Q) = N(w)(BE(2)) is a rank-1 projection for some constant 8. This is a contradiction.
-1

Note that P (%) N(w) = E. This implies that ¢(N(w)) = N ((g (%)) ) Similarly, (N(w)*) =

(¢(N(w)))*.Thus, itis easily follows that |g(1)| = 1since (N(1))*N(1) = E.Note that lP(z)N(l) =E.

Then f(z) = g(1)g(z) for all z. In particular, |f(z)| = |g(z)|. For any a > 0, b > 0, abP(a)N(b)

E. Then jﬁgp(F(a))go(N(b)) is a rank-1 projection. Thus, |f(ab)| = |g(a)||g (%) | = |f(@)]|If (b)],
that is [f| is multiplicative on [0, +00). Again P(z)P(z)* = (1 + |z|?)E. We easily have that

A+ =1+1g@P =1+ @ and [f@+b)| =1 (b(1+§))I=U®Ff (1+§)1=
If(b)] (1 +If (ﬁ) |2> = |f(a)| 4 |f(b)|. Thus, |f| is additive as well as multiplicative on [0, c0). Note
Thatf(1) = 1.Thus, we have |f(a)| = aforalla € [0, 00).Itfollows that |g(z)| = f(|z|]) = |z| from the
equality 1 + (fF(lzD)?> =f(1 + 2] =1 + |g(z)|2 for all z € C. Now for any rank-1 projection E(z),
we have tr(EE(z)) = tr(¢(E)@(E(2))) = 1+|z|2 By the Wigner’s fundamental theorem(cf.[13,19]),

there is a unitary or an anti-unitary operator U on # such that ¢ (E) = UEU™ for all rank-1 projection
E. The proof is complete. []

8) for any nonzerow € C.
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Lemma 2.8. Suppose that ¢ (E) = E for any projection E € B(H). Then there is a complex function f(z)
on C such that ¢ (zE) = f(z)E for any projection E € B(H).

Proof. If dim # = 2, then this is easy from Lemma 2.7. Next we assume that dim # > 3. Firstlete € H
be a unit vector and E = e ® e. Take any nonzero projections P and Q such that] =P @ E & Q. Let
‘H = P(H) & E(H) @ Q(H). We claim that there is a complex function f,(z) on C \ {0, 1} such that
@(P+zE) = P+ fo(z)Eforanyz € C\ {0,1}. Take any z € C \ {0, 1}. It is elementary that

1 0 0
o(P+ ZE) = |0 By By
0 B3y B33
since Py(P + zE) = (P 4+ zE)Py = Py is a nonzero projection for any nonzero projection Py < P. On
the other hand, we have (P + zE)(I — E) = (I — E)(P + zE) = P. It follows that B3 = 0,B3; = 0and
Bss is a projection. If B3z # 0 then ¢(P + zE)(I — (P 4+ E)) = 0 @ 0 & Bs3 is a nonzero projection.
However, (P + zE)(I — (P + E)) = 0. This is a contradiction. Hence, B33 = 0. It is trivial that By,
is a constant dependent on z. Set f,(z) = By, for any z € C \ {0, 1}. Thus, ¢ (P 4 zE) = P + f.(2)E.
Note that ¢ (P + ;E) =P+ fo(})Eand (P + 2E) (P + ;E) = P + E. It follows that f, (;) = £ A
similar way shows that ¢ (Q + zE) = Q & fe(z)E forany z € C \ {0, 1}. Put

Chn C Gs
p@E) =|Cn C (3.
G (G GCs3

Note that (P + %E) (zE) = (zE) (P + %E) = E, which implies that (P + fe (l) E) @(zE) is a

z
nonzero projection. A simple calculation shows that Cj = 0 for any i = 1 or j = 1. Replacing P by

Q, itis known that C;; = Ofor all i, j excepti = j = 2.1Itis clear that C;p = f,(2). Thus, ¢ (zE) = fe(2)E.
Forany z € C\ {0, 1}, it is known that ¢ (zI) (%E) is a nonzero projection since zI (%E) =E It

follows that ¢ (zl)e = f.(z)e for any unit vector e € H. Therefore ¢ (zI) is a multiple of I and f¢(z) is a
constant f(z) for any e € M. In particular, ¢ (zI) = f(z)I and ¢(E) = f(z)E forany z € C \ {0, 1} and
any rank-1 projection E.

Let F be any nonzero projection and set ¢ (zF) = F, foranyz € C \ {0, 1}.It follows thatF, = f(z)P,

for some nonzero projection P, from the fact that ( %I) (zF) = F.Take any rank-1 projection E < F. We
have that (%E) zF = E.Then ¢ (%E) @(zF) = (ﬂ%)E) (f(z)P,) = EP, is a nonzero projection. Hence,
E < P,. Thus, we have F < P,. In fact we must have F = P,. Otherwise, there is a rank-1 projection E < P,

— FF — 1 _ -1 —1( 1 _
such that EF = FE = 0. We then have that (f (2)P,) (f(T)E) = E.However, ¢~ ' (f(2)P,) ¢ (@5) =
(zF) (%E) = 0. This is a contradiction. Hence, P, = F and ¢ (zF) = f(z)F for any projection F and any

ze C\{0,1}.
If we define f(0) = 0 and f(1) = 1, then f is a complex function on C such that ¢ (zE) = f(z)E for
any projection E and z € C. The proof is complete. []

Lemma 2.9. Suppose that ¢ (E) = E for any projection E € B(H) and f is the function defined in Lemma
2.8. Then ¢(zP) = f(z)P for any z € C and any rank-1 idempotent P.

Proof. Take any rank-1 idempotent P. We may assume that P = e @ (e + £x) for some unit vectors
e, x € H and nonzero constant £ such that eLx. Let 4 = {e} @ {x} @ {e, x}. Next we can assume that
z # 0.Then f(z) # 0. We firstly claim that if

z T12 0
T=1|0 T, 0],
0 0 O

then
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f(z) X2 O
(M) = 8 X Of.

X32 0
Xn X2 X3 : : :
In fact, put ¢(T) = | X21 X2 Xa3|. Since T(EE) =E, (Mg (;E) = ¢(T) <mE) is a
X1 Xz Xs3

nonzero projection, which implies that X{; = f(z), X1 = 0 and X3; = 0. Now it is trivial that
T (%(1 —X ®x)) = E. We then have that ¢(T)¢ (%(1 —x®x) = @(T) (KLZ)(I —x® x)) is also a
nonzero projection. Note that

1
. f(z2) X2 X3\ (fg 0 O
o (750-x®0) =0 Xp Xs|[0 0 o
0 X2 X33 0 o0
1
L
=10 0 @XB ,
0 O f(T)X33

soXj3 = 0,Xp3 = 0and f(%)X33 is a projection. If X33 #* 0, then we know that ¢ (T) (;% I—E—x®

X) =006 f(%)XB is a nonzero projection. However, we have T (%(1 —E—x® x)) = 0. This is a

contradiction. Hence, X33 = 0 and the claim holds.
Now If H = [e, x] @ [e, x]*, then P = P(&) @ 0, where P(£) is defined in the proof of Lemma 2.7.
By the claim we have shown,

(f (@) An 0)
p@P)=| 0 Apn O
0 Ay O

Put F = E(£) @ 0, then F is a rank-1 projection and a simple calculation shows that (% (F+

(I —E —x®x))(zP) = F. It now follows that ¢ (% F+(U—E—x®Xx))¢p(P) = (f(%) F+ (-
E — x ® x))@(zP) is a nonzero projection. Note that

(7&) F+ (1 — E—x®x))p(P)
1

1 £ 9
1HER  14[E (f(z) A 0)
0

1 = 2
@ | e e o 42 o
0 0 I
* * 0
— | % * 0

—_ ’

1
0 ﬂi)ABZ 0

which implies that A3, = 0.

1 —Ap
We next show that Ay = 0. Suppose that Ay; # 0. Let B = fg) lg;—zz)l ol Then By (zP) =
0 0 0
E + x ® x. Thus, ¢ ' (B) (zP) is also a nonzero projection. By use of the claim that we just have proved

Cp O
Cy; 0 |.However,
C3 O

to ¢!, we have that ¢ ~1(B) =

O OnI=



1356 G.Ji, Y. Gao / Linear Algebra and its Applications 433 (2010) 1348-1364

C12 0 z Z%' 0 1 E 0
n o|[o o o]=fo 0 o
C3; 0/\0 O O 0 0 O

is not a projection. This contradiction shows that Ay, = 0. Again note that (%F) (zP) = F. It follows
that A; = f(2)& and the proof is complete. [

¢ ' (B)(zP) =

O OnI=

Proof of Theorem 2.1. We can assume that ¢ (E) = E for any projection E € B(#) by the Uhlhorn’s
theorem in [18] and Lemma 2.7. We first show that for any nonzero A € B(H), ¢(A) = A(A)A for
some nonzero constant A(A) € C. Take any nonzero x € H. If Ax = 0, then Ax and ¢ (A)x are linearly

dependent. We may assume that Ax # 0. If (x, Ax) # 0, then l"‘ﬁfl“’é = «P for some nonzero constant

a € Candarank-1idempotent P and Hence, ¢ (¢P) = f(«)P from Lemma 2.9. It is trivial that A(«P) is
arank-1 projection. Then ¢ (A) (f ()P) is a nonzero projection. That is, ¢ (A) (x ® Ax) = @p(A)x Q Ax is
a multiple of a nonzero projection. It follows that ¢ (A)x and Ax are linearly dependent. If (x, Ax) = 0,
then there is a nonzero xo € H such that (xg, Axg) # 0. We may choose a positive sequence {o;, :
n=1,2,...}suchthatlim,— oo oy = 0and (x + anxo, A(x + atnxo)) # 0. In fact, if there is a positive
constant a such that

(x + axg, A(x + axg)) = (x, Ax) + ((x,Axg) + (xg, Ax))a + (xo,Axo)oz2 =0

for all ¢ € [0, a], then (xg, Axg) = 0, a contradiction. Then just as we have shown above, ¢(A)(x +
anXxo) = ErA(x + apxo) for a complex sequence {&, : n = 1,2,...}. Note that Ax #* 0 and lim,_,
o = 0. We may assume that lim,_, 5 £, = &. Thus, ¢(A)x = £Ax, which means that Ax and ¢(A)x
are linearly dependent. Consequently, we have shown that for all x € H, Ax and @ (A)x are linearly
dependent. It follows that one of the following assertions holds from Theorem 2.3 in [2].

(i) Aand @(A) are linearly dependent.
(ii) There are vectors Xg, ¥1,y2 € H such thatA = xp ® y1 and ¢(A) = xo ® y2.

If (i) holds, then ¢ (A) = A(A)A for some A(A) € C.

Next we assume that (ii) holds. If (xo, y1) # 0O, then A is a nonzero multiple of a rank-1 idempotent.
Then ¢(A) and A are linearly dependent from Lemma 2.9. Moreover, this assertion shows that ¢(A)
is a rank-1 nilpotent operator if and only if A is and both A and ¢(A) have the same ranges. Assume

that (xg, y1) = 0.PutA; = %.Thenm is nilpotent. Hence, we have ¢(A;) = y; ® x; for some

X1 € Hsuchthat (y1,x1) = 0. Note that AjAis arank-1 projection. Then ¢ (A1)@(A) = (¥1 ® x1)(xo ®
¥1) = (X0, X1)y1 ® y3 is a nonzero projection. This means that y; and y are linearly dependent. Thus,
@(A) = L(A)A for some constant L(A) € C.

At last, we prove that f(z) = z for any z € C and A(A) = 1 for all A € B(*). Let E and F be any
rank-1 projections such that EF = 0. Then we have ¢ (E + zF) = E + f(z)F = A(E 4 zF)(E + zF). It
follows that A(E 4+ zF) = 1 and f(z) = z for any z € C. This also implies that ¢(zP) = zP for every
rank-1 idempotent P by Lemma 2.9. For any nonzero operator A € B(H), there is a vector Xy € ‘H such

__ X0®Axg __ (x0A%) ; ; ;
that (xo, Axg) # 0. Put P = o) and A = Io]? P. Then P is a rank-1 idempotent and AA; is a

rank-1 projection. Thus, p(A)@ (A1) = A(A)AA; is a nonzero projection. This implies that A(A) = 1.
Hence, ¢ (A) = A, VA € B(H). The proof is complete. [J

3. Maps preserving operator pairs whose triple Jordan products are nonzero projections

Let A, B € B(H). The triple Jordan product of A and B is defined to be ABA. Very recently, some
preserver problems on triple Jordan products of operators are considered by several authors (cf. [3,4,9-
11]) We say that a map ¢ on B(H) preserves operator pairs whose triple Jordan products are nonzero
projections in both directions if ¢(A)@(B)¢(A) is a nonzero projection if and only if ABA is for any
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A, B € B(H). We consider those maps in this section. It is noted that the treatment of triple Jordan
products is little different from that of products of two operators.

Theorem 3.1. Let ¢ be a surjective map on B(H). Then ¢ preserves operator pairs whose triple Jordan
products are nonzero projections in both directions if and only if there exist a unitary or an anti-unitary
operator U on ‘H and a constant o with o> = 1 such that one of the following forms holds.

(1) ¢(A) = aUAU*, VA € B(H);
(2) p(A) = aUA*U*, VA € B(H).

It is sufficient to consider the necessity. Let ¢ be a surjective map on B() preserving operator
pairs whose triple Jordan products are nonzero projections in both directions. Then ¢ is also injective
from Lemma 2.1.

Lemma 3.2. ¢(0) = 0 and ¢(I) = al for some o € C such that o = 1.

Proof. Let A € B(H) such that ¢ (A) = 0. If A # 0, then there exists a unit vector x € # such that
(Ax,x) #+ 0.LetB = \/XQ;X It is clear that BAB = x ® x. Then ¢(B)@(A)@(B) is a nonzero projection.

(Ax,x)"
However, ¢(B)p(A)@(B) = 0, a contradiction. Thus, ¢(0) = 0.
On the other hand, suppose ¢(I) = A. We claim that A € CI. In fact we have A® = E is a nonzero

projection. If E # I, then AE = EA.Let H = EH & (I — E)H.ThenA = <A61 Agz) with A?l =land

A%z = 0. Let P be the projection from (I — E)* onto the kernel of Ay;. Then P & 0 and A;PA;; = 0.
Let B, = Ay @ zP for all z € C. Note that AB,A = E = 0. Then ¢ 1 (A)p 1 (B,)o ' (A) = ¢~ ' (B,) is
a nonzero projection. Thus, B} = A3, @ z>P is a nonzero projection. This is a contradiction. It follows
that E = I and A is invertible with A> = I.

We show that A = «I for some constants o € C, > = 1. For any unit vector x € , there is a

nonzero vector y € H such that Ax = A*y since A is invertible. Put B = %. Then ABA = /?le%ll‘t\;( is

a rank-1 projection, which implies that ¢~ '(A)p~'(B)¢~'(A) = ¢~ '(B) is a nonzero projection.

3
Therefore B> = ”(’?:‘Jll) X ® y is a nonzero projection. It follows that y = axx for some nonzero constant

ay € C. Hence, A*y = a,A*x = Ax. Note that A is invertible. Then it follows that A* = «A for some
constant & € C from Theorem 2.3 in [2]. Thus, A is normal such that o (A) € {z : z°> = 1}, thatisAis
unitary. Therefore A*A = wA® = I, which implies that A = ¢A® = «lI. The proof is complete. [J

If o> =1 and & # 1, then &g preserves operator pairs whose triple Jordan product are nonzero
projections in both directions such that ¢ (I) = I. Without loss of generality, we may assume that
@(I) = 1. Then ¢ preserves nonzero projections in both directions.

Lemma 3.3. Suppose ¢(I) = I. Then ¢ preserves rank-n projections in both directions.

Proof. Justasinthe proof oflemma 2.5, we show that ¢ preserves rank-1 projections in both directions.

Let E = e @ e for some unit vector e € H, then P = ¢(E) is a nonzero projection. Put A(z) =
E+z(I — E) for any z € C\{0, 1}. Let B(z) = ¢(A(2)). Since EA(z)E = E is a nonzero projection,
PB(z)P is also a nonzero projection. Under the direct sum decomposition # = PH & P, we have
P=(o o) mdB@ = (3" 52 mhenps@r =P = (P T isanonzero pro-
jection. It follows that E(z) = ¢~ (P(2)) is a nonzero projection, too. Note that EE(z)E is a nonzero
projectionsince PP(z)Pis.ThenE < E(z).Onthe other hand, P(z)B(z)P(z) = P(z).ThenE(2)A(z)E(z) =
E 4+ z(E(z) — E) is a nonzero projection. We now have E(z) = E and therefore P(z) = P. That is
B11(z) = I. Again, A(z)EA(z) = E. Then
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BRPBE) = (lel(z) 528) (é 8) <321I(Z) ggg;)

_< I B12(2) >
T \Bu(@ B (2)B12(2)

is a nonzero projection. This shows that Bj3(z) = 0 and By1(z) = 0. Take any rank-1 projection Q
with Q <P. Then QPQ = Q. It follows that ¢ "1 (Q)E¢~1(Q) is a nonzero projection, which implies
that ¢ ~1(Q) > E. Again it follows that ¢ "1 (Q)A(z)¢ " 1(Q) = E + z(¢~1(Q) — E) is also a nonzero
projection from the fact that QB(z)Q = Q. Hence, ¢~ '(Q) = E and P = Q is of rank-1.

By a similar method (Steps 2 and 3) used in the proof of Lemma 2.5, we may show ¢ preserves
rank-n projections in both directions by induction. The proof is complete. []

Lemma 3.4. Suppose ¢(I) = I. Then ¢ preserves the order as well as the orthogonality of projections in
both directions.

Proof. Let E is a nonzero projection and ¢ (E) = P. For any nonzero projection F <E, Put Q = ¢(F).
Note that FEF = EFE = F. Then both ¢ (F)@(E)¢(F) = ¢(F)P¢(F) and ¢(E)¢(F)@(E) = Pp(F)P are
nonzero projections. Under the direct sum decomposition H = PH & PL#, we have

7=(o o) v -3 G3)

It follows that Q1 is a nonzero projection. We easily have Q1 = 0 since Q is a projection. Thus, Q>
is also a projection. We next claim that Q; = 0.1f Q22 # 0, then there is a rank-1 projection Qg < Q22
such that QQyQ = Q. We then have that ¢ ~1(Qy) is a rank-1 projection such that Fo~'(Qg)F =
E@~1(Qo)E = ¢~ 1(Qp) # 0. However, PQyP = 0. This is a contraction. Hence, Q < P. That is, ¢ pre-
serves the order of projections. We note that ¢ ! has the same properties. Thus, ¢ preserves the order
of projections in both directions.

To prove the second assertion, we claim a fact: If P and Q are projections such that both PQP
and QPQ are projections, then QP = PQ. In fact,put H = PH & (I — P)H and P = <(I) 8) LetQ =

<8}% 8;§>.Then Q11 isaprojection. Note that QPQ = <Q1%1é“ 8};%2)& followsthatQ1Q12 = 0
from the fact that QPQ is a projection. This means that PQP < QPQ. By the symmetry, we have that PQP =
QPQ. Moreover, P — QPQ = P — PQP > 0. Then Q(P — QPQ)Q = 0. It follows that (P — QPQ)Q = 0,
that is PQ = QPQ. Thus, PQ = QP. Now we may use the proof of Lemma 2.6 to complete the proof if
dimH > 3.

Suppose dim H = 2.Itis known that ¢ preserves rank-1 projections in both directions from Lemma
33.LetE=e®eand F = f ® f be two rank-1 projections such that EF = 0 and E 4+ F = I. Without
loss of generality, we may assume that ¢ (E) = E. We claim that ¢(T)? = IifT?> = I.If o(T)?> = Qisa
rank-1 projection, then ¢(T) = «Q for some o with @® = 1and Tg ™' (Q)T is also a rank-1 projection.
Thus, so is [ — T~ (Q)T = T(I — ¢~ 1(Q))T. It follows that both ¢(I — ¢~ 1(Q)) and ¢(T)p(I —
© 1(Q)e(T) = Qp( — ¢~ 1(Q))Q must be rank-1 projections. Hence, ¢ (I — ¢~ '(Q)) = Q. This is
a contradiction. Thus, ¢(T)? = I.

If ¢(F) & F, then there is a nonzero constant z such that ¢(E(z)) = F, where E(z) = ﬁ
(; |zz|2) is defined in the proof of Lemma 2.7. Put P(z) = (é é) andT = ((1) _Zl>.Then T2 =1
suchthat TPT = E.Itisknownthatp(P) = (a;
bn b
by b2

aiz) by considering EPE = Eand E(z)PE(z) = E(z).

On the other hand, let ¢(T) = (
oM =1.

).Then b1 = 1,b1zby; = 0and b3, = 1 since ETE = E and
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Suppose by; = 0. Then by, = —1. Note that
1+ byaa b%,ay —a
oM p(P)p(T) = ( +_alz 21 %Z—Zlb 12)
21 12021

is a projection. Then we have that biyay; is real such that both 1 + byyay; and 1 — bypap; are in
[0, 1]. This is impossible unless bi,a,7 = 0. Whenever either a,; = 0 or b1y = 0, it does follows that
@(P) = I. This is a contradiction. If by = 0, we can induce a contradiction, too. Hence, ¢(F) = F.
Therefore ¢ preserves orthogonality of projections in both directions. The proof is complete. [

We again have that ¢ is a bijection on the set of all projections of B(*) preserving orthogonality in
both directions and there is a unitary or an anti-unitary operator U on A such that

@(E) = UEU*
for any projection E € B(#) from the Uhlhorn’s theorem in [18] if dim #+ > 3.

Lemma 3.5. Suppose that dim H > 3 and ¢ (E) = E for any projection E € B(*#). Then there is a complex
function f (z) on C such that ¢ (zE) = f(z)E for any projection E € B(H).

Proof. First let e € 7 be any unit vector. Let E = e ® e be a rank-1 projection and take any nonzero
projections P and Q such that] = P @ E @ Q. Let H = P(H) & E(H) & Q(+). We claim that there is
a complex function f,(z) on C \ {0, 1} such that (P + zE) = P + f.(z)E forany z € C \ {0, 1}. Let

Bi1 Bz B3
@(P+2zE) = |Ba1 By Ba|.
B3y B3z B33

As in the proof of Lemma 2.7, we know that for any nonzero projection Py < P, we have Py(P +
zE)Py = Py, which implies that PgB11Pg is a nonzero projection. It easily follows that By; = I. Again
we have (P 4 zE)P(P + zE) = P. An elementary calculation shows that the nonzero projection ¢ (P +
ZE)Pp (P + ZzE) is of the form

I Bz B3
Byt * * .
Bs3q * *

Then Bi; = 0, B3 = 0, By; = 0 and B3; = 0. On the other hand, we have (P 4+ Q) (P + zE)(P +
Q) = P. It follows that B33 is a projection. If B33 # 0 then Q@ (P + zE)Q = 0 & 0 @ Bs3 is a nonzero
projection. However, Q (P + zE)Q = 0. This is a contradiction. Hence, B33 = 0. It is trivial that By, is a
scalar dependent on z. Thus,

I 0 0
@(P+2zE) = |0 By B].
0 Bsp 0
Similarly we have foranyw € C \ {0, 1},

0 Ap O
9(Q+WwWE)=|Ax Axp O
0 0 I

with Ay, # 0. For any z # 0, we have that (ﬁE + Q) (P + zE) (ﬁE + Q) = E. Again by an ele-
mentary calculation, we have
( 1 1 * * *
o | —=E+ Q) @(P + zE) ¢ (E + Q) = |* * AxBas | .
\/E ﬁ k B32A22 0

Note that E is of rank-1 and Ay # 0.Then B3, = 0and By3 = 0.Setf.(z) = By.Thus, ¢ (P + zE) =
P + f.(z)E. We also easily get
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1 2
fe(@ (fe <ﬁ>> =1 (3.1)

forallz € C\ {0, 1}. Similarly we have that ¢ (zE 4+ Q) = f.(2)E + Q.
On the other hand, we can similarly show that ¢ (P + zE + Q) = P + g.(z)E + Q for some constant
g.(2) € ¢\ {0, 1} by use of the facts that F(P 4 zE 4+ Q)F = F for any nonzero projection F <P + Q

and (P + zE + Q)(P + Q)(P + zE + Q) = P + Q. Note that (P + \%E) (P +zE + Q) <P + ﬁE) =

P + E. It easily follows that f,(z) = g.(2).
Put

i G2 Gs
Q@E)=|Ca G C3
G (G G
andw = f, (%).Notethat (P + %E + Q) (zE) (P + ﬁE + Q) = (P + %E) (2E) (p + \%E) =
E,whichimplies thatboth (P + WE + Q)@ (zE) (P + WE + Q) and (P 4+ wWE)@(zE) (P + wE) are nonzero
projections. Now

Cn wCqa Ci3
(P+WwE+ QoEE)(P+WE+Q) = (WC21 w2Cyy WC23) (3.2)
Cn wCs; Cs3
and
Cn wCz 0
(P + WE)@(zE)(P 4+ WE) = (WC21 w2Cpy O) (3.3)
0 0 0

Then Cy1 >0, wCy = (WCq2)*, C31 = Cj5 and w3y = (WCy3)* by (3.2) and (3.3). It follows that
both Cy3 and Cy3 are O from the facts that Cy; = Clzl + |w|2C12C;"2 + Ci3Cfy = C121 + |w|2C12CT2 and
w2Cyp = |W|C1aCy + [W]*C22CS, + |W]?Ca3CS5. We also have C33 is a projection from (3.2). Thus,
(33 = Osince Q(zE)Q = 0. We symmetrically have Cy; = 0, Cj2 = 0, ;1 = 0and w?Cyy = 1, that s,
fe(%ﬁ)zsz = 1and ¢(zE) = CnE = fe(2)E from (3.1).

Put ¢ (zl) = A, foranyz € C \ {0, 1}.Itis known that A, ( o (le> E) A; is a nonzero projection since

(zD) (leE> (zI) = E. Note that

(2 =s () oo

It follows that Lfe (le)) lAzellllAfe]l = 1 and

1
Aje=|=————|Ae#0 (3.4)

fe (%) IAze]?

. 1 1 _ 1
for any unit vector e € H. On the other hand, (—ZE> (2l) ($E> = E. It follows that (fe <Tﬁ> E)

2
A, (fe (\%) E) is a nonzero projection. That is, (fe <i>) (Age,e) = 1.Thus,

z

1
(Aee)= ————— =f(2) #0 (3.5)
(#(%))

for any unit vector e € H form (3.1). We recall that the numerical range of an operator A € B(H) is the
set W(A) = {(Ax,x) : x € H, ||x]| = 1}(cf.[7]). It follows that 0 ¢ W(A;) = {fo(2) : e € H, |le] = 1}
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and therefore A, is injective. Moreover,A 1_A,A 1 isanonzero projection since (i1> (zI) <i1> =1
WA vz vz
It immediately follows thatA%[AzA%f = I and A; is invertible. Thus,
z z

-2
A, = (Ai> . (3.6)
N
From (3.4) we know that A} = A,A, for some constant A, € C by Theorem 2.3 in [2], that is,
A, = ———— isindependent on e. Thus, forany z € C \ {0, 1},
fe( &) lAzel?
Fh@ =A@ = >0
z) = z) = —>0.
o FE T A el

Therefore )\%AZ is a positive operator for any z € C \ {0, 1}. Let 8 be the constant such that D =
BA 1 >0.We know that

(e (k))zfe(z) = (A%e, e>2 (Aze,e) = (A%e, 6)2 ((AJ])_Z e, e) =1 (3.7)

for any unit vector e € H from (3.1). Then D is an invertible positive operator such that
(De,e)?(D2%e,e) = 1 for any unit vector e € % from (3.7). We next claim that D = dI for some
positive constant d € C. In fact, for any unit vector e € #, (De, e)*>(D%e,e) = (De,e)?||D"'e||? = 1.
Then (De, e)||D~'e|| = 1.Thus, (De, e)(D~ e, e) <(De, e)||D"'e|| = 1.Ontheotherhand,1 = (e, e)*> =

(D%e, D—%e)2 < HD%eH2 HD—%eH2 — (De,e)(D™ e, ) < 1.1t follows that

(De, e)(D_le, e) =(ee)=1

for any unit vector e € H. Thus, D = dI for some positive constant d from Theorem 3.4 in [6].
Therefore A, is a multiple of I and f,(z) is a constant f(z) independent on e for any z € C \ {0, 1}.

In particular, ¢ (zI) = f(z)I and ¢(E) = f(z)E forany z € C \ {0, 1} and any rank-1 projection E.
Let F be any nonzero projection and set ¢ (zF) = F,foranyz € C \ {0, 1}.It follows thatF, = f(z)P,

for some nonzero projection P, from the fact that (\lﬁ[) (zF) (\%I) = F and (3.1). Take any rank-1

projection E < F. We have that (\%E) (zF) (\%E) = E.Then

(G ()= o)

is a nonzero projection. Hence, E < P,. Thus, we have F < P;,. In fact we must have F = P,. Otherwise,
if there is a rank-1 projection E < P, such that EF = FE = 0, then ¢~ (f (\%) E) o 1 (f(@)P)p !

(f (\%) E) = <ﬁ£> (zF) (%E) = 0. However, (f <ﬁ) E) f(2)P,) <f (ﬁ) E) = E is a rank-1
projection. This is a contradiction. Hence, P, = F and ¢(zF) = f(z)F for any projection F and any
ze C\ {0, 1}.

We define f(0) = O and f(1) = 1 again, thenf is a complex function on C such that ¢ (zE) = f(z)E
for any projection E and z € C. The proof is complete. [

Proof of Theorem 3.1. We firstly suppose that dim 7 > 3. By use of the Uhlhorn’s theorem in [18], we
may assume that ¢ (E) = E for any projection. Then ¢ (zE) = f(z)E for any projection from Lemma 3.5.
We claim that ¢ (zE + wF) = f(z)E + f(w)F for any nonzero projections E and F with EF = 0 and any
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z,w € C.ltis trivial that the claim holds if either zw = 0 or z = w. Thus, we may assume thatz & w
and zw # Onext.PutP =1 — (E+ F), H = EH & FH & PH and

Chn G Cg3
@@ZE+WwF) =[Ca1 G G
Gr G2 G
It is easily shown that Cy; = f(z)I and Gy = f(w)I by the facts (\%E) (zE + wWF) (%E) = Fand
(ﬁF) (zE + wF) (ﬁF) = F. Again we note that (\%(E + P)) (zE + wF) (\%(E + P)) = Eand
@ (%(E + P)) @(ZE + WF)g (ﬁ(E + P))
=f (%) (E + P)p(ZE + WF)f (ﬁ) (E+P)

(e}
&,’
/N

Sl
——
N
O
w

\2 (Cu 0 C13) 1
—f <7> 0 0 0= 0 0 0
V) \ey 0 o ; <¢>2 G o g (L)Z c
ﬁ 31 ﬁ 33

2
by (3.1). Thus,C13 = 0,C3y = Oand f <%) Cs3 is a projection. It is known that C33 = 0 by a simple
calculation. Then we also have C,3 = 0 and C3; = 0. Moreover, (zE + wWF) (leE) (zE + wF) = E and
f@?f () = 1by(31). Note that

] 1 f@f ()€ 0
@ (zE + WF) (f (;2) E) @(ZE +WF) = | f(2)f (zlz) Cn f (le) CnCp2 O
0 0 0

Then C;; = 0 and C; = 0. That is ¢ (zE + WF) = f(z)E + f(w)F.
Let A € B(). For any unit vector x € M, if (Ax, x) # 0, then J%AJ% = x ® x. This implies
2
that ¢ <J’%) Ao <\/’%> = (f <\/ﬁ>) (p(A)x, x)(x ® x) is a nonzero projection. It fol-
2

lows that (f <\/ﬁ>) (p(A)x,x) = 1 and Thus, f((Ax,x)) = (¢(A)x,x) from (3.1). If (Ax,x) =0,
then we know (¢ (A)x, x) = 0 by considering ¢ ~!. Therefore,

f((Ax,x)) = (p(A)x, x) (3.8)
for any unit vector x € ‘H. In particular, f((Ex, x)) = (Ex, x) for any projection E, which implies that

f(p) = pforall0 < p < 1.Take any unitvectorse, f € Hsuchthat(e,f) = 0.SetE=e®e,F=fQ f

and A = zE + wF forallzzw € C.Forany 0 < A < 1, putx = Ve + /1= Af. Then ||x|| = 1 and
(Ax,x) = Az + (1 — M)wand (¢(A)x,x) = Af(z) + (1 — A)f (w). Then we have

fAz4+ A =w) =Af(2) + (1 = 1)f(w) (3.9)

for all z,w € C by (3.8). For any real number a > 1, we have that (l — %) 0+ %a = 1. It now easily
follows that f(a) = a from (3.9). Similarly, f(a) = a and f(ai) = af (i) for any real number a. On the
other hand, we have (f(i))?> = —1 from (3.1). Then f(i) = i or f(i) = —i.

Case 1. f(i) = i. Then we easily have f(z) = z for all z € C from (3.9). It follows that (Ax, x) =
(¢ (A)x, x) for any unit vector x € H. Thus, p(A) = Aforall A € B(H).

Case 2.f(i) = —i.Then we easily have f(z) = zforallz € C from (3.9). It follows that (¢ (A)x,x) =
(Ax, x) = (A™x, x) for any unit vector x € H. Thus, ¢(A) = A* for all A € B(H).
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If dimH = 2, then by an elementary treatment, we can show that ¢ satisfies the condition of
the Wigner’s fundamental theorem (cf. [13,19]). For completeness, we give the elementary proof. In
fact, we claim that there is a function on C such that ¢(zE) = f(z)¢(E) for any projection E. Let
E=e®eandF = f ® f be arbitrary two rank-1 projections such that EF = 0. By Lemma 3.4, ¢ (E)
and ¢(F) are orthogonal such that ¢ (E) + ¢(F) = I. We may assume that ¢ (E) = E and ¢(F) = F.
There is a function f, on C\ {0, 1} satisfying (3.1) such that ¢(zE + F) = f.(2)E 4+ F for any z €

C\ {0, 1} by considering F(zE + F)F = (zE 4 F)F(zE 4+ F) = F.Put@(zE) = <§; i;i).ltis known

that ¢ (zE) is of rank-1 and x,, > 0 from the fact that (ﬁE + F) (zE) (\%E + F) = E.Ifxy; > 0,then

1 1 _ 1 1 L _ -1 1 _
<MF) ¢ (zE) (MF> = (E+ (x2)%F) (MF> (E+ ()4 F) =F. Put A=¢ (MF> -
<a11 alz) and B = ¢! (E + (x22)%F). Then B = E + bF for some nonzero constant b just as we

azr a4z
(an)’z  ayapz

have proved by considerin ~1. Thus, both AzEA:(
P v & ¢ (zE) a11a1z  ax10a12z

) and BAB =

a appb L S .
<a Hb a ]2b2> are nonzero projections, which implies that a;; > 0 and therefore z > 0. This means
21 22

that there is a constant f, (z) such that ¢ (zE) = f.(z)E for any non-positive complex number z. By con-
sidering ¢~ and replacing E by F, we also have that ¢! (wF) = gr(w)F for any non-positive complex

number w. In particular, <p’1 (—J}EF> =g (—ﬁ) F. However, <— J}EF> @(zE) <_J35F> =
F while ¢! (— J}EF> (zE)p ! <— J}EF) = 0. This contradiction shows that there is a constant
fe(z) such that ¢(zE) = f.(z)E for any nonzero complex number z. As in the proof of Lemma 3.5,
we know that f,(z) is a constant f(z) independent on e and ¢(zE) = f(z)¢(E) for any z € C. Again
by considering ¢ (zE + WF) = f(2)@(E) 4 f(w)@(F), it follows that f(a) = a for all a € (0, +00) as
above. As in the proof of Lemma 2.7, put ¢(E(z)) = E(g(z)) for any z. Since E((1 + |z|*)E(z))E =

E, Ef(1 + |z|?)@(E(2))E = 1172(22')2|ZE is a nonzero projection, which implies that |g(z)| = |z|. Thus,

tr(EE(z)) = tr(¢(E)@(E(2))). By the Wigner's fundamental theorem (cf. [13,19]), there is a unitary or
an anti-unitary operator U on H such that ¢ (E) = UEU* for all rank-1 projection E. By repeating the
preceding treatment when dim % > 3, we have the desired result. The proof is complete. []
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