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showed: (1) for every n > 3, there exist infinitely many permanental pairs, and (2) 
permutation matrices have no mates. Later, Brenner and Wang [l] proved that if 
A E Q, has the form P(J,,, @. . . @J,,)Q, where @ denotes the direct sum and P and 
Q are permutation matrices, k 2 1, 1 5 ni 5 n, ni + . . . + nk = n, then A has no 
mate, and they also raised the question whether there are other doubly stochastic 
matrices which have no mate. Answering this question, Gibson [2] showed that 

has no mate. 
Recently, Hwang [3] investigated some properties of the set of all mates of 

A E f-l,, and proposed the conjecture that, for n 2 4, no matrix in the interior of 
O,, has a mate. We disprove this conjecture for all n 2 4, by providing a class 
of counter examples. To develop this class, we first, characterize the set of all 
matrices in s/s and 04 having their transpose as mates and then generalize these 
results. 

In this paper, for brevity, let us use the notation M(a, b; c, d) to denote the 3 x 3 
doubly stochastic matrix 

a b l-a-b 

C d l-c-d . 

1 -a-c 1 -b-d a+b+cfd- 1 1 
Let AT denote the transpose of A, and let the trace of A be denoted by tr A. Let s(A) 
denote the sum of the entries of A. An n x n doubly stochastic matrix A = (av) 
is called a k-matching matrix if there exists precisely one k (1 5 k 5 n) such that 
L&j = Cljk for j = 1,2, . . . , n. Let &,k denote the set of all k-matching matrices in 
04, and let T denote a real valued function on k&,k defined by 

T(A) = 4ah -2aMtrA+ 1-2kat, 
i=l 
i#k 

for A = (ag) E M4,k. Following essentially the same notation used by Mint [4], for 
integers r, n (1 I r 5 n), let Qr,, denote the set of all sequences (ii, . . . , i,) such 
that 1 5 il < . . . < i, I n. For fixed a, p E Qr,,, let A(a 1 p) be the submatrix 
of A obtained by deleting the rows (Y and columns p of A, and let A[cr 1 p] denote 
the submatrix of A formed by the rows (Y and columns p of A. 

In this paper, we frequently use the following result (Theorem 1.4 in Mint [4]). 
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THEOREM 1.1. Let A = (au) and B = (bo) be n x n matrices. Then 

per@ +B) = 2 c UA,B), 
r=O a,PEQr,n 

where 

and 
%(A, B) = perA[a I PI perB(a I P> 

PerAla 1 PI = 1 when r = 0 and per B(cu ) ,B) = 1 when r = n. 

2. MATRICES HAVING THE TRANSPOSE AS MATES 

In this section, we investigate the possibility for A E 51, to have AT as its mate. 
We are able to complete the analysis for the cases n = 3 and 4. First we find a 
necessary and sufficient condition for AT to be a mate of A E 03. 

THEOREM 2.1. Let A E Cl3 and let A be asymmetric. Then AT is a mate of 
A ifand only iftrA = %. 

PROOF. Let A = M(a, b; c, d) where b # c. Let perA =f(u, b, c, d). Then 
straightforward calculations show that 

f(a, b, c, d) = a + b + c + d - 2(a + d)(b + c) 

+2ud(a+d+2b+2c-$)+2bc(2a+2d+b+c-;). 

Let qW) = per [tA + (1 - t)AT] . Clearly, qS(t> = f(a, c + 6, b - 6, d), where 
6 = t(b - c). AT is a mate of A iff 4(t) is constant for all t E [0, 11. Hence 

i.e., 

40) = 4(l) = PerA, 

f(a,c+S,b-6,d) = f(a,b,c,d). 

On simplification, this condition reduces to 

i.e., 

[(c + @(b - 6) - bc](;?a + 2d + b + c - 2) = 0, 

t(1 - t)(b - c)2(trA - 4) = 0. 

Since b # c, this is true for all t E [0, l] iff trA = $. ??
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The fact that permanental mates of the form (A, AT) exist for all n 2 4 is easily 
seen by taking A as the direct sum of any collection of the following three types 
of matrices including at least one matrix of type (a): 

(a) Asymmetric matrices in 0s with trace 4. 
(b) Matrices in 0~. 
(c) The identity matrix of order 1. 

Are these the only matrices in 02, (n 2 4), up to permutations of rows and 
columns, forming permanental pairs with their transpose? We answer this question 
negatively by considering the following example: 

A= (2.1) 

where b + c = $ and b # c. By straightforward calculations, we find that 

per[tA + (1 - t)A T ] 15 = m. 

Next, we shall derive necessary and sufficient conditions for A E Q, (A # AT) 
to have AT as its mate. For this, we need the following two lemmas. 

LEMMA 2.1. If B is a nonzero skew symmetric matrix of order 4 such that 
each row has sum 0 and per B = 0, then precisely one row (and therefore one 
corresponding column) of B is zero. 

PROOF. Let 

I 
0 x Y -4x + Y) 

BE -x 0 Z x-z 

-y -z 0 1 y+z . 

x+y z-x ++z) 0 J 
Expanding per B along the last row, we have 

per B = 2 [(x + Y)~z~ + (z - x)~Y~ + (y + z)~x’] . 

Since per B = 0, it follows that 

(x + y)z = (z - x)y = 0, + z)x = 0. (2.2) 
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Since B # 0, it is easy to see from (2.2) that precisely one pair among x, y, z is 
zero or x + y = 2 - x = 0. This is equivalent to saying that precisely one row of 

H B is zero. 

LEMMA 2.2. Let 

A= 

a b c d 
b b2 b3 b4 

[ 1 ::z; 

E M4,1 (2.3) 

and 

0 0 l-l 
B= 

o-1 0 1 * 

0 0 0 0 

0 l-l 0 I (2.4) 

Then we have 

perB = 0, (2.5) 
S,(AT,B) = 0, (2.6) 
S2(AT,B) = T(A). (2.7) 

PROOF. Obviously, per B = 0 and &(AT, B) = 0. By direct computation, 

G.(AT, B) = - (abz + b2) + (acz + bc) + (d2 + bd) 
+ (ab3 + bc) - (acg + c2> + (ad3 + cd) 

-l-Cab4 +bd)+(ac4 + cd)-(ad4 +d2). 

In view of the fact that each row sum of A is 1, we have 

&(AT, B) = a(3a + 2 - 2 trA) + (2bc + 2cd + 2db - b2 - c2 - d2) 
= a(3a + 2 - 2 tr A) + (1 - a)2 - 2(b2 + c2 + d2) 
= 4a2-2atrA+l-2(b2+c2+d2) 
= T(A). ??

Now we state and prove our main result of this section. 

THEOREM 2.2. Let A = (aq) E CI4 and A # AT. Then AT is a mate of A iff 
A E M4,k and T(A) = 0. 
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PROOF. A necessary condition for A and AT to be mates is per(A - AT) = 0 
(see Hwang [3]). Since A -AT is nonzero skew symmetric, it follows from Lemma 
2.1 that precisely one row, say the kth row of A - AT, is 0, which is equivalent to 
saying that A E h&,k. 

Without loss of generality, we can assume k = 1, since PAPT and (PAPT)T are 
mates iff A and AT are mates for some permutation matrix P. Therefore, we can 
take A as defined in (2.3). Let 

f(t) = per[rA + (1 - t)AT]. (2.8) 

Since A is doubly stochastic, A - AT can be expressed as (b3 - cz)B, where B is 
as given in (2.4). By applying Theorem 1.1 and making use of (2.5) and (2.6), we 
find 

f(t) = perrAT + t(b3 - cdBJ 

= perAT + t(bg - c2)S3(AT, B) 

+ t2(b3 - c~)~S~(A~, B). (2.9) 

Since b3 # ~2, a necessary condition forf(t) to be constant is &(AT, B) = 0, which 
implies T(A) = 0 in view of (2.7). 

We claim that vanishing of &(Ar, B) is sufficient forf(t) to be a constant. If 
we put &(Ar, B) = 0 in (2.9), we have 

f(1) = perAT + (b3 - c2)SdAT, B), (2.10) 

whereas from (2.8) 
f(1) = perA = perAT. (2.11) 

From (2.10) and (2.1 l), it follows that Ss(Ar, B) = 0. Therefore, f(f) is constant. 
This completes the proof. ??

From the above theorem, we can say that the necessary and sufficient condition 
for A E M4,i given by (2.3) to form a permanental pair with AT is 

T(A)=4a2-2atrA+I-2(b2+c2+d2)=0. (2.12) 

Next, we shall use the above condition in order to get another simple necessary 
condition for A E fl4 to have AT as its mate. 

COROLLARY 2.1. IfA E R4formsapermanentalpairwithAT, then&A 5 $. 
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PROOF. By Theorem 2.2, A should be in A44,k. Thus by taking A as in (2.3), 

trA = a+bz+c3+& 

I a+(1 -b)+(l -c)+(l -d) 

= 2+2a. 

Therefore, 

(2.13) 

On the contrary, if we assume trA > g, then from (2.13), a > i. Also, using the 
condition (2.12), 

O<b2+c2+d2 = 2a2-&A++ 

which is a contradiction, since $ < a 5 1. The proof is complete. ??

It may be noted that trA 5 ; is a necessary condition and not sufficient for 
A, AT to be mates when A E fl4. For example, consider 

r0.8 0 0.2 0 1 

A 
0 

0.4 
0 

0.6 = 0.2 0.3 0.3 0.2 
0 0.3 0.5 0.2 

I E M4J. 

Simple calculations show that T(A) = 0.96 # 0. Hence, (A, AT) is not a perma- 
nental pair. 

Next, we shall deduce Theorem 2.1 from Theorem 2.2. 
Let A = 1 GE B, where B E 03 and B # BT. It may be noted that A E i&l. If 

tr B = 2, then trA = 2 and we see that the condition (2.12) is satisfied. Hence AT 
is a mate of A which implies that BT is a mate of B. Conversely, if BT is a mate 
of B, then AT is a mate of A. Hence, applying the condition T(A) = 0, we get 
trA = $,, which implies that tr B = 4. From this argument, Theorem 2.1 follows. 

Next, we investigate the existence of A E fl4 forming a permanental pair with 
its transpose for any given k < 5 such that trA = k. Let us consider three cases. 
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Case (i). Let 0 5 k 5 1. Choose 

It is easy to verify that A E M+i, satisfying T(A) = 0. Hence AT is a mate of A. 
Case (ii). Let 1 5 k < 2. Choose 

Since A E Ma,1 satisfying T(A) = 0, A forms a permanental pair with AT. 
Case (iii). Let 2 5 k 5 $. Let us try to find A of the form 

a b b b 

A= 
b (Y p 0 

[ 1 b 0 ct p 
b ,Ll 0 a 

, l-a k-a 2+2a-k 

D=T-l (y=-T-7 
P= 3 . 

Let us choose a such that T(A) = 0. Hence 

4a2 - 2ak + 1 = 6b2. 

Substituting for b in terms of a and solving for a, we get 

(3k - 2) f (9k2 - 12k - 6)‘j2 
a= 

10 

Choosinga = [(3k - 2) + (9k2 - 12k - 6)‘~2]/10,itcanbeverifiedthata, b,a 2 
0and/3>O(ifP=0,thenA=AT). 

Fork E [2, $1, we have 9k2 - 12k - 6 > 0 and 3k - 2 > 0. Therefore, a 2 0. 
By routine calculations, we have b 2 0 iff a 5 1, i.e., iff (9k2 - 12k - 6)‘i2 
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5 12 - 3k, i.e., iff k 5 $, which is true. Similarly, we find that k 2 a and 
2 + 2a > k, and conclude that CY > 0 and p > 0. 

This completes our investigation of the possibility of finding A E & (A # AT) 
having AT as its mate for any given k 5 : such that trA = k. 

It may be observed that if A E 41 is of the form (2.3) with trA = i, then the 
condition T(A) = 0 implies 

2(b2 + c2 + 8) = (4a - l)(a - l), (2.14) 

and from the condition (2.13), that a 2 $. If we choose a E (i, l), the condition 
(2.14) is not satisfied. Hence, a = i or 1. If a = d then b2 + c2 + d2 = 0, which 
implies b = c = d = 0, a contradiction. Hence a = 1. Thus, if trA = z, then A 
can form a permanental pair with AT iff A = 1 $ B, where B E !2~, B # BT with 
tr B = 5, up to permutations of rows and columns. 

Thus we conclude that a matrix A E 03 having AT as its mate can be found 
only when tr A = 5, whereas a matrix A E fl4 having AT as its mate can be found 
whenever 0 5 trA I $. 

From the result we derived in Theorem 2.2, we have the following question. 
For A E R, , n 2 5 (A # AT), is it necessary that n - 3 rows (or at least one row) of A 
be identical with the corresponding columns, in order for AT to be a mate of A? For 
n 2 6, which is a multiple of 3, it is not necessary, because ifA is a matrix which is a 
direct sum of asymmetric matrices in Qs , each with trace 3, then A and AT are mates 
without having even a single row of A identical with the corresponding column. If 
n is not a multiple of 3, it may be necessary that at most two rows of A be identical 
with the corresponding columns. We do not go into details about this problem. 

However, we state and prove a generalized version of Theorem 2.2. 

THEOREM 2.3. Let 

A= tT ; ER,, 
[ 1 

where X is symmetric and of order (n - 3) x (n - 3), U is (n - 3) x 3, and Y is 
3 x 3( Y # YT). A necessary and suficient condition for A and AT to be mates is 

n-3 

(perX)[s(Y) - 2tr Y] + x (ui, uj) perX(i 1 j) = 0, 
ij=l 

(2.15) 

where s(Y) denotes the sum of all elements in Y, and where 

(Ui,Uj) = Uj(3J3 - Z3)r.d~ 

for the ith TOW ui of II. 
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PROOF. Letf(t) = per[tA + (1 - t)AT]. For the given form of A, row sums 
and column sums of Y = Cyq) are equal. Therefore, row sums and column sums 
of the skew symmetric matrix Y - Yr are zero. Hence Y - Yr can be expressed 
as SB, where 6 = (~12 - ~21) # 0 and 

0 l-l 
B= 

[ 1 -1 0 1 . 
l-l 0 

Nowf(t) = per(tSD + AT), where D is the direct sum of the (n - 3) x (n - 3) 
null matrix and B. Therefore, by applying Theorem 1.1, we get 

f(t) = per AT + tS&(D, AT) + ?S2S2(D, AT), 

since &(D, AT) = 0 because perB = 0, and &(D, AT) = 0 for k = 4,5,. . . n 
because D has only three nonzero rows. 

A necessary condition for f(t) to be a constant is Sz(D, AT) = 0. Let UC”) 
denote the sth column of U = (uv). By direct calculations, we have 

&(D,AT) = & per 
r,.7=1 
r#.v 

Expanding each of the permanents in the summation along the last column and 
then each subpermanent of order n - 3, except per X, along the last row, 

S2(D,AT) = (perX){(-yll +Y21 +Y31)f(Y12-Y22+~32) 

+ 613 + Y23 - Y33)) 
n-3 

+ C {4l(-ujl + uj2 + uj3) + uiZ(ujl - uj2 + uij) 
ij=l 

+ Ui3(Ujl + Uj2 - Uj3)) per-W I 

= (perX){ s(Y) - 2 tr Y} 

j> 

perX(i I j> 

n-3 

ZZ (perX) {S(Y) - 2 tr Y} + C (ui, Uj) perX(i 1 j). 
ij=l 

Therefore, the condition (2.15) follows. 
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We claim that the vanishing of &(D, AT) is sufficient forf(t) to be a constant, 
by the same argument adopted in the proof of Theorem 2.2. This completes the 
proof. ??

We conclude this section by noting that the above generalized result can be 
used to derive the conditions for A E !& (n = 3,4) to form a permanental pair 
with AT. 

If we take X = I,,_3 and U = 0 in Theorem 2.3, we have A = In_3 $ Y, and 
now the condition for AT to be a mate of A and hence for YT to be a mate of Y 
reduces to s(Y) - 2 tr Y = 0, i.e., tr Y = i. 

For n = 4, let us take X = [a], a 1 x 1 matrix, and U = [b c d]. Using the 
convention that perX(a 1 p) = 1 when cy, /3 E Q,,,“, we have perX(1 1 1) = 1. 
From (2.15), we find, after simple calculations, that the condition reduces to 

4a2 - 2a trA + 1 = 2(b2 + c2 + d2), 

which is the one we got earlier in (2.12). 

3. COUNTEREXAMPLES TO HWANG’S CONJECTURE 

In this section we disprove a recent conjecture on permanental mates due to 
Hwang [3]. The instrument behind the class of counterexamples is our generalized 
result in the previous section. 

Hwang [3] denotes the set of all mates of A for A E R, by Mte(A), and the 
interior of R, by Int R,. In concluding remarks, Hwang [3] asked whether there 
exists an A E Int R, with a nontrivial mate; he answered the question by saying 
yes for the case n = 3 and gave the following example. Let 

Then B E In@ and C, E Mte(B) for all t, 0 5 t 2 2. Of course, for t = 1, C, is 
the trivial mate of B. 

For large numbers, Hwang thought that an affirmative answer to the question 
regarding the existence of matrices in Int R, having nontrivial mates was unlikely. 
Therefore, Hwang proposed the following conjecture: For n 2 4, if A E Int & 
then Mte(A) is a trivial set. 

It may be noted that A E 04 given in (2.1) with b, c > 0 is itself a class of 
counterexamples to Hwang’s conjecture, since A E Int Rq andper[tA+(l -t)AT] = 
15 

m- 
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Now, we disprove Hwang’s conjecture for n 2 4. Let us construct 

A =(q) = $ ; E R, 
[ 1 

as follows. Let X = (xg) be of order (n - 3) x (n - 3) with 

1 
xo=x= (l+E)(n-3)’ i,j = 1,. . . , n - 3, (3.1) 

where E > 0 and 
9 - (3n - 18)~ - (n - 3)2~2 > 0. (3.2) 

We can always choose E > 0 and arbitrarily small satisfying (3.1), and this con- 
dition is crucial for our construction of A. Let U = (uq) be of order (n - 3) x 3 
with 

& 
&j = n = 3(1 + E) fori= l,... ,(n-3), j= 1,2,3. 

Clearly, x > 0, u > 0, and (n - 3)x + 3u = 1, so that the row sums and the column 
sums are 1 for the first n - 3 rows and n - 3 columns of A. 

Let us construct Y as a 3 x 3 positive asymmetric matrix with 

tr Y = 
9 - (3n - 18)~ + (n - 3)2~2 

6(1 +E) ’ 
(3.3) 

In view of (3.2), tr Y > 0. Also, 

s(y)_try = [3 “,,:“I _ 9-wyc42 

= 
9 - (3n - 18)~ - (n - 3)2~2 > o. 

6(1 + E) 

Since s(Y) > tr Y > 0, it is possible for us to construct Y as a 3 x 3 positive 
asymmetric matrix with tr Y as given in (3.3) so that the matrix A is in the interior 
of R,. By suitable choice of E and Y, we can obtain a class of matrices A in the 
interior of R, satisfying all the conditions of Theorem 2.3. 

For such A’s, let us verify that the condition (2.15) is satisfied. We give below 
the details of the calculations: 

perX = (n-3)!Xm3, 

s(Y)-2trY = 
-(n - 3)2&Z 

3(1 +E) * 
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For&j= 1,2 ,..., n-3, 
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(ui, uj) = 3U2 = 3C1 “f E)2 

and 
perX(i 1 j) = iF4(n - 4)!. 

Substituting these values in the left side of the equation (2.19, we have 

_fl-3(n _ 3)!@ - 3)2E2 + (n _ 3)2 E2 
3(1 + E) 3(1 + &)2 

~--4(~ _ 4)r -7 

which reduces to 0. Hence, we conclude by Theorem 2.3 that AT is a mate of A. 
Thus we have shown that Hwang’s conjecture is false for any n 2 4, and we arrive 
at the following theorem. 

THEOREM 3.1. For every n 2 3, there exist infinitely many matrices A E 
Int R, such that Mte(A) is nontrivial. 

The authors wish to thank the referee for careful reading of the manuscript 
and for suggestions towards improving the presentation of the paper. 
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