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1. Introduction

In the last few decades, many researchers have studied preserver problems on operator algebras

motivated by theory and applications. For example these problems are strongly connected to the

Kaplansky’s problem concerning the characterization of invertibility preserving linear maps. While a

lot of interesting results have been obtained, there are still many open problems. It is well-known that

nilpotents, idempotents and projections are all very important subsets in operator algebras and related

preserver problems that refer to those subsets have been studied (cf. [1,15–17]. In recent years, several

authors have considered preserver problems concerning certain properties of products of operators

and some linear and non-linearmaps preserving commutativity, spectrum, spectral radius, nilpotency
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or idempotency of products of two operators on operator algebras are extensively studied and some

interesting characterizations aregiven (cf. [3–5,8–12,14] and the references therein).Weconsidermaps

preserving operator pairs whose products are nonzero projections on the algebra of all linear bounded

operators on a complex Hilbert space. We have considered linear maps with this property in [11]. In

this paper, we consider those not necessarily linear maps preserving operator pairs whose products

or triple Jordan products are nonzero projections in both directions. We will find that the operator

pairs whose products or triple Jordan products are nonzero projections are isometric invariants of

B(H).
Let H be a complex Hilbert space with dimH � 2 and let B(H) be the algebra of all bounded

linear operators on H. dimH denotes the dimension of H. For a subset S of H, [S] denotes the closed

subspace of H spanned by S. For every pair of vectors x, y ∈ H, (x, y) denotes the inner product of

x and y. The symbol x ⊗ y stands for the rank-1 linear operator on H defined by (x ⊗ y)z = (z, y)x
for any z ∈ H. The rank-1 operator x ⊗ x is a projection for any unit vector x. Rank-1 operator x ⊗ y

is idempotent (resp. nilpotent) if (x, y) = 1 (resp. (x, y) = 0). For a finite rank operator A we denote

by rankA the rank of A. Given two projections P, Q ∈ B(H), we say P �Q if PQ = QP = P and we

say P < Q if P �Q and P /= Q . Projections P and Q are orthogonal if PQ = QP = 0. We recall that

a conjugate linear bijective map U on H is said to be anti-unitary if (Ux, Uy) = (y, x) for all x, y ∈
H. Throughout this paper, we will denote by I the identity operator on any Hilbert space without

confusion.

In this paper, we consider surjective maps on B(H) which preserve operator pairs whose products

or triple Jordan products are nonzero projections in both directions.

2. Maps preserving operator pairs whose products are nonzero projections

Let ϕ be a map on B(H). If for any A, B ∈ B(H), ϕ(A)ϕ(B) is a nonzero projection whenever AB

is, then we say that ϕ preserves operator pairs whose products are nonzero projections. If for any

A, B ∈ B(H),ϕ(A)ϕ(B) is a nonzero projection if and only ifAB is, thenwe say thatϕ preserves operator

pairs whose products are nonzero projections in both directions. Of course ϕ preserves operator pairs

whose products are nonzero projections in both directions if and only if both ϕ and ϕ−1 preserve

operator pairs whose products are nonzero projections if ϕ is bijective.

Theorem 2.1. Let H be a Hilbert space with dimH � 2 and let ϕ be a surjective map on B(H). Then ϕ
preserves operator pairs whose products are nonzero projections in both directions if and only if there exist

a unitary or an anti-unitary operator U on H and a constant λ with λ2 = 1 such that ϕ(A) = λU∗AU for

all A ∈ B(H).

Wenote that the sufficiency is clear. To prove the necessity of this theorem, we need some lemmas.

We next assume that ϕ is a surjective map on B(H) preserving operator pairs whose products are

nonzero projections in both directions.

Lemma 2.2. Let A, B ∈ B(H) be nonzero operators. Then the following assertions are equivalent:
(i) A = B.
(ii) For every T ∈ B(H), BT is a nonzero projection whenever AT is.
(iii) For every T ∈ B(H), TBT is a nonzero projection whenever TAT is.

Proof. The implications from (i) to both (ii) and (iii) are obvious.

(ii) ⇒ (i) Take any x ∈ H. Suppose that Ax /= 0. Put T = x⊗Ax

‖Ax‖2 , then AT is a nonzero projection.

This implies that BT is. Note that BT = Bx⊗Ax

‖Ax‖2 so that Ax = Bx. If Ax = 0, then there is a vector y ∈
H such that Ay /= 0 and A(x + y) /= 0 since A /= 0. Then by the proof above we have Ay = By and

A(x + y) = B(x + y), which means that Bx = 0. Thus, A = B.
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(iii) �⇒ (i) Let x ∈ H be a unit vector. If (Ax, x) /= 0, then x⊗x√
(Ax,x)

A x⊗x√
(Ax,x)

= x ⊗ x is a nonzero

projection, where
√

(Ax, x) is a square root of (Ax, x). It follows that x⊗x√
(Ax,x)

B x⊗x√
(Ax,x)

= x ⊗ x and then

(Ax, x) = (Bx, x). Suppose that (Ax, x) = 0. We may take a unit vector sequence {xn} in H such that

limn→∞ xn = x and (Axn, xn) /= 0. Thus, we also have (Bx, x) = 0 = (Ax, x). Hence, A = B. The proof

is complete. �

Corollary 2.3. ϕ is bijective.

Proof. This follows from Lemma 2.2. �

Lemma 2.4. ϕ(0) = 0 and ϕ(I) = I or ϕ(I) = −I.

Proof. Let A ∈ B(H) such that ϕ(A) = 0. If A /= 0, then there exists a vector x ∈ H such that Ax /= 0.

Let B = x⊗Ax

‖Ax‖2 . ThenAB is a nonzero projection,which implies thatϕ(A)ϕ(B) also is. Butϕ(A)ϕ(B) = 0,

a contradiction. Thus, A = 0.

Suppose ϕ(I) = A. If A /∈ CI, then there exists a nonzero vector x ∈ H such that x and Ax are

linearly independent. Put B = x⊗Ax

‖Ax‖2 , then AB is a nonzero projection. So is ϕ−1(A)ϕ−1(B) = ϕ−1(B).

Moreover, ϕ−1(B)ϕ−1(B) = ϕ−1(B) is a nonzero projection, too. Thus, B2 is a nonzero projection.

Now B2 = (x,Ax)
‖Ax‖4 x ⊗ Ax. Then x and Ax are linearly dependent. This contradiction shows that A =

aI for some constant a. A2 = a2I must be a nonzero projection. Then a2 = 1 which completes the

proof. �

We may replace ϕ by −ϕ if ϕ(I) = −I. Without loss of generality we may assume that ϕ(I) = I.

Then ϕ preserves nonzero projections in both directions. We observe that if projections P, Q satisfy

that both PQ and QP are projections, then they commute. Moreover, if rankP = 1 and PQ , QP are both

nonzero projections, then P �Q .

Lemma 2.5. Let ϕ(I) = I. Then ϕ preserves rank-n projections in both directions for any n� 1.

Proof. Let E be a nonzero projection. Thenϕ(E) = P is a nonzero projection, too. For any z ∈ C\{0, 1},
put A(z) = E + z(I − E) and B(z) = ϕ(A(z)). We will complete the proof by three steps.

Step 1. ϕ preserves rank-1 projections in both directions.

Let E = e ⊗ e for some unit vector e ∈ H. Since A(z)E = EA(z) = E is a nonzero projection, both

B(z)P and PB(z) are, too. Under the direct sum decompositionH = PH ⊕ P⊥H, we have P =
(
I 0

0 0

)

and B(z) =
(
B11(z) B12(z)
B21(z) B22(z)

)
. Then B(z)P =

(
B11(z) 0

B21(z) 0

)
and PB(z) =

(
B11(z) B12(z)

0 0

)
. It fol-

lows that both B12(z) and B21(z) are 0. It is also known that B11(z) is a nonzero projection.

Put P(z) = PB(z) = B(z)P. Then P(z) is a nonzero projection with P(z) � P and P(z)P = PP(z) =
P(z). Let E(z) = ϕ−1(P(z)). It is known that E(z) is a nonzero projection by assumption. Then E(z)E =
ϕ−1(P(z))ϕ−1(P)andEE(z) = ϕ−1(P)ϕ−1(P(z))arenonzeroprojections.Hence,E(z)E = EE(z) = E.

Since P(z)B(z) = B(z)P(z) = P(z), both E(z)A(z) and A(z)E(z) are nonzero projections, too. How-

ever, E(z)A(z) = E(z)E + z(E(z) − E(z)E) for any z ∈ C\{0, 1}. Then E(z) − E(z)E = 0, that is E(z) =
E(z)E = E and therefore P(z) = P for any z ∈ C\{0, 1}. This implies that B(z) =

(
I 0

0 B22(z)

)
. If

rankP�2, then foranyrank-1projectionQ with0<Q<P,wesimilarlyhave thatbothϕ−1(Q)ϕ−1(P)=
ϕ−1(Q)E and ϕ−1(P)ϕ−1(Q) = Eϕ−1(Q) are equal to E. On the other hand, QB(z) = B(z)Q = Q .

So for any z ∈ C\{0, 1}, we have ϕ−1(Q)A(z) = ϕ−1(Q)E + z(ϕ−1(Q) − ϕ−1(Q)E) is also a nonzero

projection. Thus, ϕ−1(Q) = ϕ−1(Q)E = E and Q = ϕ(E) = P, a contradiction. Therefore, rankP = 1.

Step 2. B(z) = ϕ(A(z)) = P + (I − P)B(z)(I − P) for for any nonzero projection E.
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Since A(z)E = EA(z) = E are nonzero projections, both B(z)P and PB(z) are nonzero projections,

too. It easily follows that B(z) = PB(z)P + (I − P)B(z)(I − P) such that P(z) = PB(z) = PB(z)P is a

nonzero projection. Since P(z)B(z) = P(z) and P(z)P = P(z) are nonzero projections, both

ϕ−1(P(z))A(z) and ϕ−1(P(z))E are also nonzero projections. However,

ϕ−1((z))A(z) = ϕ−1(P(z))E + z(ϕ−1(P(z)) − ϕ−1(P(z))E),

which implies that ϕ−1(P(z)) = ϕ−1(P(z))E for any z ∈ C\{0, 1}. Therefore, ϕ−1(P(z)) � E.

For any rank-1 projection E1 � E, Step 1 shows that ϕ(E1) is a rank-1 projection. Since E1E =
EE1 = E1, ϕ(E1)ϕ(E) and ϕ(E)ϕ(E1) are nonzero projections and rank(ϕ(E1)ϕ(E)) � rankϕ(E1) = 1.

We thus have that rank(ϕ(E1)ϕ(E)) = 1, that is ϕ(E1)ϕ(E) = ϕ(E1). It follows that ϕ(E1) � ϕ(E) =
P. Note that E1A(z) = E1 = A(z)E1, so ϕ(E1)B(z) is a rank-1 projection. ϕ(E1)P(z) = ϕ(E1)B(z) is

a rank-1 projection. Thus, ϕ(E1) � P(z) and E1ϕ
−1(P(z)) is also a nonzero projection. Since E1 is

of rank-1, E1 � ϕ−1(P(z)). We can get E � ϕ−1(P(z)) from the arbitrariness of E1. Thus, we have

E � ϕ−1(P(z)) � E, that is E = ϕ−1(P(z)). Thus, P = ϕ(E) = P(z), which means P = PB(z). Hence,
B(z) = P + (I − P)B(z)(I − P).

Step 3. ϕ preserves rank-n projections in both directions.

Step 1 shows that this assertion holds when n = 1. If dimH = 2, then the proof is complete. We

assume that dimH � 3.

Now we assume that ϕ preserves rank-k projections in both directions for any k � n and we prove

that ϕ preserves rank-(n + 1) projections in both directions. Let E be a rank-(n + 1) projection, then
rankP � n + 1. ϕ(A(z)) = B(z) = P + (I − P)B(z)(I − P) from Step 2. Take any projection Q � P with

rankQ = n + 1. Then rankϕ−1(Q) � n + 1. Since QP = PQ = Q , both ϕ−1(P)ϕ−1(Q) = Eϕ−1(Q)
and ϕ−1(Q)ϕ−1(P) = ϕ−1(Q)E are nonzero projections. We also have that QB(z) = B(z)Q = Q ,

which implies that ϕ−1(Q)A(z) is a nonzero projection, too. However, ϕ−1(Q)A(z) = ϕ−1(Q)E +
z(ϕ−1(Q) − ϕ−1(Q)E), so ϕ−1(Q) = ϕ−1(Q)E � E. By the inductive assumption, rank E = n + 1,

we have ϕ−1(Q) = E and Q = ϕ(E) = P. Hence, rankP = n + 1. Thus, ϕ preserves rank-(n + 1)
projections and so does ϕ−1. The proof is complete. �

Lemma 2.6. Let ϕ(I) = I. Then ϕ preserves the order as well as the orthogonality of projections in both

directions.

Proof. We firstly show that ϕ preserves the order of projections in both directions. Let E be a nonzero

projection and ϕ(E) = P. Take any nonzero projection F � E and set Q = ϕ(F). Then FE = EF = F . So

ϕ(F)ϕ(E) = QP and ϕ(E)ϕ(F) = PQ are nonzero projections. Hence, PQ = QP.

Take any rank-1 projection Q1 �Q . Then ϕ−1(Q1)F is a rank-1 projection by Lemma 2.5. Thus,

ϕ−1(Q1) � F � E, whichmeans thatϕ−1(Q1)E is a rank-1 projection. It follows thatQ1P is also a rank-1

projection. Thus, Q1 � P. By the arbitrariness of Q1, we have Q � P.

Next we prove that ϕ preserves the orthogonality of rank-1 projections in both directions. Suppose

dimH � 3and there areorthogonal unit vectors e1, e2 ∈ H such thatϕ(e1 ⊗ e1)andϕ(e2 ⊗ e2)arenot
orthogonal. Takeanyunit vector e3 ∈ H  {e1, e2}.Weknowthat there areunit vectors {fi : i = 1, 2, 3}
such that ϕ(ei ⊗ ei) = fi ⊗ fi for i = 1, 2, 3 by Lemma 2.5. It is easy to see that f1, f2 and f3 are linearly

independent. LetPij (resp.Qij) be theprojection fromHonto [ei, ej] (resp. [fi, fj]) (1� i < j � 3). Thenwe

have that Qij = ϕ(Pij) for all 1� i < j � 3 from Lemma 2.5. It follows that Q12Q13 = Q13Q12 = f1 ⊗ f1

since P12P13 = P13P12 = e1 ⊗ e1. Put f2 = αf1 + y and f3 = βf1 ⊕ z for some y, z ∈ {f1}⊥. It is clear

that Q12y = y and Q13z = z. We then have that α /= 0 by the assumption and Thus, f1 = α−1(f2 − y).
Note that βf1 = Q12Q13f3 = Q12(βf1 + z) = βf1 + Q12z. Then Q12z = 0, which implies that y ⊥ z.

Hence, f3 = βα−1f2 − βα−1y + z. We similarly have that Q12Q23 = Q23Q12 = f2 ⊗ f2. Thus,

Q23Q12f3=Q23Q12(βα−1f2 − βα−1y + z)

=Q23(βα−1f2 − βα−1y)

=βα−1f2 − βα−1Q23y

=Q12Q23f3 = Q12f3
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=Q12(βα−1f2 − βα−1y + z)

=βα−1f2 − βα−1y.

It follows that βα−1Q23y = βα−1y. Note that f1 /∈ Q23H = [f2, f3]. Thus, we have that β = 0, that

is f1 and f3 = z are orthogonal. Note that y⊥z. We then have that f2 and f3 are orthogonal.

On the other hand, we also have that Q13Q23 = Q23Q13 = f3 ⊗ f3. Then Q13Q23f1 = 0. However,

Q13Q23f1 = Q13Q23(α
−1(f2 − y))

= α−1Q13Q23f2 = α−1Q13f2
= α−1Q13(αf1 + y)

= f1 + α−1Q13y = f1

since y ∈ {f1, z}⊥ = {f1, f3}⊥. This is a contradiction. Thus, f1 and f2 are orthogonal.

Suppose dimH = 2. It is known thatϕ preserves rank-1 projections in both directions fromLemma

2.5. Let E be a rank-1 projection and P a rank-1 idempotent such that PE = E (resp. EP = E). We claim

that ϕ(P) is a rank-1 idempotent such that ϕ(P)ϕ(E) = ϕ(E) (resp. ϕ(E)ϕ(P) = ϕ(E)). In fact, we

may assume that E /= P, E = e ⊗ e and P = e ⊗ x with (e, x) = 1. Note that E and ϕ(E) are unitarily

similar. Without loss of generality, we may assume that ϕ(E) = E. Take a unit vector f ∈ H such that

(e, f ) = 0. Then P =
(
1 ξ
0 0

)
(ξ /= 0). Put A = ϕ(P) =

(
a11 a12
a21 a22

)
. It is known that a11 = 1 and

a21 = 0 since PE = E. It is enough to show that a22 = 0. Otherwise, if a22 /= 0, thenA is invertiblewith

inverse A−1 =
(
1 −a12a

−1
22

0 a
−1
22

)
. We also have that ϕ−1(A−1) =

(
1 x

0 y

)
since A−1E = E. However,

ϕ−1(A−1)P = P is not a projection. This is a contradiction since A−1A = I. Hence, a22 = 0. Note that

ϕ−1 has the same property.

Suppose that F is a rank-1 projection such that EF = 0. As above we may assume that ϕ(E) = E.

If ϕ(F) /= F , then ϕ(F) = 1

1+|z|2
(
1 z

z̄ |z|2
)

for some nonzero constant z. Put Q =
(
1 0

z̄ 0

)
. Then

Qϕ(F) = ϕ(F), EQ = E and P = ϕ−1(Q) is a rank-1 idempotent just as we have proved such that

PF = F and EP = E. This is a contradiction. Therefore ϕ(F) = F . Consequently, ϕ(E) and ϕ(F) are

orthogonal whenever E and F are.

Now let E and F be two orthogonal projections and set P = ϕ(E) and Q = ϕ(F). If P and Q are

not orthogonal, then there are two rank-1 projections P1 � P and Q1 �Q such that P1 and Q1 are not

orthogonal. However, E1 = ϕ−1(P1) � E and F1 = ϕ−1(Q1) � F . This is a contradiction. Thus, P and Q

are orthogonal. By considering ϕ−1, we know that ϕ preserves orthogonality of projections in both

directions. The proof is complete. �

If dimH � 3, then ϕ is a bijection on the set of all projections of B(H) preserving orthogonality in

both directions. It follows from the Uhlhorn’s theorem in [18] that there is a unitary or an anti-unitary

operator U on H such that

ϕ(E) = UEU∗

for any projection E ∈ B(H). Next lemma shows that this form holds when dim H = 2 by use of the

Wigner’s fundamental theorem (cf. [13,19]).

Lemma 2.7. Suppose that dimH = 2 and ϕ(I) = I. Then there is a unitary or an anti-unitary operator U

on H such that ϕ(E) = UEU∗ for any projection E ∈ B(H).

Proof. We firstly claim that there is a function on C such that ϕ(zP) = f (z)ϕ(P) for all z ∈ C and any

idempotent P.

Let E = e ⊗ e and F = f ⊗ f be arbitrary two rank-1 projections such that EF = 0. By Lemma

2.6, ϕ(E) and ϕ(F) are orthogonal such that ϕ(E) + ϕ(F) = I. We may assume that ϕ(E) = E and
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ϕ(F) = F . There is a function fe on C \ {0, 1} such that ϕ(zE + F) = fe(z)E + F from Step 2 in the

proof of Lemma 2.5 for any z ∈ C \ {0, 1}. It is clear that fe
(
1
z

)
= 1

fe(z)
. We show that ϕ(zE) = fe(z)E.

In fact, ϕ(zE)ϕ
(
1
z
E + F

)
= ϕ(zE)

(
fe

(
1
z

)
E + F

)
is a rank-1 projection. Put ϕ(zE) =

(
x11 x12
x21 x22

)
.

Then ϕ(zE)
(
fe

(
1
z

)
E + F

)
=
⎛
⎝fe

(
1
z

)
x11 x12

fe

(
1
z

)
x21 x22

⎞
⎠ is a rank-1 projection and thus, fe

(
1
z

)
x21 = x12.

Suppose that x22 /= 0. Put Q =
⎛
⎝ 0 0

fe

(
1
z

)
x21

x22
1

⎞
⎠, then ϕ(zE)Q = ϕ(zE)

(
fe

(
1
z

)
E + F

)
Q = ϕ(zE)

(
fe

(
1
z

)
E + F

)
, that is, ϕ(zE)Q is a rank-1 projection. However, ϕ−1(Q) =

(
0 0

y 1

)
for some y ∈ C

from the proof of Lemma 2.6 and zEϕ−1(Q) = 0. Thus, x22 = 0 andϕ(zE) = fe(z)E = fe(z)ϕ(E). Then

ϕ(zI)fe
(
1
z

)
ϕ(E) is rank-1 projection for any rank-1 projection E since (zI)

(
1
z
E
)

= E. This means that

ϕ(zI)ϕ(E) = fe(z)ϕ(E) for any rank-1 projection E. Thus, ϕ(zI) is a multiple of the identity I and fe(z)
is a constant f (z) independent on e such that ϕ(zI) = f (z)I. It is also shown that ϕ(zE) = f (z)ϕ(E)
for any rank-1 projection E by the arbitrariness of E.

On the other hand, if ϕ(E) = E and P(z) =
(
1 z

0 0

)
, then ϕ(P(z)) = P(h(z)) for some h(z) ∈ C

from the proof of Lemma 2.6 again. Note that a projection which is not orthogonal to E has the form

E(z) = 1

1+|z|2
(
1 z

z̄ |z|2
)

for some z ∈ C\{0, 1}. It follows that ϕ(E(z)) = E(g(z))for some g(z) ∈
C\{0, 1}. We have that h(z) = g(z) for all z ∈ C\{0, 1} since E(z)P(z) = E(z). Similarly we have that

ϕ(P(z)∗) = (ϕ(P(z)))∗for any z. Putϕ(wP(z)) =
(
y11 y12
y21 y22

)
. It is known that y11 = f (w) and y21 =

y22 = 0. On the other hand, ( 1
w
E(z))(wP) = E(z) for any w ∈ C\{0}. This means that 1

f (w)
ϕ(E(z))

ϕ(wP(z)) is a nonzero projection. It follows that y12 = f (w)g(z). Hence, ϕ(wP(z)) = f (w)ϕ(P(z)).
Put f (0) = 0 and f (1) = 1. Then ϕ(wP) = f (w)ϕ(P) for any idempotent P and any z ∈ C.

Next we assume that ϕ(E) = E and ϕ(F) = F again. Put N(w) =
(
0 0

w 0

)
for any nonzerow ∈ C.

We show that ϕ(N(w)) = N

((
g
(

1
w

))−1
)
. In fact, it is easily known that ϕ(N(w)) is of rank-1.

Otherwise, if ϕ(N(w)) is invertible, then there is a rank-1 projection Q and a constant α such that

ϕ(N(w))(αQ) is a rank-1 projection. SinceN(w)F = 0,ϕ−1(Q) = E(z) for some z ∈ C. It follows that

N(w)ϕ−1(αQ) = N(w)(βE(z)) is a rank-1 projection for some constant β . This is a contradiction.

Note that P
(

1
w

)
N(w) = E. This implies that ϕ(N(w)) = N

((
g
(

1
w

))−1
)
. Similarly, ϕ(N(w)∗) =

(ϕ(N(w)))∗. Thus, it is easily follows that |g(1)| = 1since (N(1))∗N(1) = E.Note that 1
z
P(z)N(1) = E.

Then f (z) = g(1)g(z) for all z. In particular, |f (z)| = |g(z)|. For any a > 0, b > 0, 1
ab
P(a)N(b) =

E. Then 1
f (ab)

ϕ(P(a))ϕ(N(b)) is a rank-1 projection. Thus, |f (ab)| = |g(a)||g
(
1
b

)−1 | = |f (a)||f (b)|,
that is |f | is multiplicative on [0,+∞). Again P(z)P(z)∗ = (1 + |z|2)E. We easily have that

f (1 + |z|2) = 1 + |g(z)|2 = 1 + |f (z)|2 and |f (a + b)| = |f
(
b
(
1 + a

b

))
| = |f (b)f

(
1 + a

b

)
| =

|f (b)|
(
1 + |f

(√
a
b

)
|2
)

= |f (a)| + |f (b)|. Thus, |f | is additive aswell asmultiplicative on [0,∞). Note

That f (1) = 1. Thus,wehave |f (a)| = a for alla ∈ [0,∞). It follows that |g(z)| = f (|z|) = |z| fromthe

equality 1 + (f (|z|))2 = f (1 + |z|2) = 1 + |g(z)|2 for all z ∈ C. Now for any rank-1 projection E(z),

we have tr(EE(z)) = tr(ϕ(E)ϕ(E(z))) = 1

1+|z|2 . By the Wigner’s fundamental theorem(cf.[13,19]),

there is a unitary or an anti-unitary operator U on H such that ϕ(E) = UEU∗ for all rank-1 projection

E. The proof is complete. �
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Lemma 2.8. Suppose that ϕ(E) = E for any projection E ∈ B(H). Then there is a complex function f (z)
on C such that ϕ(zE) = f (z)E for any projection E ∈ B(H).

Proof. If dimH = 2, then this is easy from Lemma 2.7. Next we assume that dimH � 3. First let e ∈ H
be a unit vector and E = e ⊗ e. Take any nonzero projections P and Q such that I = P ⊕ E ⊕ Q . Let

H = P(H) ⊕ E(H) ⊕ Q(H). We claim that there is a complex function fe(z) on C \ {0, 1} such that

ϕ(P + zE) = P + fe(z)E for any z ∈ C \ {0, 1}. Take any z ∈ C \ {0, 1}. It is elementary that

ϕ(P + zE) =
⎛
⎝ I 0 0

0 B22 B23
0 B32 B33

⎞
⎠

since P0(P + zE) = (P + zE)P0 = P0 is a nonzero projection for any nonzero projection P0 � P. On

the other hand, we have (P + zE)(I − E) = (I − E)(P + zE) = P. It follows that B23 = 0, B32 = 0 and

B33 is a projection. If B33 /= 0 then ϕ(P + zE)(I − (P + E)) = 0 ⊕ 0 ⊕ B33 is a nonzero projection.

However, (P + zE)(I − (P + E)) = 0. This is a contradiction. Hence, B33 = 0. It is trivial that B22
is a constant dependent on z. Set fe(z) = B22 for any z ∈ C \ {0, 1}. Thus, ϕ(P + zE) = P + fe(z)E.

Note that ϕ
(
P + 1

z
E
)

= P + fe(
1
z
)E and (P + zE)

(
P + 1

z
E
)

= P + E. It follows that fe

(
1
z

)
= 1

fe(z)
. A

similar way shows that ϕ(Q + zE) = Q ⊕ fe(z)E for any z ∈ C \ {0, 1}. Put

ϕ(zE) =
⎛
⎝C11 C12 C13
C22 C22 C23
C31 C32 C33

⎞
⎠ .

Note that
(
P + 1

z
E
)
(zE) = (zE)

(
P + 1

z
E
)

= E, which implies that
(
P + fe

(
1
z

)
E
)
ϕ(zE) is a

nonzero projection. A simple calculation shows that Cij = 0 for any i = 1 or j = 1. Replacing P by

Q , it is known that Cij = 0 for all i, j except i = j = 2. It is clear that C22 = fe(z). Thus, ϕ(zE) = fe(z)E.

For any z ∈ C \ {0, 1}, it is known that ϕ(zI)
(

1
fe(z)

E
)
is a nonzero projection since zI

(
1
z
E
)

= E. It

follows that ϕ(zI)e = fe(z)e for any unit vector e ∈ H. Therefore ϕ(zI) is a multiple of I and fe(z) is a
constant f (z) for any e ∈ H. In particular, ϕ(zI) = f (z)I and ϕ(E) = f (z)E for any z ∈ C \ {0, 1} and
any rank-1 projection E.

Let F be anynonzero projection and setϕ(zF) = Fz for any z ∈ C \ {0, 1}. It follows that Fz = f (z)Pz

for some nonzero projection Pz from the fact that
(
1
z
I
)
(zF) = F . Take any rank-1 projection E � F . We

have that
(
1
z
E
)
zF = E. Then ϕ

(
1
z
E
)
ϕ(zF) =

(
1

f (z)
E
)
(f (z)Pz) = EPz is a nonzero projection. Hence,

E � Pz . Thus, we have F � Pz . In fact wemust have F = Pz . Otherwise, there is a rank-1 projection E � Pz

such that EF = FE = 0.We then have that (f (z)Pz)
(

1
f (z)

E
)

= E. However, ϕ−1(f (z)Pz)ϕ
−1

(
1

f (z)
E
)

=
(zF)

(
1
z
E
)

= 0. This is a contradiction. Hence, Pz = F and ϕ(zF) = f (z)F for any projection F and any

z ∈ C \ {0, 1}.
If we define f (0) = 0 and f (1) = 1, then f is a complex function on C such that ϕ(zE) = f (z)E for

any projection E and z ∈ C. The proof is complete. �

Lemma 2.9. Suppose that ϕ(E) = E for any projection E ∈ B(H) and f is the function defined in Lemma

2.8. Then ϕ(zP) = f (z)P for any z ∈ C and any rank-1 idempotent P.

Proof. Take any rank-1 idempotent P. We may assume that P = e ⊗ (e + ξx) for some unit vectors

e, x ∈ H and nonzero constant ξ such that e⊥x. LetH = {e} ⊕ {x} ⊕ {e, x}⊥. Next we can assume that

z /= 0. Then f (z) /= 0. We firstly claim that if

T =
⎛
⎝z T12 0

0 T22 0

0 0 0

⎞
⎠ ,

then
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ϕ(T) =
⎛
⎝f (z) X12 0

0 X22 0

0 X32 0

⎞
⎠ .

In fact, put ϕ(T) =
⎛
⎝X11 X12 X13

X21 X22 X23

X31 X32 X33

⎞
⎠. Since T

(
1
z
E
)

= E, ϕ(T)ϕ
(
1
z
E
)

= ϕ(T)
(

1
f (z)

E
)

is a

nonzero projection, which implies that X11 = f (z), X21 = 0 and X31 = 0. Now it is trivial that

T
(
1
z
(I − x ⊗ x)

)
= E. We then have that ϕ(T)ϕ

(
1
z
(I − x ⊗ x) = ϕ(T)

(
1

f (z)
(I − x ⊗ x)

)
is also a

nonzero projection. Note that

ϕ(T)
(

1
f (z)

(I − x ⊗ x)
)

=
⎛
⎝f (z) X12 X13

0 X22 X23

0 X32 X33

⎞
⎠
⎛
⎜⎝

1
f (z)

0 0

0 0 0

0 0 1
f (z)

⎞
⎟⎠

=
⎛
⎜⎜⎝
1 0 1

f (z)
X13

0 0 1
f (z)

X23

0 0 1
f (z)

X33

⎞
⎟⎟⎠ ,

so X13 = 0, X23 = 0 and 1
f (z)

X33 is a projection. If X33 /= 0, thenwe know thatϕ(T)
(

1
f (z)

(I − E − x ⊗
x) = 0 ⊕ 0 ⊕ 1

f (z)
X33 is a nonzero projection. However, we have T

(
1
z
(I − E − x ⊗ x)

)
= 0. This is a

contradiction. Hence, X33 = 0 and the claim holds.

Now If H = [e, x] ⊕ [e, x]⊥, then P = P(ξ) ⊕ 0, where P(ξ) is defined in the proof of Lemma 2.7.

By the claim we have shown,

ϕ(zP) =
⎛
⎝f (z) A12 0

0 A22 0

0 A32 0

⎞
⎠ .

Put F = E(ξ) ⊕ 0, then F is a rank-1 projection and a simple calculation shows that
(
1
z

(F +
(I − E − x ⊗ x))(zP) = F . It now follows that ϕ

(
1
z

(F + (I − E − x ⊗ x))ϕ(zP) =
(

1
f (z)

(F + (I −
E − x ⊗ x))ϕ(zP) is a nonzero projection. Note that(

1
f (z)

)
(F + (I − E − x ⊗ x)))ϕ(zP)

= 1
f (z)

⎛
⎜⎜⎜⎜⎝

1

1+|ξ |2
ξ

1+|ξ |2 0

ξ

1+|ξ |2
|ξ |2

1+|ξ |2 0

0 0 I

⎞
⎟⎟⎟⎟⎠
⎛
⎝f (z) A12 0

0 A22 0

0 A32 0

⎞
⎠

=
⎛
⎜⎝
∗ ∗ 0

∗ ∗ 0

0 1
f (z)

A32 0

⎞
⎟⎠ ,

which implies that A32 = 0.

We next show that A22 = 0. Suppose that A22 /= 0. Let B =
⎛
⎜⎜⎝

1
f (z)

−A
−1
22

f (z)
0

0 A
−1
22 0

0 0 0

⎞
⎟⎟⎠. Then Bϕ(zP) =

E + x ⊗ x. Thus, ϕ−1(B)(zP) is also a nonzero projection. By use of the claim that we just have proved

to ϕ−1, we have that ϕ−1(B) =
⎛
⎜⎝

1
z

C12 0

0 C22 0

0 C32 0

⎞
⎟⎠. However,
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ϕ−1(B)(zP) =
⎛
⎜⎝

1
z

C12 0

0 C22 0

0 C32 0

⎞
⎟⎠
⎛
⎝z zξ 0

0 0 0

0 0 0

⎞
⎠ =

⎛
⎝1 ξ 0

0 0 0

0 0 0

⎞
⎠

is not a projection. This contradiction shows that A22 = 0. Again note that
(
1
z
F
)
(zP) = F . It follows

that A12 = f (z)ξ and the proof is complete. �

Proof of Theorem 2.1. We can assume that ϕ(E) = E for any projection E ∈ B(H) by the Uhlhorn’s

theorem in [18] and Lemma 2.7. We first show that for any nonzero A ∈ B(H), ϕ(A) = λ(A)A for

some nonzero constant λ(A) ∈ C. Take any nonzero x ∈ H. If Ax = 0, then Ax and ϕ(A)x are linearly

dependent. We may assume that Ax /= 0. If (x, Ax) /= 0, then x⊗Ax

‖Ax‖2 = αP for some nonzero constant

α ∈ C and a rank-1 idempotent P andHence,ϕ(αP) = f (α)P fromLemma2.9. It is trivial thatA(αP) is
a rank-1 projection. Then ϕ(A)(f (α)P) is a nonzero projection. That is, ϕ(A)(x ⊗ Ax) = ϕ(A)x ⊗ Ax is

a multiple of a nonzero projection. It follows that ϕ(A)x and Ax are linearly dependent. If (x, Ax) = 0,

then there is a nonzero x0 ∈ H such that (x0, Ax0) /= 0. We may choose a positive sequence {αn :
n = 1, 2, . . .} such that limn→∞ αn = 0 and (x + αnx0, A(x + αnx0)) /= 0. In fact, if there is a positive

constant a such that

(x + αx0, A(x + αx0)) = (x, Ax) + ((x, Ax0) + (x0, Ax))α + (x0, Ax0)α
2 = 0

for all α ∈ [0, a], then (x0, Ax0) = 0, a contradiction. Then just as we have shown above, ϕ(A)(x +
αnx0) = ξnA(x + αnx0) for a complex sequence {ξn : n = 1, 2, . . .}. Note that Ax /= 0 and limn→∞
αn = 0. We may assume that limn→∞ ξn = ξ . Thus, ϕ(A)x = ξAx, which means that Ax and ϕ(A)x
are linearly dependent. Consequently, we have shown that for all x ∈ H, Ax and ϕ(A)x are linearly

dependent. It follows that one of the following assertions holds from Theorem 2.3 in [2].

(i) A and ϕ(A) are linearly dependent.

(ii) There are vectors x0, y1, y2 ∈ H such that A = x0 ⊗ y1 and ϕ(A) = x0 ⊗ y2.

If (i) holds, then ϕ(A) = λ(A)A for some λ(A) ∈ C.

Next we assume that (ii) holds. If (x0, y1) /= 0, then A is a nonzeromultiple of a rank-1 idempotent.

Then ϕ(A) and A are linearly dependent from Lemma 2.9. Moreover, this assertion shows that ϕ(A)
is a rank-1 nilpotent operator if and only if A is and both A and ϕ(A) have the same ranges. Assume

that (x0, y1) = 0. Put A1 = y1⊗x0
‖x0‖2‖y1‖2 . Then A1 is nilpotent. Hence, we have ϕ(A1) = y1 ⊗ x1 for some

x1 ∈ H such that (y1, x1) = 0. Note that A1A is a rank-1 projection. Thenϕ(A1)ϕ(A) = (y1 ⊗ x1)(x0 ⊗
y1) = (x0, x1)y1 ⊗ y2 is a nonzero projection. This means that y1 and y2 are linearly dependent. Thus,

ϕ(A) = λ(A)A for some constant λ(A) ∈ C.

At last, we prove that f (z) = z for any z ∈ C and λ(A) = 1 for all A ∈ B(H). Let E and F be any

rank-1 projections such that EF = 0. Then we have ϕ(E + zF) = E + f (z)F = λ(E + zF)(E + zF). It
follows that λ(E + zF) = 1 and f (z) = z for any z ∈ C. This also implies that ϕ(zP) = zP for every

rank-1 idempotent P by Lemma 2.9. For any nonzero operator A ∈ B(H), there is a vector x0 ∈ H such

that (x0, Ax0) /= 0. Put P = x0⊗Ax0
(x0 ,Ax0)

and A1 = (x0 ,Ax0)
‖Ax0‖2 P. Then P is a rank-1 idempotent and AA1 is a

rank-1 projection. Thus, ϕ(A)ϕ(A1) = λ(A)AA1 is a nonzero projection. This implies that λ(A) = 1.

Hence, ϕ(A) = A, ∀A ∈ B(H). The proof is complete. �

3. Maps preserving operator pairs whose triple Jordan products are nonzero projections

Let A, B ∈ B(H). The triple Jordan product of A and B is defined to be ABA. Very recently, some

preserver problems on triple Jordan products of operators are considered by several authors (cf. [3,4,9–

11]) We say that a map ϕ on B(H) preserves operator pairs whose triple Jordan products are nonzero

projections in both directions if ϕ(A)ϕ(B)ϕ(A) is a nonzero projection if and only if ABA is for any
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A, B ∈ B(H). We consider those maps in this section. It is noted that the treatment of triple Jordan

products is little different from that of products of two operators.

Theorem 3.1. Let ϕ be a surjective map on B(H). Then ϕ preserves operator pairs whose triple Jordan

products are nonzero projections in both directions if and only if there exist a unitary or an anti-unitary

operator U on H and a constant α with α3 = 1 such that one of the following forms holds.

(1) ϕ(A) = αUAU∗, ∀A ∈ B(H);
(2) ϕ(A) = αUA∗U∗, ∀A ∈ B(H).

It is sufficient to consider the necessity. Let ϕ be a surjective map on B(H) preserving operator

pairs whose triple Jordan products are nonzero projections in both directions. Then ϕ is also injective

from Lemma 2.1.

Lemma 3.2. ϕ(0) = 0 and ϕ(I) = αI for some α ∈ C such that α3 = 1.

Proof. Let A ∈ B(H) such that ϕ(A) = 0. If A /= 0, then there exists a unit vector x ∈ H such that

(Ax, x) /= 0. Let B = x⊗x√
(Ax,x)

. It is clear that BAB = x ⊗ x. Then ϕ(B)ϕ(A)ϕ(B) is a nonzero projection.

However, ϕ(B)ϕ(A)ϕ(B) = 0, a contradiction. Thus, ϕ(0) = 0.

On the other hand, suppose ϕ(I) = A. We claim that A ∈ CI. In fact we have A3 = E is a nonzero

projection. If E /= I, then AE = EA. Let H = EH ⊕ (I − E)H. Then A =
(
A11 0

0 A22

)
with A3

11 = I and

A3
22 = 0. Let P be the projection from (I − E)H onto the kernel of A22. Then P /= 0 and A22PA22 = 0.

Let Bz = A11 ⊕ zP for all z ∈ C. Note that ABzA = E /= 0. Then ϕ−1(A)ϕ−1(Bz)ϕ
−1(A) = ϕ−1(Bz) is

a nonzero projection. Thus, B3z = A3
11 ⊕ z3P is a nonzero projection. This is a contradiction. It follows

that E = I and A is invertible with A3 = I.

We show that A = αI for some constants α ∈ C, α3 = 1. For any unit vector x ∈ H, there is a

nonzero vector y ∈ H such that Ax = A∗y since A is invertible. Put B = x⊗y

‖Ax‖ . Then ABA = Ax⊗Ax

‖Ax‖2 is

a rank-1 projection, which implies that ϕ−1(A)ϕ−1(B)ϕ−1(A) = ϕ−1(B) is a nonzero projection.

Therefore B3 = ‖Ax‖3

(x,y)
x ⊗ y is a nonzero projection. It follows that y = αxx for some nonzero constant

αx ∈ C. Hence, A∗y = αxA
∗x = Ax. Note that A is invertible. Then it follows that A∗ = αA for some

constant α ∈ C from Theorem 2.3 in [2]. Thus, A is normal such that σ(A) ⊆ {z : z3 = 1}, that is A is

unitary. Therefore A∗A = αA2 = I, which implies that A = αA3 = αI. The proof is complete. �

If α3 = 1 and α /= 1, then ᾱϕ preserves operator pairs whose triple Jordan product are nonzero

projections in both directions such that ᾱϕ(I) = I. Without loss of generality, we may assume that

ϕ(I) = I. Then ϕ preserves nonzero projections in both directions.

Lemma 3.3. Suppose ϕ(I) = I. Then ϕ preserves rank-n projections in both directions.

Proof. Just as in theproof of lemma2.5,we showthatϕ preserves rank-1projections inbothdirections.

Let E = e ⊗ e for some unit vector e ∈ H, then P = ϕ(E) is a nonzero projection. Put A(z) =
E + z(I − E) for any z ∈ C\{0, 1}. Let B(z) = ϕ(A(z)). Since EA(z)E = E is a nonzero projection,

PB(z)P is also a nonzero projection. Under the direct sum decomposition H = PH ⊕ P⊥H, we have

P =
(
I 0

0 0

)
and B(z) =

(
B11(z) B12(z)
B21(z) B22(z)

)
. Then PB(z)P = P(z) =

(
B11(z) 0

0 0

)
is a nonzero pro-

jection. It follows that E(z) = ϕ−1(P(z)) is a nonzero projection, too. Note that EE(z)E is a nonzero

projectionsincePP(z)P is. ThenE � E(z). On theotherhand,P(z)B(z)P(z) = P(z). ThenE(z)A(z)E(z) =
E + z(E(z) − E) is a nonzero projection. We now have E(z) = E and therefore P(z) = P. That is

B11(z) = I. Again, A(z)EA(z) = E. Then
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B(z)PB(z) =
(

I B12(z)
B21(z) B22(z)

)(
I 0

0 0

)(
I B12(z)

B21(z) B22(z)

)

=
(

I B12(z)
B21(z) B21(z)B12(z)

)

is a nonzero projection. This shows that B12(z) = 0 and B21(z) = 0. Take any rank-1 projection Q

with Q � P. Then QPQ = Q . It follows that ϕ−1(Q)Eϕ−1(Q) is a nonzero projection, which implies

that ϕ−1(Q) � E. Again it follows that ϕ−1(Q)A(z)ϕ−1(Q) = E + z(ϕ−1(Q) − E) is also a nonzero

projection from the fact that QB(z)Q = Q . Hence, ϕ−1(Q) = E and P = Q is of rank-1.

By a similar method (Steps 2 and 3) used in the proof of Lemma 2.5, we may show ϕ preserves

rank-n projections in both directions by induction. The proof is complete. �

Lemma 3.4. Suppose ϕ(I) = I. Then ϕ preserves the order as well as the orthogonality of projections in

both directions.

Proof. Let E is a nonzero projection and ϕ(E) = P. For any nonzero projection F � E, Put Q = ϕ(F).
Note that FEF = EFE = F . Then both ϕ(F)ϕ(E)ϕ(F) = ϕ(F)Pϕ(F) and ϕ(E)ϕ(F)ϕ(E) = Pϕ(F)P are

nonzero projections. Under the direct sum decomposition H = PH ⊕ P⊥H, we have

P =
(
I 0

0 0

)
and ϕ(F) =

(
Q11 Q12

Q∗
12 Q22

)
.

It follows that Q11 is a nonzero projection.We easily have Q12 = 0 since Q is a projection. Thus, Q22

is also a projection. We next claim that Q22 = 0. If Q22 /= 0, then there is a rank-1 projection Q0 �Q22

such that QQ0Q = Q0. We then have that ϕ−1(Q0) is a rank-1 projection such that Fϕ−1(Q0)F =
Eϕ−1(Q0)E = ϕ−1(Q0) /= 0. However, PQ0P = 0. This is a contraction. Hence, Q � P. That is, ϕ pre-

serves the order of projections.We note that ϕ−1 has the same properties. Thus, ϕ preserves the order

of projections in both directions.

To prove the second assertion, we claim a fact: If P and Q are projections such that both PQP

and QPQ are projections, then QP = PQ . In fact, put H = PH ⊕ (I − P)H and P =
(
I 0

0 0

)
. Let Q =(

Q11 Q12

Q∗
12 Q22

)
. ThenQ11 is aprojection.Note thatQPQ =

(
Q11 Q11Q12

Q∗
12Q11 Q∗

12Q12

)
. It follows thatQ11Q12 = 0

fromthe fact thatQPQ is aprojection.Thismeans thatPQP �QPQ . By thesymmetry,wehave thatPQP =
QPQ . Moreover, P − QPQ = P − PQP � 0. Then Q(P − QPQ)Q = 0. It follows that (P − QPQ)Q = 0,

that is PQ = QPQ . Thus, PQ = QP. Now we may use the proof of Lemma 2.6 to complete the proof if

dimH � 3.

Suppose dimH = 2. It is known thatϕ preserves rank-1 projections in both directions fromLemma

3.3. Let E = e ⊗ e and F = f ⊗ f be two rank-1 projections such that EF = 0 and E + F = I. Without

loss of generality, wemay assume that ϕ(E) = E. We claim that ϕ(T)2 = I if T2 = I. If ϕ(T)2 = Q is a

rank-1 projection, thenϕ(T) = αQ for someα withα2 = 1 and Tϕ−1(Q)T is also a rank-1 projection.

Thus, so is I − Tϕ−1(Q)T = T(I − ϕ−1(Q))T . It follows that both ϕ(I − ϕ−1(Q)) and ϕ(T)ϕ(I −
ϕ−1(Q))ϕ(T) = Qϕ(I − ϕ−1(Q))Q must be rank-1 projections. Hence, ϕ(I − ϕ−1(Q)) = Q . This is

a contradiction. Thus, ϕ(T)2 = I.

If ϕ(F) /= F , then there is a nonzero constant z such that ϕ(E(z)) = F , where E(z) = 1

1+|z|2(
1 z

z̄ |z|2
)
is defined in the proof of Lemma 2.7. Put P(z) =

(
1 z

0 0

)
and T =

(
1 z

0 −1

)
. Then T2 = I

such thatTPT = E. It is knownthatϕ(P) =
(

1 a12
a21 1

)
byconsideringEPE = E andE(z)PE(z) = E(z).

On the other hand, let ϕ(T) =
(
b11 b12
b21 b22

)
. Then b11 = 1, b12b21 = 0 and b222 = 1 since ETE = E and

ϕ(T)2 = I.
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Suppose b21 = 0. Then b22 = −1. Note that

ϕ(T)ϕ(P)ϕ(T) =
(
1 + b12a21 b212a21 − a12−a21 1 − b12a21

)

is a projection. Then we have that b12a21 is real such that both 1 + b12a21 and 1 − b12a21 are in

[0, 1]. This is impossible unless b12a21 = 0. Whenever either a21 = 0 or b12 = 0, it does follows that

ϕ(P) = I. This is a contradiction. If b12 = 0, we can induce a contradiction, too. Hence, ϕ(F) = F .

Therefore ϕ preserves orthogonality of projections in both directions. The proof is complete. �

We again have that ϕ is a bijection on the set of all projections of B(H) preserving orthogonality in

both directions and there is a unitary or an anti-unitary operator U on H such that

ϕ(E) = UEU∗

for any projection E ∈ B(H) from the Uhlhorn’s theorem in [18] if dimH � 3.

Lemma 3.5. Suppose that dimH � 3 and ϕ(E) = E for any projection E ∈ B(H). Then there is a complex

function f (z) on C such that ϕ(zE) = f (z)E for any projection E ∈ B(H).

Proof. First let e ∈ H be any unit vector. Let E = e ⊗ e be a rank-1 projection and take any nonzero

projections P and Q such that I = P ⊕ E ⊕ Q . Let H = P(H) ⊕ E(H) ⊕ Q(H). We claim that there is

a complex function fe(z) on C \ {0, 1} such that ϕ(P + zE) = P + fe(z)E for any z ∈ C \ {0, 1}. Let

ϕ(P + zE) =
⎛
⎝B11 B12 B13
B21 B22 B23
B31 B32 B33

⎞
⎠ .

As in the proof of Lemma 2.7, we know that for any nonzero projection P0 � P, we have P0(P +
zE)P0 = P0, which implies that P0B11P0 is a nonzero projection. It easily follows that B11 = I. Again

we have (P + zE)P(P + zE) = P. An elementary calculation shows that the nonzero projection ϕ(P +
zE)Pϕ(P + zE) is of the form⎛

⎝ I B12 B13
B21 ∗ ∗
B31 ∗ ∗

⎞
⎠ .

Then B12 = 0, B13 = 0, B21 = 0 and B31 = 0. On the other hand, we have (P + Q)(P + zE)(P +
Q) = P. It follows that B33 is a projection. If B33 /= 0 then Qϕ(P + zE)Q = 0 ⊕ 0 ⊕ B33 is a nonzero

projection. However, Q(P + zE)Q = 0. This is a contradiction. Hence, B33 = 0. It is trivial that B22 is a

scalar dependent on z. Thus,

ϕ(P + zE) =
⎛
⎝ I 0 0

0 B22 B23
0 B32 0

⎞
⎠ .

Similarly we have for any w ∈ C \ {0, 1},

ϕ(Q + wE) =
⎛
⎝ 0 A12 0

A21 A22 0

0 0 I

⎞
⎠

with A22 /= 0. For any z /= 0, we have that

(
1√
z
E + Q

)
(P + zE)

(
1√
z
E + Q

)
= E. Again by an ele-

mentary calculation, we have

ϕ

(
1√
z
E + Q

)
ϕ(P + zE)ϕ

(
1√
z
E + Q

)
=
⎛
⎝∗ ∗ ∗
∗ ∗ A22B23∗ B32A22 0

⎞
⎠ .

Note that E is of rank-1 and A22 /= 0. Then B32 = 0 and B23 = 0. Set fe(z) = B22. Thus,ϕ(P + zE) =
P + fe(z)E. We also easily get



1360 G. Ji, Y. Gao / Linear Algebra and its Applications 433 (2010) 1348–1364

fe(z)

(
fe

(
1√
z

))2

= 1 (3.1)

for all z ∈ C \ {0, 1}. Similarly we have that ϕ(zE + Q) = fe(z)E + Q .

On the other hand,we can similarly show thatϕ(P + zE + Q) = P + ge(z)E + Q for someconstant

ge(z) ∈ C \ {0, 1} by use of the facts that F(P + zE + Q)F = F for any nonzero projection F � P + Q

and (P + zE + Q)(P + Q)(P + zE + Q) = P + Q . Note that

(
P + 1√

z
E

)
(P + zE + Q)

(
P + 1√

z
E

)
=

P + E. It easily follows that fe(z) = ge(z).
Put

ϕ(zE) =
⎛
⎝C11 C12 C13
C21 C22 C23
C31 C32 C33

⎞
⎠

andw = fe

(
1√
z

)
.Note that

(
P + 1√

z
E + Q

)
(zE)

(
P + 1√

z
E + Q

)
=
(
P + 1√

z
E

)
(zE)

(
P + 1√

z
E

)
=

E,which implies thatboth (P + wE + Q)ϕ(zE)(P + wE + Q)and (P + wE)ϕ(zE)(P + wE)arenonzero
projections. Now

(P + wE + Q)ϕ(zE)(P + wE + Q) =
⎛
⎝ C11 wC12 C13
wC21 w2C22 wC23
C31 wC32 C33

⎞
⎠ (3.2)

and

(P + wE)ϕ(zE)(P + wE) =
⎛
⎝ C11 wC12 0

wC21 w2C22 0

0 0 0

⎞
⎠ . (3.3)

Then C11 � 0, wC21 = (wC12)
∗, C31 = C∗

13 and wC32 = (wC23)
∗ by (3.2) and (3.3). It follows that

both C13 and C23 are 0 from the facts that C11 = C2
11 + |w|2C12C∗

12 + C13C
∗
13 = C2

11 + |w|2C12C∗
12 and

w2C22 = |w|2C12C∗
12 + |w|4C22C∗

22 + |w|2C23C∗
23. We also have C33 is a projection from (3.2). Thus,

C33 = 0 since Q(zE)Q = 0. We symmetrically have C11 = 0, C12 = 0, C21 = 0 andw2C22 = 1, that is,

fe(
1√
z
)2C22 = 1 and ϕ(zE) = C22E = fe(z)E from (3.1).

Putϕ(zI) = Az for any z ∈ C \ {0, 1}. It is known that Az

(
fe

(
1

z2

)
E
)
Az is a nonzero projection since

(zI)
(

1

z2
E
)
(zI) = E. Note that

Az

(
fe

(
1

z2

)
E

)
Az = fe

(
1

z2

)
(Aze ⊗ A∗

z e).

It follows that
∣∣∣fe ( 1

z2

)∣∣∣ ‖Aze‖‖A∗
z e‖ = 1 and

A∗
z e =

⎛
⎜⎝ 1

fe

(
1

z2

)
‖Aze‖2

⎞
⎟⎠ Aze /= 0 (3.4)

for any unit vector e ∈ H. On the other hand,

(
1√
z
E

)
(zI)

(
1√
z
E

)
= E. It follows that

(
fe

(
1√
z

)
E

)

Az

(
fe

(
1√
z

)
E

)
is a nonzero projection. That is,

(
fe

(
1√
z

))2

(Aze, e) = 1. Thus,

(Aze, e) = 1(
fe

(
1√
z

))2
= fe(z) /= 0 (3.5)

for any unit vector e ∈ H form (3.1). We recall that the numerical range of an operator A ∈ B(H) is the
setW(A) = {(Ax, x) : x ∈ H, ‖x‖ = 1}(cf. [7]). It follows that 0 /∈ W(Az) = {fe(z) : e ∈ H, ‖e‖ = 1}



G. Ji, Y. Gao / Linear Algebra and its Applications 433 (2010) 1348–1364 1361

and therefore Az is injective.Moreover, A 1√
z

AzA 1√
z

is a nonzero projection since

(
1√
z
I

)
(zI)

(
1√
z
I

)
= I.

It immediately follows that A 1√
z

AzA 1√
z

= I and Az is invertible. Thus,

Az =
(
A 1√

z

)−2

. (3.6)

From (3.4) we know that A∗
z = λzAz for some constant λz ∈ C by Theorem 2.3 in [2], that is,

λz = 1

fe

(
1

z2

)
‖Aze‖2

is independent on e. Thus, for any z ∈ C \ {0, 1},

λ 1√
z

fe(z) = λ 1√
z

fe(z) = 1

‖A 1√
z

e‖2
� 0.

Therefore λ 1√
z

Az is a positive operator for any z ∈ C \ {0, 1}. Let β be the constant such that D =
βA 1√

z

� 0. We know that

(
fe

(
1√
z

))2

fe(z) =
(
A 1√

z

e, e

)2

(Aze, e) =
(
A 1√

z

e, e

)2
((

A 1√
z

)−2

e, e

)
= 1 (3.7)

for any unit vector e ∈ H from (3.1). Then D is an invertible positive operator such that

(De, e)2(D−2e, e) = 1 for any unit vector e ∈ H from (3.7). We next claim that D = dI for some

positive constant d ∈ C. In fact, for any unit vector e ∈ H, (De, e)2(D−2e, e) = (De, e)2‖D−1e‖2 = 1.

Then (De, e)‖D−1e‖ = 1. Thus, (De, e)(D−1e, e) �(De, e)‖D−1e‖ = 1.On theotherhand, 1 = (e, e)2 =(
D

1
2 e, D− 1

2 e
)2

�
∥∥∥D 1

2 e
∥∥∥2 ∥∥∥D− 1

2 e
∥∥∥2 = (De, e)(D−1e, e) � 1. It follows that

(De, e)(D−1e, e) = (e, e) = 1

for any unit vector e ∈ H. Thus, D = dI for some positive constant d from Theorem 3.4 in [6].

Therefore Az is a multiple of I and fe(z) is a constant f (z) independent on e for any z ∈ C \ {0, 1}.
In particular, ϕ(zI) = f (z)I and ϕ(E) = f (z)E for any z ∈ C \ {0, 1} and any rank-1 projection E.

Let F be anynonzero projection and setϕ(zF) = Fz for any z ∈ C \ {0, 1}. It follows that Fz = f (z)Pz

for some nonzero projection Pz from the fact that

(
1√
z
I

)
(zF)

(
1√
z
I

)
= F and (3.1). Take any rank-1

projection E � F . We have that

(
1√
z
E

)
(zF)

(
1√
z
E

)
= E. Then

ϕ

((
1√
z
E

))
ϕ(zF)ϕ

(
1√
z
E

)
=
(
f

(
1√
z

)
E

)
(f (z)Pz)

(
f

(
1√
z

)
E

)
= EPzE

is a nonzero projection. Hence, E � Pz . Thus, we have F � Pz . In fact we must have F = Pz . Otherwise,

if there is a rank-1 projection E � Pz such that EF = FE = 0, then ϕ−1

(
f

(
1√
z

)
E

)
ϕ−1(f (z)Pz)ϕ

−1

(
f

(
1√
z

)
E

)
=
(

1√
z
E

)
(zF)

(
1√
z
E

)
= 0. However,

(
f

(
1√
z

)
E

)
(f (z)Pz)

(
f

(
1√
z

)
E

)
= E is a rank-1

projection. This is a contradiction. Hence, Pz = F and ϕ(zF) = f (z)F for any projection F and any

z ∈ C \ {0, 1}.
We define f (0) = 0 and f (1) = 1 again, then f is a complex function on C such that ϕ(zE) = f (z)E

for any projection E and z ∈ C. The proof is complete. �

Proof of Theorem 3.1.We firstly suppose that dimH � 3. By use of the Uhlhorn’s theorem in [18], we

may assume thatϕ(E) = E for any projection. Thenϕ(zE) = f (z)E for any projection from Lemma 3.5.

We claim that ϕ(zE + wF) = f (z)E + f (w)F for any nonzero projections E and F with EF = 0 and any
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z, w ∈ C. It is trivial that the claim holds if either zw = 0 or z = w. Thus, we may assume that z /= w

and zw /= 0 next. Put P = I − (E + F), H = EH ⊕ FH ⊕ PH and

ϕ(zE + wF) =
⎛
⎝C11 C12 C13
C21 C22 C23
C31 C32 C33

⎞
⎠ .

It is easily shown that C11 = f (z)I and C22 = f (w)I by the facts

(
1√
z
E

)
(zE + wF)

(
1√
z
E

)
= E and(

1√
w
F

)
(zE + wF)

(
1√
w
F

)
= F . Again we note that

(
1√
z
(E + P)

)
(zE + wF)

(
1√
z
(E + P)

)
= E and

ϕ

(
1√
z
(E + P)

)
ϕ(zE + wF)ϕ

(
1√
z
(E + P)

)

= f

(
1√
z

)
(E + P)ϕ(zE + wF)f

(
1√
z

)
(E + P)

= f

(
1√
z

)2
⎛
⎝C11 0 C13

0 0 0

C31 0 C33

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

1 0 f

(
1√
z

)2

C13

0 0 0

f

(
1√
z

)2

C31 0 f

(
1√
z

)2

C33

⎞
⎟⎟⎟⎟⎠

by (3.1). Thus, C13 = 0, C31 = 0 and f

(
1√
z

)2

C33 is a projection. It is known that C33 = 0 by a simple

calculation. Then we also have C23 = 0 and C32 = 0. Moreover, (zE + wF)
(

1

z2
E
)
(zE + wF) = E and

f (z)2f
(

1

z2

)
= 1 by (3.1). Note that

ϕ(zE + wF)

(
f

(
1

z2

)
E

)
ϕ(zE + wF) =

⎛
⎜⎜⎝

1 f (z)f
(

1

z2

)
C12 0

f (z)f
(

1

z2

)
C21 f

(
1

z2

)
C21C12 0

0 0 0

⎞
⎟⎟⎠ .

Then C12 = 0 and C21 = 0. That is ϕ(zE + wF) = f (z)E + f (w)F .
Let A ∈ B(H). For any unit vector x ∈ H, if (Ax, x) /= 0, then x⊗x√

(Ax,x)
A x⊗x√

(Ax,x)
= x ⊗ x. This implies

that ϕ

(
x⊗x√
(Ax,x)

)
ϕ(A)ϕ

(
x⊗x√
(Ax,x)

)
=
(
f

(
1√

(Ax,x)

))2

(ϕ(A)x, x)(x ⊗ x) is a nonzero projection. It fol-

lows that

(
f

(
1√

(Ax,x)

))2

(ϕ(A)x, x) = 1 and Thus, f ((Ax, x)) = (ϕ(A)x, x) from (3.1). If (Ax, x) = 0,

then we know (ϕ(A)x, x) = 0 by considering ϕ−1. Therefore,

f ((Ax, x)) = (ϕ(A)x, x) (3.8)

for any unit vector x ∈ H. In particular, f ((Ex, x)) = (Ex, x) for any projection E, which implies that

f (μ) = μ for all 0� μ � 1. Take anyunit vectors e, f ∈ H such that (e, f ) = 0. Set E = e ⊗ e, F = f ⊗ f

and A = zE + wF for all z, w ∈ C. For any 0 < λ < 1, put x = √
λe + √

1 − λf . Then ‖x‖ = 1 and

(Ax, x) = λz + (1 − λ)w and (ϕ(A)x, x) = λf (z) + (1 − λ)f (w). Then we have

f (λz + (1 − λ)w) = λf (z) + (1 − λ)f (w) (3.9)

for all z, w ∈ C by (3.8). For any real number a > 1, we have that
(
1 − 1

a

)
0 + 1

a
a = 1. It now easily

follows that f (a) = a from (3.9). Similarly, f (a) = a and f (ai) = af (i) for any real number a. On the

other hand, we have (f (i))2 = −1 from (3.1). Then f (i) = i or f (i) = −i.

Case 1. f (i) = i. Then we easily have f (z) = z for all z ∈ C from (3.9). It follows that (Ax, x) =
(ϕ(A)x, x) for any unit vector x ∈ H. Thus, ϕ(A) = A for all A ∈ B(H).

Case 2. f (i) = −i. Thenwe easily have f (z) = z̄ for all z ∈ C from (3.9). It follows that (ϕ(A)x, x) =
(Ax, x) = (A∗x, x) for any unit vector x ∈ H. Thus, ϕ(A) = A∗ for all A ∈ B(H).
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If dimH = 2, then by an elementary treatment, we can show that ϕ satisfies the condition of

the Wigner’s fundamental theorem (cf. [13,19]). For completeness, we give the elementary proof. In

fact, we claim that there is a function on C such that ϕ(zE) = f (z)ϕ(E) for any projection E. Let

E = e ⊗ e and F = f ⊗ f be arbitrary two rank-1 projections such that EF = 0. By Lemma 3.4, ϕ(E)
and ϕ(F) are orthogonal such that ϕ(E) + ϕ(F) = I. We may assume that ϕ(E) = E and ϕ(F) = F .

There is a function fe on C \ {0, 1} satisfying (3.1) such that ϕ(zE + F) = fe(z)E + F for any z ∈
C \ {0, 1}by considering F(zE + F)F = (zE + F)F(zE + F) = F . Putϕ(zE) =

(
x11 x12
x21 x22

)
. It is known

thatϕ(zE) is of rank-1 and x22 � 0 from the fact that

(
1√
z
E + F

)
(zE)

(
1√
z
E + F

)
= E. If x22 > 0, then(

1√
x22

F

)
ϕ(zE)

(
1√
x22

F

)
=
(
E + (x22)

1
4 F
) (

1√
x22

F

) (
E + (x22)

1
4 F
)

= F . Put A = ϕ−1

(
1√
x22

F

)
=(

a11 a12
a21 a22

)
and B = ϕ−1

(
E + (x22)

1
4 F
)
. Then B = E + bF for some nonzero constant b just as we

have proved by considering ϕ−1. Thus, both A(zE)A =
(
(a11)

2z a11a12z

a11a21z a21a12z

)
and BAB =(

a11 a12b

a21b a22b
2

)
are nonzero projections, which implies that a11 > 0 and therefore z > 0. This means

that there is a constant fe(z) such that ϕ(zE) = fe(z)E for any non-positive complex number z. By con-

sidering ϕ−1 and replacing E by F , we also have thatϕ−1(wF) = gf (w)F for any non-positive complex

number w. In particular, ϕ−1

(
− 1√

x22
F

)
= gf

(
− 1√

x22

)
F . However,

(
− 1√

x22
F

)
ϕ(zE)

(
− 1√

x22
F

)
=

F while ϕ−1

(
− 1√

x22
F

)
(zE)ϕ−1

(
− 1√

x22
F

)
= 0. This contradiction shows that there is a constant

fe(z) such that ϕ(zE) = fe(z)E for any nonzero complex number z. As in the proof of Lemma 3.5,

we know that fe(z) is a constant f (z) independent on e and ϕ(zE) = f (z)ϕ(E) for any z ∈ C. Again

by considering ϕ(zE + wF) = f (z)ϕ(E) + f (w)ϕ(F), it follows that f (a) = a for all a ∈ (0,+∞) as

above. As in the proof of Lemma 2.7, put ϕ(E(z)) = E(g(z)) for any z. Since E((1 + |z|2)E(z))E =
E, Ef (1 + |z|2)ϕ(E(z))E = 1+|z|2

1+|g(z)|2 E is a nonzero projection, which implies that |g(z)| = |z|. Thus,
tr(EE(z)) = tr(ϕ(E)ϕ(E(z))). By the Wigner’s fundamental theorem (cf. [13,19]), there is a unitary or

an anti-unitary operator U on H such that ϕ(E) = UEU∗ for all rank-1 projection E. By repeating the

preceding treatment when dimH � 3, we have the desired result. The proof is complete. �
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