
The Journal of Logic and Algebraic Programming 81 (2012) 46–69

Contents lists available at SciVerse ScienceDirect

The Journal of Logic and Algebraic Programming

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j l a p

Extended beam search for non-exhaustive state space analysis

A.J. Wijs a,∗, M. Torabi Dashti b

a
Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

b
ETH Zürich, CNB F 109, Universitätstrasse 6, 8092 Zürich, Switzerland

A R T I C L E I N F O A B S T R A C T

Article history:

Available online 5 September 2011

Keywords:

Model checking

Formal analysis

State space generation

Heuristics

Guided traversal

State space explosion is a major problem in both qualitative and quantitative model check-

ing. This article focuses on using beam search, a heuristic search algorithm, for pruning

weighted state spaces while generating. The original beam search is adapted to the state

space generation setting and two new variants, motivated by practical case studies, are de-

vised. These beam searches have been implemented in the μCRL toolset and applied on

several case studies reported in the article.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

State space explosion is a major problem in model checking. To mitigate this problem, over the years a number of

techniques have emerged to prune, or postpone generating, parts of the state space that are not, or do not seem, essential,

given the verification task at hand. Prominent examples of pruning and postponing techniques are partial order reduction

(Por) [13,49], and directedmodel checking (Dmc) [5,19], respectively. Intuitively, Por algorithms guarantee that no essential

information is lost due to pruning.Dmc algorithms, however, use heuristics to guide the generation, so that the states which

are most relevant to the verification task are generated first. Both Dmc and Por are in line with the core idea of model

checking when studying qualitative properties, i.e. either to exhaustively search the complete state space to find any corner

case bug, or guarantee that the pruned states are immaterial for the verification task.

This article, in contrast, focuses mainly on heuristic pruning methods which are applicable to verification of quantitative

properties of systems [11], e.g. finding an optimal schedule for an industrial batch processor, calculating the probability of

a frame loss for a network device, and determining the minimal time needed to prepare a product on an assembly line.

When using model checkers for quantitative analyses of systems often (1) solutions (represented by paths from an initial

state to a so-called goal state) to the problem at hand densely populate the state space, and (2) near-optimal answers are

sufficiently acceptable in practice. Remark that these two features are not common in qualitative analysis problems, where

goal states usually denote corner case bugs, and are therefore sparsely present in the state space, andmoreover, definitive an-

swers are needed. Therefore, quantitative analyses allow pruning techniques which are not necessarily useful for qualitative

analyses.

In particular, we investigate how beam search (Bs) can be used for weighted state space generation, to solve quantitative

problems. Bs is a heuristic search method for combinatorial optimisation problems, which has extensively been studied in

artificial intelligence and operations research, among others by [42,55,26,61,58,15]. Conceptually, Bs is similar to breadth-

first search (Bfs), as it progresses level by level through a highly structured search tree containing all possible solutions to a

problem. Bs, however, does not explore all the encountered nodes. At each level, all the nodes are evaluated using a heuristic

cost (or priority) function, but only a fixed number of them is selected for further examination. This aggressive pruning

∗ Corresponding author.

E-mail addresses: A.J.Wijs@tue.nl (A.J. Wijs), mohammad.torabi@inf.ethz.ch (M. Torabi Dashti).

1567-8326/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2011.06.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81952734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jlap.2011.06.002
http://www.sciencedirect.com/science/journal/15678326
www.elsevier.com/locate/jlap
http://dx.doi.org/10.1016/j.jlap.2011.06.002

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 47

heavily decreases the generation time and memory consumption, but may in general miss essential parts of the tree for the

problem at hand, since wrong decisions can be made while pruning. Therefore, Bs has so far been mainly used in search

trees with a high density of goal nodes. Scheduling tasks, for instance, have been perfect targets for using Bs: the goal is to

optimally schedule a certain number of jobs and resources, while near-optimal schedules, which densely populate the tree,

are in practice acceptable.

Using Bs in state space generation is an attempt towards integrating functional analysis, to which state spaces are usually

subjected, and quantitative analysis. In the current article, we motivate and thoroughly discuss adapting two Bs techniques

called detailed (Dbs) and priority (Pbs) Bs to deal with arbitrary structures of state spaces. We remark that model checkers

(e.g. Spin [34], Uppaal [4], the μCRL toolset [8], the mCRL2 toolset [31], the LTSmin toolset [9], and the Cadp toolbox [27])

usually have very expressive input languages. Therefore, Bs must be adapted to deal with more general state spaces, com-

pared to simple search trees to which Bs has been traditionally applied. Next, we extend the classic Bss in two directions.

First, we propose flexible Bs, which, broadly speaking, does not stick to a fixed number of states to be selected at each

search level. This partially mitigates the problem of determining this exact fixed number in advance. Second, we intro-

duce the notion of synchronised Bs, which aims at separating the heuristic pruning phase from the underlying exploration

strategy.

We have implemented the aforementioned variants in the μCRL [32] state space generation toolset [8]. The process

algebraic language μCRL, an extension of ACP with abstract data types, comes with stable and mature tool support. A

μCRL specification consists of data type declarations and process behaviour definitions, where processes and actions can

be parametrised with data. Data are typed in μCRL and types can have recursive definitions. Each non-empty data type

has constructors and possibly non-constructors associated to it. The semantics of non-constructors is given by means of

equations. The specification of a component is a guarded recursive equation that is constructed from a finite set of action

labels, process algebraic operators and recursion variables. The μCRL toolset can be used for automatically generating state

spaces from μCRL specifications. The Cadp toolbox [27] can then be used for verifying regular alternation-free μ-calculus

properties of the resulting state spaces. Augmenting the μCRL toolset with Bs therefore enables us to perform advanced

qualitative model checking in the same framework where we perform our quantitative analysis.

Experimental results for several scheduling case studies are reported. It should be stressed that, even though this article

focusses on applying Bs to solve scheduling problems, the techniques described here are also applicable for other forms of

quantitative model checking, such as real-time and stochastic model checking. We briefly discuss this in Section 10.3.

Road map: First, in Section 2, we present the basic notions necessary for understanding this article. We describe the general

search algorithm called best-first search and present a specific instance called uniform-cost search. After that, we propose a

newextension of best-first search, calledmulti-phase best-first search, in Section 3. Two classicBss for highly structured trees

are described in Section 4; here, we temporarily deviate from the model checking setting, and present Bs in its ‘traditional’

setting. Section 5 deals with the adaptation of two existing variants of Bs to the state space generation setting. There we

also propose our extensions to the Bs algorithms. After that we focus in Section 6 on the implementation of some of these

adapted and extendedBs algorithms in theμCRL toolset. Related issues such asmemorymanagement and selecting heuristic

functions are discussed in Sections 7 and 8, respectively. After that, experimental results for several scheduling problems

are discussed in Section 9. Section 10 presents our related work, including other uses of Bs, connections with other search

algorithms, and other possible application areas for Bs. Finally, Section 11 concludes the article.

2. Searching through weighted state spaces

Definition 1 (Weighted state space). A weighted state space or weighted labelled transition system (Wlts) is a quintuple

M = (S , A , C , T , I), where S is a set of states, I ⊆ S is a set of initial states, A is a finite set of action labels,

C : A → K, withK a cost domain, is a total function assigning costs to action labels, and T ⊆ S ×A ×S is the transition

relation.

A state s′ is called reachable from state s iff s→∗ s′, where→∗ is the reflexive transitive closure of
�−→ for any � ∈ A .

When checking a reachability property, one searches for an s ∈ G , where G ⊆ S is a given set of goal states, such that there

exists an s′ ∈ I for which s′ →∗ s.
The set of enabled transitions in state s of Wlts M is defined as enM(s) = {t ∈ T | ∃s′ ∈ S , � ∈ A . t = s

�−→ s′}.
For T ⊆ T , we define nxtM(s, T) = {s′ ∈ S | ∃� ∈ A . s

�−→ s′ ∈ T}. Therefore, nxtM(s, enM(s)) is the set of successor

states of s. Whenever enM(s) = ∅, we call s a deadlock state. Finally, in the state space setting, an action may have several

data parameters, which are considered to be included in the action label �. These parameters may be defined over infinite

domains, but as we require A to be finite, the sets of concrete values for the parameters, as they appear in M , should be

finite as well. Whenever we compare action labels, for instance � = a, we ignore the parameters. We are aware of this

discrepancy, but trying to avoid it would lead to unnecessary complications.

Given a cost domain K, in a Wlts, every action in A is associated with a cost c ∈ K. Such a totally ordered cost domain

can be a subset of any known set of numbers, e.g.K ⊆ N orK ⊆ R. We do not consider negative cost values here. Note that

a standard Lts can be seen as aWltswhere all � ∈ A have the same associated cost.

48 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

Wltss can typically beused todealwithpricedproblems, suchas schedulingorplanningproblems. These canbemodelled

as reachability problems, as shown by e.g. [5,57,67], where on top of the usual question whether a goal state s ∈ G can be

reached or not, it is desired to find a trace to such a goal state with minimal cumulated cost. A first attempt at defining the

cumulated cost of a state s follows:

Definition 2 ((‘Informal’) Cumulated cost). Given a Wlts M = (S , A , C , T , I), we say that the cumulated cost of state

s ∈ S , denoted g(s) (with g : S → K), equals g(s′)+ cwith s′ ∈ S iff ∃� ∈ A .s′ �−→ s and C (�) = c. For s ∈ I , g(s) = 0.

One problem with this definition becomes readily apparent, namely that for any s ∈ S , g(s) need not be unique, since

many traces may lead from I to s. More on this later, but it raises the issue of re-opening of states in Dmc. Typically, when

generating aWlts, and determining g(s) for a state s on-the-fly, onemay discover smaller g(s) along theway. Because of this,

there is a need to refer to theminimalweighted distance froma set of states S to a set of states S′. First, wewrite a trace through

M from a state s ∈ S to a state s′ ∈ S as a sequence of transitions σM(s, s′) = 〈s0 �0−→ s1, s1
�1−→ s2, . . . , sn−1

�n−1−→ sn〉,
with n > 0, s = s0, s

′ = sn, and (si
�i−→ si+1) ∈ T for all 0 ≤ i < n. Furthermore, we call the set of all possible traces

between two states s, s′ ∈ S in M the set �M(s, s′) = {〈s0 �0−→ s1, s1
�1−→ s2, . . . , sn−1

�n−1−→ sn〉|s = s0 ∧ s′ = sn ∧ n >

0 ∧ ∀i < n.(si
�i−→ si+1) ∈ T }. Next, we can define the notion of minimal weighted distance between (sets of) states:

Definition 3 (Minimal weighted distance between (sets of) states). Given a Wlts M = (S , A , C , T , I) and two states

s, s′ ∈ S . For a given trace σM(s, s′) = 〈s �0−→ s0, s0
�1−→ s1, . . . , sn−1

�n−→ s′〉, with n ≥ 0, we define its weighted distance

d(σM(s, s′)) as∑
0≤i≤n C (�i). Furthermore, we say that theminimal weighted distance between two states s, s′ ∈ S , denoted

δM(s, s′), equals min({d(σ)|σ ∈ �M(s, s′)}), and that the minimal weighted distance between two sets of states S, S′ ⊆ S ,

denoted �M(S, S′), equals min({δM(s, s′)|s ∈ S ∧ s′ ∈ S′}). In case s′ is not reachable from s, we say that δM(s, s′) = ∞,

and if S′ is not reachable from S, meaning that there are no s ∈ S, s′ ∈ S′ with s→∗ s′, then �M(S, S′) = ∞.

Clearly, if S ∩ S′ �= ∅ then �M(S, S′) = 0, since there is a state s for which s ∈ S and s ∈ S′, which has a trace of length

0 to itself.

Now,we return to the notion of cumulated cost. As noted, g(s), as defined in Definition 2, is in fact amultivalued function,

since g(s) may have several values, in case there are multiple traces leading from I to s. We observe, however, that in

on-the-fly searching, g is not merely a multivalued function, but a (partial) function which is at times redefined, namely

each time a state is (re-)opened; at any particularmoment during a search, g is a partial function. Explicitly taking on-the-fly

searching into account, we finally define the notion of cumulated cost in Definition 4. There, s →∗T s′ denotes that s′ is
reachable from s through the set of transitions T , i.e. there are s0, . . . , sn ∈ S and �0, . . . , �n+1 ∈ A , with n ≥ 0, such

that s
�0−→ s0 ∈ T , si

�i+1−→ si+1 ∈ T for 0 ≤ i ≤ n − 1, and sn
�n+1−→ s′ ∈ T . Fig. 1 shows an example of (re-)defining g

on-the-fly. We return to this figure later on. In Definition 4, we use the triple set notation R = (X, Y, F) to define a binary

relation R (note that a partial function is a specific kind of binary relation), with X the domain, Y the codomain, and F a

set of pairs (x, y) defining that R(x) = y. Furthermore, we use a union operator � on binary relations, which is defined as

(X, Y, F) � (X, Y, F ′) = (X, Y, F ∪ F ′), and ‘undefined’ is represented by ‘⊥’, i.e. if R is undefined for s, we write R(s) = ⊥.
Definition 4 (Cumulated cost). Given a Wlts M = (S , A , C , T , I), we recursively define the cumulated cost function

relative to a given set of transitions T (called the scope) gT : S → K as follows:

• g∅ = (S ,K, {〈s, 0〉|s ∈ I });
• Given a (partial) function gT and a transition (s0

�−→ s1) �∈ T such that gT (s0) is defined. Then, we have

g
T∪{s0 �−→s1} = mc(gT � (S ,K, {〈s1, gT (s0)+ C (�)〉}) � RT (s1, gT (s0)+ C (�))),

with RT (s1, g) ={
(S ,K,∅), if g ≥ gT (s1) ∨ enM(s1) ∩ T = ∅⊔

(s1,�,s′)∈enM (s1)∩T ((S ,K, {〈s′, g + C (�)〉}) � RT (s
′, g + C (�))), otherwise

andmc((X, Y, F)) = (X, Y, {〈s, g〉 ∈ F|¬∃g′ < g.〈s, g′〉 ∈ F}).
Definition 4 explains how the cumulated cost function g can be constructed on-the-fly; initially we have g∅, which is

defined only for I , such that for all s ∈ I , g∅(s) = 0. As the search scope is increased, the cumulated cost function is

redefined, which is made explicit here by increasing the scope T . When adding a transition s0
�−→ s1 to the scope T , such

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 49

Fig. 1. Monotonicity example.

that s0 is reachable in T fromI (i.e. there exists an s ∈ I such that s→∗T s0), the new partial function g
T∪{s0 �−→s1} is equal to

the partial function gT extended with the definitions g
T∪{s0 �−→s1}(s1) = gT (s0)+ C (�), which associates a new cumulated

cost with s1, and RT (s1, gT (s0)+C (�)). Binary relation RT provides new cumulated costs for all states reachable from s1 in T ,

and represents re-opening s1. Note in the definition of RT that if s1 has already been (partially) explored, enM(s1)∩ T �= ∅.
If s1 now gets a lower cumulated cost than in an earlier visit, i.e. gT (s0) + C (�) < gT (s1), then we need to recompute the

cumulated costs for the successors in T of s1 as well. Since T is of finite size, the recursive computation of RT is guaranteed

to terminate.

Finally,mc strips a set of 〈state, cost〉-pairs of all non-minimal costs, i.e. for each state, only theminimal knowncost is kept.

This means that a given binary relation is converted to a partial function. Note that if gT (s1) ≤ gT (s0)+ C (�), computation

of g
T∪{s0 �−→s1} can be simplified tomc(gT) = gT . In case gT (s1) = ⊥, we have g

T∪{s0 �−→s1} = mc(gT � (S ,K, {〈s1, gT (s0)+
C (�)〉})), since s1 is a newly visited state, and hence has no outgoing transitions in T .

It follows that for all T ⊂ T , gT : S → S is a partial function. In fact, the only total function is gT , under the assumption

that all states s ∈ S are reachable from I . As we continue searching a Wlts, and our scope increases, we ‘discover’ the

definition of function �M (note that gT (s) = �M(I , {s})). In most of this article, we omit the scope of the cumulated

cost function, since it follows from the context. Definition 4 highlights the practice of discovering the final function g (i.e.

the total function gT), and, with that, �M , on-the-fly.

Next, in Definition 5, we define monotonicity of cumulated cost functions.

Definition 5 (Monotonicity of cumulated cost functions). A cumulated cost function gT : S → Kwith scope T ⊆ T is called

monotonic iff for all s ∈ S \ I there exist s′ ∈ S , � ∈ A with s′ �−→ s ∈ T and g(s) ≥ g(s′).

A function gT is called monotonic if for every state s reachable in T from I , there exists a predecessor with a cumulated

cost smaller than or equal to gT (s). We cannot claim that all predecessors of s have a smaller cumulated cost, because g(s)
might very well have been updated to a smaller value at least once during the search, while the g-values of some of its

predecessors are not. An example of this is illustrated in Fig. 1. At first, on the left of the figure, the cumulated cost of state

s3 is greater than the cumulated cost of state s1. However, the transition from state s2 to s3 has not been explored yet. When

increasing the scope to T ∪ {s2 −→ s3}, we revisit s3 by expanding s2, and find that its cumulated cost should be updated.

As the cumulated cost of s1 is not updated, since it is not reachable from s3, we have gT∪{s2−→s3}(s1) > gT∪{s2−→s3}(s3).
When considering K without negative elements, monotonicity of g follows trivially from Definition 4.

Best-first Search: now we can define best-first search (Befs) for Wltss, where a guiding function f is used to determine which

states to explore first. In general, the definition of f is left completely open in Befs, hence Befs constitutes a type of search,

not a concrete individual search. In Befs for Wltss, the cumulated cost function is often used in f . In order to optimise

the computational complexity, we store g(s) with each state s ∈ S . We refer to such a stored g-value as s.g (for instance

see the pair 〈s, s.g〉 in Algorithm 1). By doing so, we can compute g(s) for any s ∈ S by accessing the stored g-value

of (one of) its predecessor(s), and adding the cost of the fired action to it. For this purpose, we redefine nxtM(s, T) as

nxtM(s, T) = {〈s′, s.g + c〉| s′ ∈ S ∧ ∃� ∈ A . (s
�−→ s′ ∈ T ∧ C (�) = c)}. The result is presented in Algorithm 1. Here,

we leave open how the functions f and g relate to each other. Later on, we will consider possible relationships between f

and g. In the algorithm, a selection of β states based on f is done with the function selectf ,β : 2S → 2S , which employs

a given selection width β ∈ N ∪∞; let S be a set of states, then selectf ,β(S) ⊆ S and |selectf ,β(S)| ≤ β . Furthermore, each

level i of the search is represented by Li ⊆ S . In each round of the algorithm, f is used to select a set of states Li ⊆ H

from the search horizon H , which consists of all states which have already been visited, but not yet explored. Notice that

after generation of the successor states, which are placed in the set Li+1, some states are removed again, namely those

which have been encountered before with a lower or equally valued cumulated cost. These states are present in the union

of the previous levels, i.e.
⋃i−1

j=0 Lj . If, however, in an earlier encounter the cumulated cost was greater, then the state should

be re-opened. Of course, such a re-opening introduces redundancy in the search, but can often not be avoided if we wish

to preserve cost-optimality (which is defined later on). This check is referred to as duplicate detection. It is an important

step in state space search, since it guarantees termination when generating finite state spaces containing cycles. In Dmc,

this particular step is changed at times to avoid unnecessary exploration in smarter ways, e.g. by using branch-and-bound

50 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

Algorithm 1 Best-first search for weighted state spaces

Require: M = (S , A , C , T , I), guiding function f , selection width β , goal states

G

Ensure: If found, a trace to a goal state is returned

i← 0

H ← {〈s, 0〉|s ∈ I }
while H �= ∅ do

Li ← selectf ,β(H)
if {s|〈s, s.g〉 ∈ Li} ∩ G �= ∅ then
return generateTrace({s|〈s, s.g〉 ∈ Li} ∩ G)

for all 〈s, s.g〉 ∈ Li do

H ← H ∪ nxtM(s, enM(s))
i← i+ 1

H ← {〈s, s.g〉 ∈ H |¬∃g′ ≤ s.g.〈s, g′〉 ∈ ⋃i−1
j=0 Lj ∧ ¬∃g′ < s.g. 〈s, g′〉 ∈ H }

return false

Fig. 2. Example Ucs.

(BnB) [38]. Note that duplicate detection considers multiple appearances of a state in H itself. When this occurs, only the

smallest g-value should be maintained. Whenever a goal state is encountered, we stop the search by invoking the function

generateTrace, which returns a trace leading from I to this goal state. If such a goal state does not exist, false is returned. 1

Concerning the usage of selectf ,β , we can first of all distinguish two cases with β = 1 and β > 1, the first leading to

explicit-state searches, and the second to set-based searches. Furthermore, for a given set of states S, consider the subset of

states with minimal f -value Smin = {s ∈ H |∀s′ ∈ H .f (s) ≤ f (s′)}. Whenever β > |Smin|, we can distinguish two types of

selectf ,β functions: either selectf ,β selects exactly Smin, i.e. it is limited to selecting states from Smin, or additional states are

selected from S \ Smin based on f until β states are selected (unless |S| < β , in which case S is selected entirely). The first

type of selectf ,β functions is used in, e.g. set-based A∗, where in each round, exactly Smin is selected, while the second type

is used in Bs.

Note that duplicate detection, in the last line of the algorithm, is now refined to the removal of states from the search

horizon H which have been encountered before with a lower or equally valued cumulated cost.

Uniform-cost Search: Now we come to a practical instance of Befs. Given a monotonic cumulated cost function g : S → K,

if we say that f = g, then Algorithm 1 denotes what is referred to by, e.g. [36,48,56] as uniform-cost search (Ucs), and as

lowest-cost-first search by [54]; it is also known as Dijkstra’s search, technically if G = ∅, from [16]. In Fig. 2, an example of

Ucs through a tree is shown, where the g-values are displayed inside the nodes. The grey nodes are selected for exploration,

while the obscured ones are nodes that would have been encountered, had their parents been selected. In Ucs, nodes are

expanded in order of their g-values. Note that in Algorithm 1, the duplicate detection is unnecessarily complicated for Ucs.

This follows from the following observation concerning Ucs:

Lemma 1. If we consider monotonic g for Ucs, then for any states s, s′ ∈ S , if s is selected by the selectg,β function in round i,

and s′ is selected by the selectg,β function in round j > i, then necessarily s.g ≤ s′.g. This is true independent of the value of β .

Since Lemma 1 also holds when s = s′, it follows that in duplicate detection it suffices to check for earlier encounters of a

state, independent of its g-value. More formally, we can simplify duplicate detection to H ← {〈s, s.g〉 ∈ H |¬∃g′.〈s, g′〉 ∈⋃i−1
j=0 Lj}.

1 The decision to have Algorithm 1 and subsequent algorithms return false in case no goal state is encountered was made interpreting goal states as desirable

states.

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 51

Fig. 3. Multi-phase selection in m-Befs.

From Lemma 1 it follows that the first time a state s ∈ G is discovered, a trace from I to s is discovered with g(s) =
�M(I , {s}). Actually, if it is the very first goal state we encounter, then g(s) = �M(I , G).

We call the second property cost-optimality, which is defined in Definition 6.

Definition 6 (Cost-optimality of a best-first search). Given aWlts M = (S , A , C , T , I) and a set of goal states G ⊆ S , we

call a Befs cost-optimal iff it is ensured that it always returns a trace from I to a goal state s ∈ G with f (s) = �M(I , G)
(unless G = ∅ or unreachable).

For instance, in general, Bfs, which is called a blind or uninformed search since it ignores g, applied on a Wlts (which is

represented in Algorithm1by choosing an appropriate f , such as f (s) = 0 if s ∈ I , and f (s) = f (s′)+1, if∃� ∈ A .s′ �−→s, 2

and furthermore having β = ∞), is not cost-optimal, unless searching is continued once a trace to a goal state is found until

there are no more states to explore. This is because there is no necessary correlation between the length of a trace and its

total weight; so the first time a goal state is reached does not necessarily mean that a minimal trace to a goal state is found.

On the other hand, in a Wltswhere for all � ∈ A , C (�) = 1, Bfs is cost-optimal.

Finally, depth-first search (Dfs) can be achieved in Algorithm 1 by, e.g. determining f on-the-fly as f (s) = 0, if s ∈ I ,

and f (s) = f (s′)− 1, if ∃� ∈ A .s′ �−→ s and setting β = 1.

3. Multi-phase best-first search

In this section, we propose an extension of Befs, which we callmulti-phase Befs (m-Befs), which gives rise to the idea of

compositionality of Befss. This extension is by no means common; in the literature we find some searches which may be

identified as instances ofm-Befs, but the general form is not described. The three possible instances we found are filtered Bs

(reported, e.g. by [59,50,64]), A∗ε [48], and heuristic depth-first search (e.g. see [54]). Furthermore, in the context of AND/OR

graphs, the General Best-First Strategy (Gbf) is a two-phase Befs [48]. Besides the existence of these searches, our proposed

extension will be furthermore motivated in the sections on Bs in this article.

In Befs, one canmanipulate theway inwhich theLi are constructed bymeans of providing a selection function, a guiding

function f and a selectionwidthβ . A generalisationwould be to allow a list of n selection functions select1f1,β1
, . . . , selectnfn,βn

,

each with their own guiding function fi and selection width βi.
3 The list could be used to construct an Li through a number

of intermediate phases, such that in practice, we basically stack search algorithms on top of each other. We will further

illustrate this concept next.

Say we have an n-phase Befs, with selection functions select1f1,β1
, . . . , selectnfn,βn

. In each round i of the algorithm, we

construct Li from H as follows, which is illustrated in Fig. 3:

1. In the first phase, we use function select1f1,β1
to select up to β1 states from H . The selected states together form the

intermediate search horizon H1. If a goal state is found, a trace from I to this goal state will be produced.

2. In the second phase, we take H1 and produce the intermediate search horizon H2 by applying select2f2,β2
to select up

to β2 states from H1.

3. . . .
n. In the nth phase, we take the intermediate search horizon Hn−1, and produce Li by applying function selectnfn,βn

to

select up to βn states from Hn−1.

2 Note that as with cumulated cost functions, f is technically not a function here, as a state s may receive different f -values during a search. It is, however, a

(partial) function at any specific moment of the search.
3 In general, there are other possible parameters for Befs, not explicitly mentioned in this article, such as a cost upper bound U, which is used to prune away

states s with g(s) > U. In a similar fashion, a list of cost upper bounds can be provided for m-Befs.

52 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

States selected in phase j < n are not directly removed from H0, since thesemay very well not be selected in subsequent

phases, in which case we should reconsider them in the next level of the search. The final selection of the level, though, once

phase n has finished, is removed from the search horizon, since these states are going to be fully explored.

By adopting such amulti-phasedmechanism, we can compose search algorithms useful for several reasons. For instance,

the aforementioned filtered Bs can be seen as a two-phase Befs, where in the first phase states are selected based on some

computationally cheap guiding function, which does not incorporate the history of the states, while the remaining states are

pruned away. In the second phase, a second selection is performed, and pruning is again applied, using a more precise, but

computationally muchmore expensive, guiding function. By this approach, we can avoid evaluating all states in the original

search horizon with the computationally more expensive guiding function.

One can also imagine combining cost-optimal searches. For instance, ann-phaseUcs could beuseful to dealwith so-called

multi-cost problems (e.g. [6,40]). As an example, consider the problem of constructing a new building, where money, time

and manpower are the three types of resources to consider. The goal is to find a way to construct the building, such that

the amount of money needed should absolutely be minimised. Given this condition, the quickest possible solution should be

chosen, and finally, given those two conditions, we should try to minimise the amount of manpower needed. Such a solution,

in the Wlts of the specification of this problem represented by a trace, could be found by using a three-phase Ucs, where

f1(s) = g1(s) keeps track of the amount of money spent, f2(s) = g2(s) reports the time needed thus far, and f3(s) = g3(s)
reflects the total amount of manpower. One can imagine that changing the priorities of these three types of resources leads

to different kinds of solutions, and that changing the order of the phases in the multi-phase Ucs allows us to deal with these

different priorities. Note that such multi-cost problems are different from so-called pareto-optimal problems, as dealt with

in, e.g. [23]. There, the optimal trade-off needs to be found, i.e. a solution such that there is no other solution which is more

cost-effective according to some requirement, while not being worse according to the others.

On a side note, it should be pointed out that multi-phase searches raise the interesting question how duplicate detection

should be performed, or more specifically, when to re-open states and when not. For instance, if we open a state s, after

computing both f1(s) and f2(s), and later, we re-encounter s, this timewith a lower f1(s) value, but with a greater f2(s) value,
what to do next? Of course, the re-opening policy should be decided based on the importance of the individual guiding

functions.

Returning to the previously mentioned instances ofm-Befs, as explained before, filtered Bs applies two different types of

Bs in two phases, subsequently, where in the first phase a computationally cheap guiding function is used, and the second

phase dealswith amore thorough selection among the remaining states. This search is described inmoredetail in Section 5.5.

The A∗ε search can be seen as a multi-phase search, where in the first phase, standard (set-based) A∗ with selection of extra

states is used to make an intermediate selection of states. In this phase, all states need to be selected with an f -value not

greater than the minimal f -value plus a pre-given value ε. In the second phase, f2(s) = h2(s), where h2 expresses a search

effort estimate. The search effort estimatemust not be confusedwith the estimated remaining cost along a trace; it concerns

the remaining computational effort needed by the search algorithm to find a goal state. This second estimate is used to

make a final selection of states for exploration from the intermediate set of states. This approach gives rise to the notion of

ε-admissibility; an algorithm is ε-admissible iff it is guaranteed to find a solution not worse than the optimal solution plus

ε. This notion is derived from the notion of admissibility of algorithms, which states that an algorithm is called admissible

iff it is guaranteed to find an optimal solution, i.e. it is cost-optimal.

Finally, heuristic Dfs is a Dfs that uses an estimation function to decide for each s the order in which the successors need

to be explored. Note that the estimation function is used locally per state here. A global way, considering the whole search

horizon, would constitute a searchwhich could be called heuristic Bfs. HeuristicDfs can be seen as a two-phase Befs, where

the first phase selects the states as a Dfs would, yielding the set of successors S of one state. For this, we can determine f1

on-the-fly as f1(s) = 0, if s ∈ I , and f1(s) = f1(s
′) − 1, if ∃� ∈ A .s′ �−→ s. In the second phase, an estimation function

h : S → K is applied as f2 to select one state from S. The concept of m-Befs will reappear in subsequent sections when

dealing with so-called G-synchronised Bs for Wltss.

4. Beam search

Bs (e.g. [59,7,50]) is a heuristic search algorithm for combinatorial optimisation problems, which was originally used in

theartificial intelligence communitybyLowerre [42] for speech recognition, andbyRubin [55] for imageunderstanding. Later

on, this technique has been applied to scheduling problems, e.g. in [26,61,58] in systems designed for jobshop environments

(for an explanation of this kind of problem in amodel checking context, e.g. see [67,69]). Since then, new variants of Bs, such

as filtered Bs [59,60,50] and recovery Bs [15,64], have been introduced.

Bs is similar to Bfs as it progresses level by level. At each level of the search tree, it uses a heuristic evaluation function to

estimate the promise of encountered nodes, 4 while the goal is to find a path from the initial state (initial node of the tree) to

a leaf node that possesses theminimal evaluation value among all the leaves. At each level, only the β most promising nodes

are selected for further examination and the other nodes are permanently discarded. The beam width parameter β is fixed

4 In this section, we use the common Bs terminology, i.e. we reason about nodes and edges, as opposed to states and transitions. This emphasises that we adapt

the Bs techniques to a different setting.

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 53

Fig. 4. Pbs for search trees [63].

Fig. 5. Dbs for search trees [63].

to a value before searching starts. Because of this aggressive pruning, the generation time is linear to the maximum search

depth, and is thus heavily decreased. However, since wrong decisions can be made while pruning, Bs is neither complete

nor cost-optimal. To limit the possibility of wrong decisions, one can increase the beam width, at the cost of increasing the

required computational effort and memory use.

The original definition of Bs allows any kind of guiding function to be used. Using the terminology of [67], it only demands

that pruning in the width is performed, and extra states are selected (see Section 5.2); as [26] put it: “[Bs] builds a highly

pruned search tree of labelling alternatives which resembles a beam”. In this article, however, we focus on two types of

evaluation functions, which have traditionally been used often for Bs, as, for instance, reported in [59,64]: priority evaluation

functions and total-cost evaluation functions, which lead to the priority (Pbs) and detailed (Dbs) Bs variants, respectively. In

Pbs, at each node a priority evaluation function calculates a priority for each successor node, and the algorithm selects based

on those priorities. At the root of the search tree, up to β most promising successors (i.e. those with the highest priorities)

are selected, while in each subsequent level only one successor with the highest priority is selected per examined node.

Fig. 4 describes the basic idea of traditional Pbs. There, n0 is the root of the search tree, and all leaves are assumed to be

located at the same level.

In Dbs, at each node n, the evaluation function f (n) = g(n) + h(n) calculates an estimate of the minimal weighted

distance between n0 and the set of goal nodes G via n. For this, the cumulated cost of n is added to an estimate of theminimal

weighted distance between n and G . At each level, up toβ most promising nodes (i.e. thosewith the lowest total-cost values)

are selected, regardless of who their parent nodes are. If there are more than β nodes that receive the best evaluation value,

a selection is made based on other criteria, e.g. the order of encountering the nodes (see Section 5.4 for other possibilities).

Clearly, when β →∞, Dbs and Pbs behave as exhaustive Bfs. Fig. 5 represents traditional Dbs.

In comparison, priority evaluation functions have a local view of the problem, since they only consider the next node to

be selected, while total-cost evaluation functions have a more global view, taking complete traces from n0 to G into account

and comparing different branches of the tree. The intuition behind priority evaluation functions is that one cannot simply

compare priorities of nodes which do not have the same parent node, because the suitability of a node depends on what

came before in the trace from n0 to the parent. This is closely linked to the fact that Pbs is typically used on trees representing

jobshop scheduling problems, where a finite number of jobs {t1, . . . , tn} (n ≥ 1) need to be performed in some order. Then,

each node represents performing a job, but which jobs can be performed next depends on the jobs that have previously

been performed. Say we have a priority function prio : N → Z to guide the search, with N the set of nodes. In a tree

representing a jobshop problem, every trace leads to a goal node n ∈ G , and along a trace, each job is performed exactly

once.Within such a tree, wewish to guide the search by associating priorities with the job executions, i.e. the nodes, thereby

stimulating the early execution of highly important jobs. Now, let us look at nodes n0, . . . , n6 in Fig. 6a.

Say that n2 and n4 are associated with performing job ti, and n3 and n6 with performing job tj , for (0 ≤ i, j ≤ n) and

(i �= j). Clearly, from node n1, where both ti and tj can be performed next, if we need to select one node based on prio, and

prio(ti) > prio(tj), we will choose ti. If we would take all the successor nodes of both n1 and n5 together into account, since

54 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

(a) (b)

Fig. 6. (a) Selection of transitions. (b) Example Dbs with β = 2 in a search tree.

these are on the same search level, and make a (global) selection based on prio, we would make a mistake. Note that in the

trace leading from n0 to n5, ti has already been performed once in n4. In other words, in n5 we are in a completely different

situation; in fact, it might be that n5 represents a situation in which we have made more progress with the problem than in

n1, thereby we only have jobs left with lower priorities. As we do not want to delay or even prune away this more promising

trace, histories of nodes are important when selecting, and therefore we may only compare nodes with each other if they

have the same parent.

The inability of priority functions to globally compare nodes may be a limitation of this kind of functions, compared to

total-cost functions, but priority functions also have advantages; first of all, their computational complexity is, in general,

far less. Priority functions usually only encompass looking up a priority for a given job (e.g. in a table), while cost functions

may incorporate complex calculations, particularly when heuristics are involved. Second of all, focussing on our desire to

apply Bs on Ltss, no cost values are involved with a priority function, therefore, such a function could be applied on an

unweighted Lts, which implies that a cheaper duplicate detection suffices, in which g-values are not checked. However,

total-cost evaluation functions often provide more accurate heuristics because of their global view [59].

Fig. 6b shows the application of a Dbs on a search tree, where the f -values are displayed in the nodes. Typically, this is a

Dbs as opposed to a Pbs. First of all, in a Dbs, states with the lowest f -values are selected, while in a Pbs, priorities must be

high in order to qualify for selection. Second, in a Pbs, up to β transitions from the root of the tree are followed, after which

in each subsequent level of the tree one outgoing transition with the highest priority is selected per examined node. In a

Dbs, however, at each level up to β nodes are selected to continue, regardless of what their parent nodes are, therefore it

could be the case, as in level 4 of Fig. 6b, that some nodes have multiple selected children, while others have none.

5. Adapting beam search for state space generation

5.1. Motivation

Bs is typically applied on highly structured search trees, e.g. in [47,64]. If we encode a jobshop problem, as explained in

Section 4, in aWlts, in which the transitions have labels, it is quite intuitive to label the transitions with the executed jobs.

The Wlts in Fig. 7a contains all possible orderings of jobs {t1, t2, t3}. Such a search tree starts with n jobs to be scheduled,

which means that the root of the tree has n outgoing transitions. Every node has exactly n− k outgoing transitions, where k

is the level in the tree where the node appears. However, in general, Wltss contain information on all possible behaviours

of a system, and this may incorporate cycles or confluence of traces (i.e. states having multiple incoming transitions), i.e.

Wltss can have more complex structures than the well-structured search trees usually subjected to Bs. This necessitates

modifying the Bs techniques to deal with arbitrary structures. Moreover, the Bs algorithms search for a particular node in

the search tree, while in (and after) generatingWltss one might desire to study a property beyond simple reachability (see

Section 10.2 on Por as an instance of extended Bs). We therefore extend Bs to a state space generation setting, as opposed

to its traditional setting that focuses only on searching. See Section 7 for possible optimisations when restricting Bs to verify

reachability properties. This, along with the necessary machinery for handling cycles, raises memorymanagement issues in

Bs, as we will see in Section 7.

First, we adapt Pbs andDbs for state space generation. Next, we propose two variants of Bswhich have, in our case studies,

proved essential for handling largeWltss. Flexible Bsmitigates the problem of determining a sufficiently large beamwidth,

while synchronised Bs separates the pruning phase from the exploration strategy.

Fig. 7b shows the spectrum of the variants that are described in the following sections. Sections 5.2 and 5.3 deal with Pbs

and Dbs, respectively. The F and S prefixes refer to the flexible and synchronised Bs variants (Sections 5.4 and 5.5).

5.2. Priority beam search for state space generation

Next, wemotivate and describe the changes that we havemade to the traditional Pbs to deal with state space generation.

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 55

(a) (b)

Fig. 7. (a) Search tree for a single-resource scheduling problem with tasks t1, t2, t3. (b) Bs spectrum, x ∈ {D, P}.

Algorithm 2 Pbs for Wltss

Require: M=(S ,A ,T ,I), widening factor α, stabilisation level l, priority function

prio : A → Z, set of goal states G

Ensure: If found, a trace to a goal state is returned

i← 0

Li ← I

Buffer← ∅
limit := α
while Li �= ∅ do

Li+1← ∅
if Li ∩ G �= ∅ then
return generateTrace(Li ∩ G)

for all s ∈ Li do

for all s
�−→ s′ ∈ enM(s) do

if prio(�) > priomin(Buffer) then
if |Buffer| = limit then

Buffer← Buffer \ {getpriomin(Buffer)}
Buffer← Buffer ∪ {s �−→ s′}

Li+1← Li+1 ∪ nxtM(s, Buffer)
Buffer← ∅

Li+1← Li+1 \⋃i
j=0 Lj

i← i+ 1

if i = l then

limit := 1

return false

Pbs is shown in Algorithm 2. The user-supplied function prio : A → Z provides the priority of actions, as opposed

to states. We motivate this deviation from the traditional notion of Pbs by noting that jobs in the scheduling terminology

correspond more naturally with actions in a Wlts when specified for a model checker, as already mentioned earlier. The

finite set of actions A then nicely corresponds with the set of jobs to perform. Moreover, by applying the priority function

on actions, we can use such functions for anyWlts, instead of only the ones representing a jobshop problem, since allWltss

have labelled transitions, and there is therefore no need for an additional function mapping states with the prioritised

elements (e.g. jobs).

The set Buffer temporarily keeps seemingly promising transitions. The function priomin : 2T → Z ∪ {−∞} returns
the lowest priority of the actions of a given set of transitions. We define priomin(∅) = −∞. The function getpriomin :
2T \ ∅ → T , given a set T of transitions, returns one of the transitions in T labelled by an action with priority priomin(T).
The aforementioned functions are used together in Algorithm 2 to select a subset of Li, but in two important ways this

differs from the selectβ function of, e.g. Ucs:

1. Not only the very best states are selected according to the evaluation function. Extra statesmaybe selected (considered

in order of evaluation value), as long as the selection limit has not been reached.

2. All the states not selected are pruned from memory; they are not reconsidered in later rounds (unless visited again).

56 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

In the terminology of [67], we call these algorithmic properties selection of extra states and pruning in the width, respectively.

Note that the stopping condition of the traditional Pbs algorithm of Section 4 is represented here by the conditionLi �= ∅
of thewhile loop, which does not assume that all leaves occur in the same level (this, moreover, avoids cycles). The algorithm

terminates when it has explored all the states in its beam.

In Pbs, originally, up to β children of the root are selected. The resulting beam of width β is thenmaintained by sprouting

only one child per node in subsequent levels. This works for trees such as the one shown in Fig. 7a, where the root has more

outgoing transitions than any other node in the tree. InWltss, however, the root has typically considerably fewer outgoing

transitions than the average branching factor of the Wlts. Fixing the beam width at such an early stage is therefore not

reasonable.

Selecting all transitions at each level untilβ ormore transitions are found in a single level would be an option. However, if

this number drastically exceeds β , it would not be clear which transitions should be pruned away. To mitigate this problem,

instead of β , Algorithm 2 is provided with the pair (α, l), where α, l ∈ N and αl = β . We call α the widening factor and l

the stabilisation level. The idea is that the algorithm uses the prio function to prune non-promising states from the very first

level, but in two phases: before reaching β states in a single level it considers per state the most promising α transitions

for further expansion, but after that (i.e. once it has reached level l), it sticks to the one successor per state rule. Here, the

assumption is made that in the first l levels of theWlts, each state has at least α outgoing transitions. In practice, this is not

such a strong assumption, considering that the kind of problems for which Bs is suitable typically produces Wltss which

resemble trees that expand quickly.

5.3. Detailed beam search for state space generation

The original idea of Dbs does not need to change much to fit into the state space generation setting, except for handling

cycles; we need to incorporate the weight-sensitive duplicate detection of Algorithm 1. As a side note, the average running

time of the Dbs algorithm of Section 4 can be reduced if the order of exploration and evaluation is reversed. Intuitively,

instead of first expanding the nodes of the current level and then evaluating the children and selecting theβ most promising

of them to constitute the next level (cf. the algorithm of Section 4), we first evaluate the states of the current level, select

the β most promising states among them and then expand them, to constitute the next level. When performed successively,

these two orders are identical. However, since the number of nodes to be evaluated is a priori known in each level, evaluation

of the states of a level containing no more than β states can altogether be avoided. 5

Besides that, to reduce the space complexity of the traditional Dbs algorithm of Section 4, while evaluating, only the β
most promising states can be kept in a set and the rest can be discarded (note that β2 states are stored in the algorithm of

Section 4). This optimisation, of course, does not depend on the order of evaluation and exploration.

Dbs is representedbyAlgorithm1 ifwedefine selectf ,β as inAlgorithm3. Function f is decomposed into f (s) = g(s)+h(s),
in other words, as explained in Section 4, it incorporates a cumulated cost part and a heuristic part. The g(s) function

represents the cumulated cost taken to reach s from I , as defined in Definition 4. The cost-function C is user-supplied. The

weights can, e.g. denote the time needed to perform different jobs in a scheduling problem. These weights are fixed before

searching starts.

The user-supplied heuristic function h(s) estimates the cost it would take to efficiently complete the schedule continuing

from s. Similar to g, the total-cost function f is called monotonic iff s→∗ s′ �⇒ f (s) ≤ f (s′).
The function getfmin : 2S \ ∅ → S , given a set of states, returns one of the states that has the smallest f -value. It thus

computes f (s) = g(s) + h(s) for each member of the set (it can of course be optimised for consecutive calls to the same

set). Note that in Algorithm 3, pruning is applied, as all states not selected are removed from the horizon.

Algorithm 3 selectf ,β for Dbs for Wltss

Require: search horizon H , guiding function f : S → K, beam width β
Ensure: A subset L ⊆ H is returned with smallest g-values, |L | ≤ β

L ← ∅
while |L | < β ∧H �= ∅ do

L ← L ∪ {getfmin(H)}; H ← H \ {getfmin(H)}
H ← ∅
return L

5.4. Flexible beam search

Amajor issue that still remains unaddressed in theBs adaptations of Sections 5.2 and 5.3 is howamong equally competent

candidates, i.e. having the same f -values, pruning should be carried out.

5 Actually, the evaluation of the heuristic estimation part, which is computationally the most expensive phase, is the part that is avoided. See Algorithm 3 for

details.

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 57

Actions inWltss can have several parameters. The same action can thus appear multiple times as an outgoing transition

of a given state, each time having different parameter values, possibly leading to equally competent states. This potentially

leads to situationswhere, during selection, a large number of transitions or states have equal evaluations (for some examples,

see Section 9). In such cases, a selection has to be made among equally competent candidates if they happen to be (one of)

the most promising transitions or among the β-best states. These selections are beyond the influence of the evaluation (or

priority) function and can undesirably make the algorithm non-deterministic. Hence, we propose two variants of Bs that we

call flexible detailed and flexible priority Bs, in which the beam width can change during state space generation.

In flexibleDbs, at each level, up to β most promising states are selected, plus any other state which is as competent as the

worst member of these β states. This achieves closure on the worst (i.e. highest) total-cost value being selected. Similarly, in

flexible Pbs, in the first l levels (see Section 5.2), at each state, up to α most promising outgoing transitions are selected, plus

any transition which has the same priority as the least competent member of these α transitions. At the l + 1th level and

onwards, at each state, all the transitions with the same priority as the most promising transition of that particular state are

selected (i.e. as if α = 1). In other words, in flexible Bss, tie-breaking is avoided, by making the beam dynamic in size. Note

that in flexible Pbs, in contrast to flexible Dbs, if the beam width is stretched, it cannot be readjusted to the intended β .

The benefit of this approach is that there are no selection criteria other than the evaluation function used. This not only

leads to more insight in the effectiveness of the function, but in practice it may also mean that smaller beam widths can be

used, compared to non-flexible Bs (see, for instance, the results in Section 9). The drawback is that thememory requirement

is no longer linear in the maximum search depth, since β is only a guideline for the beam width.

5.5. G-synchronised beam search

As is described in Section 4, the classic Bs algorithms were tailored for the Bfs strategy. Next, we explain a more general

setting in which Bs can be used with any best-first exploration strategy. Broadly speaking, we separate the exploration

strategy fromthepruningphase,where theexplorationmaybeguidedwithadifferentevaluation function.This isparticularly

useful when checking reachability properties on-the-fly.

We inductively describe G-synchronised x-Bs as a two-phase Befs, where G is the function that guides the exploration and

x can be either detailed, priority, flexible detailed or flexible priority. Let H be the current search horizon. In the exploration

phase of round i, we need to determine the set of states to be explored Li ⊆ H . We do this by first determining an

intermediate search horizon H ′ by employing the guiding function G as follows: H ′ = {s ∈ H |∀s′ ∈ H .G(s) ≤ G(s′)}.
Subsequently, the pruning phase of x-Bs is applied on H ′, leading to Li ⊆ H ′. According to the pruning phase (which can

possibly employ an evaluation function different from G), some of the states in H ′ are selected, constituting the set Li.

Finally, the successors of all the states in Li are determined and added to H . The next round starts with the search horizon

H \ H ′ and needs to determine Li+1. Algorithm 1 describes this technique if we define selectf ,β as in Algorithm 4. Since

this technique distinguishes an exploration phase and a pruning phase, it can combine most exploration strategies (from

different Befss) with all the variants of Bs introduced earlier. Using any constant function as G in synchronised Dbs clearly

results in Bs with a Bfs exploration strategy.

Algorithm 4 selectf ,β for G-synchronised Dbs for Wltss

Require: search horizon H , exploration function G, heuristic function h : S → K,

beam width β , set of goal states G

Ensure: L ⊆ H ′ ⊆ H is returned, with H ′ the set of elements from H with smallest G-values, L the set of elements

from H ′ with smallest h-values, |L | ≤ β
L ← ∅; H ′ ← {〈s, s.g〉 ∈ H |∀〈s′, s′.g〉 ∈ H .G(s) ≤ G(s′)}
while |L | < β ∧H ′ �= ∅ do

L ← L ∪ {getfmin(H
′)}; H ′ ← H ′ \ {getfmin(H

′)}
H ← H \H ′
return L

Modular implementation of synchronised Bs variants can thus be conceived: the first phase takes care of the order in

which states need to be considered for pruning and exploration, and the second phase performs the actual pruning and

selection. Such a two-phase approach resembles filtered Bs, described by [59], where classic Pbs is applied before classic

Dbs takes place. In Section 3, we described a general algorithm, encompassing these two types of searches, called m-Befs,

which can also deal with more than two phases per round.

To mention a practically interesting candidate for G, we temporarily return to the application of finding schedules for a

given problem. This means that we wish to find a path of minimal cost that leads to a particular action or state in aWlts. If

for every action �, prio(�) = 1, this problem corresponds to finding the minimal length trace when verifying a reachability

property. Recall that the total-cost function in Dbs can be decomposed into f (s) = g(s)+ h(s), where g(s) is the cost of the

trace leading fromI to s. If G(s) = g(s), thenwe practically have aDbs pruningmechanism together with aUcs exploration

strategy. As it turns out, this means that Ucs properties such as Lemma 1 are inherited; in g-synchronised Dbs, once a goal

state (or a complete schedule) is found, searching can safely terminate. This is because in a goal state s, f (s) = g(s), and
since the algorithm always follows paths with minimal g (remember that g is monotonic), state s is reached before another

58 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

state s′ iff g(s) ≤ g(s′). Note that here no state is re-opened, because states with minimal g are taken first and thus a state

can be reached again only via paths with greater costs (cf. Section 5.3). This in practice removes the necessity to store costs

with states [67,69].

Both g-synchronised Dbs and g-synchronised Pbs have been used in solving timed scheduling problems, the results of

which are reported in Section 9, where minimal-time traces to a particular action label are searched for. One can imagine

these searches as two-phase Befss with a Ucs in the first phase, and a greedy search (Befswith f (s) = h(s)) and a Pbs in the

second phase, respectively. The same pruning algorithm can be used to search for other kinds of traces, such as a shortest

trace or a shortest minimal-time trace.

6. Beam search in the µCRL toolset

In the μCRL toolset, we implemented the g-synchronised variants of Bs, such that the exploration phase is performed in

an (action-based) minimal-cost manner (see minimal-cost search [67,69], which is a specific kind of Ucs for Wltss where

costs are represented by special, additional actions), therefore these variants can be applied on unweighted Ltss with an

action-based representation of costs. In these variants, there is no additional space needed to store (intermediate) cumulated

cost results for states, and the duplicate detection can be done straightforwardly, not considering the cumulated costs. Next,

we describe how total-cost and priority evaluation functions are represented in the toolset.

In our implementation of Pbs, priority values are assigned to actions, as opposed to nodes in classic Bs, and are fed to

the state space generator in an input file. To be precise, priority values are assigned to action labels and are fixed during the

search. Therefore, identical action labels have equal priority levels regardless of their source, destination or parameters (if

present). By default, all actions have priority zero.

Related to Dbs, the μCRL toolset can perform a g-synchronised Dbs with f (s) = h(s). 6 The desired estimation function

h : S → K can be specified using constants and variables taken from the parameter list of the specification, combined

with the standard arithmetic operations, i.e. addition, subtraction, multiplication and division. If the estimation function

has a sophisticated structure, e.g. depends on some pre-calculated information as in the case of [47], it should be encoded

in the specification. In μCRL, abstract data types are used to specify data structures and functions. This is very expressive

and allows creating many useful functions, possibly incorporating pre-calculated data; see, e.g. [32].

In general,G-synchronised searches can be applied, as long as theG-guiding is action-based, like e.g.minimal-cost search,

which can keep track of g-values by recording the number of encountered cost transitions (here labelled tick) along the way.

Also, flexible versions of the implemented variants are available.

Of course, alternatively, a total-cost function f (s) = g(s)+ h(s) can be achieved by keeping track of cumulated costs of

states in a special variable cost in the specification, as explained e.g. in [67,69].

Case studies on timed scheduling problems using the Bs implementations in theμCRL toolset are discussed in Section 9.

7. Memory management

Memory management is a challenging issue in state space generation. Although Bs reduces memory use due to cutting

away parts of the Wlts, still explored states need to be accessed to guarantee the termination of the exploration in case of

cyclic state spaces. Keeping thewhole set of visited states in thememory is usually susceptible to early state space explosion.

This can be counter-measured by taking into account specific characteristics of the problem at hand and the properties that

are to be checked. Below we discuss some possible optimisations when applying Bs:

1. When aiming at a reachability property on-the-fly (such as reachability of a goal state, checking invariants and hunting

deadlock states), the memory requirements can be lowered by checking the property while exploring. In that case,

once a state satisfying the desired property is reached, the search terminates and the witness trace is reported. This,

however, cannot be extended to arbitrary properties.

2. If there are no cycles in the Wlts, there is in principle no need to check whether a state has already been visited (in

order to guarantee termination). Therefore, only the states from the current level need to be kept and the rest can be

removed from memory, i.e. flushed to high latency media such as disks. In this case, however, some states may be

revisited due to confluent traces, hence undesirably increasing the search time. Prominent examples of systems with

acyclic Wltss are large classes of scheduling problems, which have been traditional targets of Bs, and most security

protocols (see Section 10.2). As is demonstrated by [62], a known Por algorithm for security protocols can be seen as

an instance of Bs.

3. In Dbs variants, if each state s has a unique cumulated cost g(s) associated to it, e.g. denoting a notion of progress,

and if g is monotonic, then there cannot be any transition from states with a greater cumulated cost to the states

with lower cumulated costs: g(s) < g(s′) �⇒ s �→∗ s′. Consequently, states with cumulated costs strictly lower

6 In fact, note that a guiding function f (s) = g(s)+ h(s) has the same effect here, as in each round of the search, g-synchronised Dbs considers states with the

same g-value, therefore these states can only have different f -values if they have different h-values.

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 59

than the cumulated costs of the states to be processed can be removed frommemory. This resembles sweep-line state

exploration [12].

4. In G-synchronised Bs variants with amonotonic G-function, bit-state hashing [33] can be used to reducememory use.

This technique is however inherently incomplete, i.e. may miss parts of the state space, and in particular when used

in Bs there is the possibility of ignoring a previously visited state when it is reached via a path with a lower G-value.

However, for G-synchronised Bs variants with monotonic G, this does not pose a problem, since re-opening of states

is never needed. Note that the approach remains an approximation to Bs and, thus, can be seen as a trade-off between

memory usage and having a tight grip on pruning.

5. In [46], a caching framework for both Bfs and Dfs was proposed. There, a hierarchy of state caches is employed to

carefully keep a partial search history in memory, instead of the complete history
⋃i−1

j=0 Lj (when being in round

i). Each cache can keep a fixed number of elements, i.e. search levels (for Bfs) or states (for Dfs), has a sampling

function determining which elements are accepted for storage, and has a replacement strategy determining which

elements need to be removed, in case the cache is full. Moreover, the mechanism is adaptive, and still guarantees

termination and exhaustiveness of the search algorithm. In practice, it was observed that memory requirements for

state space generation can be reduced by at least 70%, sometimes even by more than 90%. This technique can be used

with Bs as well, but one should be aware of the fact that the partial duplicate detection in such a setting may have

a direct impact on the direction of the Bs, hence the quality of the Bs, as a state reintroduced for exploration, due

to a failure in the duplicate detection, will compete for selection in the next round with other states. Reintroduced

states can therefore be selected for exploration again, thereby pushing out states which otherwise would have been

selected. Because of this, compared to performing a similar Bswithout caching, a different subspace of theWltswill

be explored.

8. Heuristics and selecting the beam width

Effectiveness of Bs hinges on selecting good heuristic functions. Heuristic functions, as George Polya put it in 1945, are

meant “to discover the solution to the present problem” [53], and thus heavily depend on the problem being solved. As the

focus of this article is the development of search algorithmsworking with heuristics, we do not discuss techniques to design

the heuristic functions themselves. Developing heuristics constitutes awhole separate body of research and, here,we refer to

a few case studies on using heuristics in pruning state spaces: Among others, [30,47,59,64] present detailed discussions on

pruning heuristics when dealing with Java program analysis, scheduling a wafer stepper machine, and jobshop scheduling

problems, respectively. In Section 9, we show the effect of using heuristics to schedule some tasks in several applications,

some based on river crossing problems [17].

Particularly papers on designing heuristic functions, such as the work by [21,19,30,39], constitute a nice complement to

the work we present here, as they explain how to design heuristic functions and we start with the assumption of having a

heuristic function. Authors [21,19] use guidelines to approximate the distance to deadlocks and violations of invariants and

assertions. The objective of [30] is to model check Java programs with heuristics constructed using the properties to check,

the structure of the programs and additional input of the user. Such functions can naturally be used as input also to the

algorithms proposed in this article.

Selecting thebeamwidthβ is another challenge inusingBs. Thebeamwidth intuitively calibrates the time/memoryusage

of the algorithm on the one hand and the accuracy of the results on the other hand. Therefore, in practice the time/memory

limits of a particular experiment determine β . To reduce the sensitivity of the results to the exact value of β , we propose

using flexible Bs variants, cf. the results in Section 9. This, however, comes at the price of losing a tight grip on the memory

consumption (see also Section 5.4).

For more general discussions on selecting β and its relation to the quality of answer we refer to [59].

9. Experiments

In this section, we first present a number of relatively small problems, which nevertheless nicely represent the class of

problems the Bs variants discussed in this article are meant to be applied to. In particular, these problems produce Wltss

with interesting structures: they contain cycles, deadlocks (meaning unsuccessful terminations of attempts to solve the

problem), and confluence of traces (i.e. there are states withmultiple incoming transitions). Therefore, these problems show

the effectiveness of our techniques to a great extent.We describe the problems, and report experimental results, whichwere

obtained by using the μCRL toolset version 2.17.13. The results are analysed, and conclusions are drawn.

It should be stressed that the main targets for the search techniques are industrial case studies. In this section, some

results are presented and discussed concerning the scheduling of an industrial system called the Clinical Chemical Analyser.

In [67,69], this case isdescribed indetail. Finally,wecompare theefficiencyandeffectivenessof theμCRLBs implementations

and existing planning tools, using a number of planning problems. 7

7 For all material to do the experiments, see http://www.win.tue.nl/^awijs/suppls/bs.html.

http://www.win.tue.nl/~awijs/suppls/bs.html

60 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

Table 1

Experimental results C&M. Times are in hours:minutes:seconds. n.s., no solution exists [41]; o.o.t., out of time (set to 12 h)

Problem Result μCRL Mcs μCRL g-Sfdbs

(C,B) T # States Time T β # States Time

(3,2) 18 147 00:00:04 18 3 142 00:00:04
(10,3) n.s. 396 00:00:04 n.s. 10 396 00:00:04
(10,4) 44 1378 00:00:04 46 10 1129 00:00:04
(20,4) 104 2537 00:00:05 106 10 2191 00:00:05
(50,10) 142 25,868 00:00:11 148 10 8035 00:00:08
(50,20) 116 90,355 00:00:20 120 15 17,361 00:00:11
(100,10) 292 49,141 00:00:20 296 10 16,274 00:00:14
(100,30) 222 366,608 00:01:06 228 15 61,380 00:00:32
(300,10) 892 143,549 00:01:02 896 10 49,514 00:00:48
(300,30) 680 1,008,436 00:04:11 684 15 205,556 00:02:30
(500,50) 1076 4,365,536 00:21:41 1080 20 685,293 00:10:33
(500,100) 1036 17,248,979 01:17:16 1040 20 1,170,242 00:16:47
(1000,50) 2160 8,551,996 01:10:00 2168 20 1,397,100 00:37:02
(1000,250) o.o.t. o.o.t. o.o.t. 2032 20 5,317,561 04:00:22

9.1. Cannibals and missionaries

In this section, we report our experimental results on solving the Cannibals andMissionaries (CM) problem (see, e.g. [41]),

which belongs to the class of river crossing problems [17]. We use a number of μCRL implementations of searches. First, we

describe the problem. After that, we list the search techniques used and discuss the results, shown in Table 1.

9.1.1. Description of the problem

In the CM problem, C missionaries and C cannibals stand on the left bank of a river that they wish to cross, with C ∈ N.

There is a boat available which can ferry up to B people across (B ∈ N). The goal is to find a schedule for ferrying all the

cannibals and all the missionaries safely across, i.e. the cannibals never outnumber the missionaries, on a shore or in the

boat. The boat can only move if it contains at least one person. On top of that we associate costs with moving the boat (1

time unit per passenger), and desire to find a minimal-cost path towards the goal.

9.1.2. Results

Table 1 provides all the obtained results. The experiments have been performed on a single machine with a 64 bit Athlon

2.2 GHz CPU and 1 GB RAM, running Suse Linux 9.2, using the μCRL toolset version 2.17.13. The specifications and the

commands used to invoke the searches can be found in [67].

In μCRL, we first applied theminimal-cost search, denotedMcs in Table 1.Mcs is a Ucs applied on an Ltswith additional

actions representing the costs [67,69]. This search was used to find the minimum number of time units needed to solve the

problem (shown in the Result column). The execution times of the searches are displayed in the corresponding Time column

in the format ‘hours:minutes: seconds’.

We also used g-synchronised flexible Dbs (g-Sfdbs), which is a combination of the techniques proposed in Sections 5.4

and 5.5, with h(s) = C(s) + M(s) + (〈C(s) �= M(s)〉 × (2 × C)) as the heuristic part of the search, where C(s) and M(s)
are the numbers of cannibals and missionaries on the left bank in state s, respectively, C is the total number of cannibals

(or missionaries) in the problem, and 〈C(s) �= M(s)〉 equals 1 if C(s) �= M(s), and 0 otherwise. The intuition behind this

heuristic is that, first, we want to minimise C(s) and M(s). Second, we support having an equal number of cannibals and

missionaries on the left bank as an easy way to avoid deadlock states where C(s) > M(s), hence putting an extra penalty

on such states.

Our experiments showed that in practice there are somany unsuccessful termination states in the specification that some

deadlock avoidance in the heuristic function is needed. Without it, we often experienced unsuccessful searches in which

the entire beam got trapped in deadlocks. With deadlock avoidance, flexible Bs proved to be applicable using a fairly stable

beamwidth of 20, partially showing the suitability of the heuristics used. In Table 1, the T column under g-Sfdbs shows the

minimum number of time units needed to solve the problem approximated by this search. The results show an example of

what can be achieved when near-optimal solutions are acceptable, i.e. when we give up completeness.

Let us take a closer look at a particular problem instance, using the 3D interactive visualisation tool LTSView [43]. Fig. 8a

shows us, on the left side, the complete Wlts of the (50,10) instance of the Cannibals and Missionaries problem, in other

words, the casewhere there are 50missionaries and 50 cannibals, and the boat can contain up to 10 people. The initial state is

at the top of this structure. As it turns out, there is exactly one state representing successful termination, therefore all possible

successful traces end up in this state. 8 The state is situated in the small cone near the bottom of the image, in the centre of

8 The presence of only a single goal state seems to indicate that this Wlts is unsuitable for Bs. However, there are many traces leading to this state, so in fact,

this state represents a large set of successful executions.

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 61

Fig. 8. The (50,10) CM problem. (a) Bfs andMcs. (b) 1 – β = 10without deadlock avoidance; 2 – β = 100without deadlock avoidance; 3 – β = 10with deadlock

avoidance.

the black circle. Whenwe search theWltswithMcs, which is situated on the right of the figure, we observe that everything

needs to be searched, except for the part at the bottom, which is at a greater depth than the cone containing the goal state.

If we consider the same problem instance using Bs, we get the results shown in Fig. 8b. The importance of including some

notion of deadlock avoidance in the estimation function becomes apparent here. On the left, we see the parts of the Wlts

which are searched using a g-synchronised Dbs (g-Sdbs) with β = 10 and h(s) = C(s) + M(s), displayed in dark grey. It

is particularly interesting to note that, using this estimation function, the search quickly gets trapped in the ‘deadlock cone’

at the top, i.e. a part of the Wlts which only leads to failure. We can compensate for this behaviour by increasing the beam

width. Ifwe takeβ = 100,wefind the goal state. This case is shown in themiddle of the figure. In this case, however, it should

be clear that we are not so successful at pruning. Besides, as it turns out in practice, the beamwidth needs to be increased in

size considerably when dealing with increasingly big problem instances. On the right, we can see a g-Sdbswith β = 10 and

h(s) = C(s)+M(s)+ (〈C(s) �= M(s)〉 × (2× C)). Now, with some form of deadlock avoidance in the estimation function,

we are able to find the goal state with a beam width of 10, and furthermore are able to completely avoid the deadlock cone.

In this case study (as well as the one reported in the next section), we have chosen various values for β in order to

demonstrate the effect the beam width has on the quality of search and the costs it incurs in terms of time and memory.

Using the beam widths reported in Table 1 we observed a balance between the quality of the solutions and the resources

used during the search. See Section 8 for discussions on choosing a value for β in general.

Our g-Sfdbs algorithm should ideally be compared with other (heuristic) state space generation tools, such as HSF-Spin,

which is Spin augmented by [20] with A∗ and greedy Befs. We leave this as future work. However, we have employed the

Spin Dfs BnB algorithm of [57] to solve the C&M problem, which, on average, was less successful in finding schedules than

Bs. This is to be expected, though, as Dfs BnB does not prune in the width, and is not an approximative search (at least, it

exhaustively searches up to the depth of the optimal schedule).

9.2. The Zebra Finch problem

Next, we look at instances of what we call the Zebra Finch problem. We based this problem on a combination of several

river crossing problems, such as five jealous husbands and soldiers and children [17]. First, we describe the problem, and then

we provide the results obtained using the techniques described in this article, plus distributed versions, such that multiple

machines can perform a Bs together. For technical details concerning the distributed versions, see [67,68].

9.2.1. Description of the problem

Zebra Finches, Taeniopygia guttata [65], are small birds living in Central Australia [70] (Fig. 9). They are found in large

colonies of pairs inhabiting open steppes with scattered bushes and trees. These birds can react aggressively towards each

other, for instance when a jealous male bird tries to keep other male birds away from his mate. When young birds reach an

age where they can live outside the nest, they are quickly adopted by the group.

We consider a group consisting of n pairs andm young, sitting in a tree on an open steppe. They want to migrate to some

bushes up ahead, but they have to travel in smaller groups, since there are some hawks flying in the distance, which can

spot a group of more than k adult finches. Once a group has reached the bushes, at least one of the Zebra Finches needs to

fly back, in order to signal that a new group can travel. On top of this there are two other conditions:

1. Considering the jealous nature of themale Zebra Finches, no female finchmay ever be either in the tree, the travelling

group or the bushes in the presence of other male birds, unless her partner is also present.

2. The young in the colony have to be guided by at least one adult finch, so the travelling group cannot consist of only

young finches. In limiting the group size, two young are equivalent to one adult.

Finally, some costs are related to the travelling from tree to bushes and back:

• A group consisting of only adults needs 1 time unit to travel the distance, independent of the size of the group;

62 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

Fig. 9. A pair of Zebra Finches.

Table 2

Zebra Finch problem experimental results. Times are in hours:minutes:seconds. o.o.m., out of memory (set to 900 MB); *, distributed search.

Instance μCRLMcs μCRL g-Sdbs μCRL g-Sfdbs

n m k Result # States Time β Result # States Time β Result # States Time

10 5 5 19 228,737 00:00:29 400 19 58,272 00:00:14 400 19 67,804 00:00:18
10 10 5 21 513,123 00:01:07 400 21 65,605 00:00:18 400 21 85,633 00:00:24
10 10 8 10 2,020,061 00:04:28 450 10 48,669 00:00:19 400 10 69,550 00:00:21
50 50 5 121 18,157,429 00:48:13 1000 121 641,315 00:04:49 400 121 298,065 00:02:31
50 50 10 41 475,744,120* 05:13:26 1000 43 637,285 00:07:28 1000 41 702,844 00:13:10
50 50 10 – – – 1500 44 946,660 00:13:37 1500 41 1,088,042 00:20:09
50 50 10 – – – 4000 43 2,560,051 00:46:22 4000 41 2,881,512 00:51:28
50 50 20 o.o.m. o.o.m. o.o.m. 5000 24 3,478,600 01:14:00 1500 22 1,521,829 00:54:07
50 50 20 o.o.m. o.o.m. o.o.m. 5000 20 3,095,782* 02:01:05 4000 20 2,579,479* 01:48:16

100 100 10 o.o.m. o.o.m. o.o.m. 5000 87 6,009,134* 01:39:52 4000 87 5,318,589* 06:22:54
100 100 20 o.o.m. o.o.m. o.o.m. 5000 41 5,884,895* 00:42:48 4000 42 5,433,733* 04:02:26
100 100 50 o.o.m. o.o.m. o.o.m. 20,000 17 27,366,213* 02:57:21 4000 18 41,611,293* 06:16:29
100 100 80 o.o.m. o.o.m. o.o.m. 20,000 10 24,796,756* 25:31:24 10,000 9 16,044,286* 05:05:49
200 200 50 o.o.m. o.o.m. o.o.m. 50,000 35 135,964,662* 37:25:42 6000 35 27,324,012* 08:32:35

• If the number of young in the group does not exceed the number of adults, the time needed to travel is 2 time units

(each adult needs to take care of at most one young);
• When, in the group, the number of young exceeds the number of adults, the travel takes 3 time units, since at least

one adult takes care of more than one young.

We specify the problem allowing all possible actions at all times. It demonstrates the techniques’ ability to deal with

arbitraryWltss; problem instances lead toWltss containing both cycles (while forming the group and when birds fly away

and back again), and deadlocks (violations of the ‘jealous male’ condition).

9.2.2. Results

In Table 2, we present some results we found for instances of the Zebra Finch problem. We used Mcs, g-Sdbs, and its

flexible variant (g-Sfdbs), where for the last two cases we defined h(s) for each state s as the number of finches still in

the tree, thereby encouraging fast removal and discouraging the returning of finches. Problem instances are described by

providing n, m and k. For each search, the total cost of the result found is given as T . Furthermore, the number of states

searched to find the solution is provided and the time needed to find it is displayed in the format ‘hours:minutes:seconds’.

When a search is done in a distributed setting, an asterisk is placed after the number of states. Sequential searches were

performed using a machine with a 64bit Athlon 2.2Ghz processor, 1 GB of memory and running Suse 9.3, while 16 of these

machines together performed the distributed searches.

WithMcs, as the problem instances get bigger, theWltss grow very rapidly. The Bss on the other hand show amuch nicer

increase in states from instance to instance. Looking at the (50,50,10) instance though, we see an unwanted effect in the

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 63

Table 3

Experimental results Cca. Times are in hours:minutes:seconds. o.o.t., out of time (set to 30 h); *, distributed search.

Case Result μCRL Mcs μCRL g-Sdbs μCRL g-Spbs μCRL g-Sfpbs

States Time β # States Time (α, l) # States Time # States Time

(3,1,1) 36 3375 00:00:10 25 1461 00:00:03 (2,5) 179 00:00:04 821 00:00:04
(1,3,1) 39 13,194 00:00:30 41 2234 00:00:04 (1,1) 50 00:00:03 1133 00:00:04
(6,2,2) 51 341,704,322* 25:24:56 81 7408 00:00:08 (2,9) 479 00:00:03 45,402 00:02:34
(1,2,7) 73 o.o.t. o.o.t. 75,000 6,708,705 01:24:38 (1,1) 90 00:00:03 122,449 00:04:03
(7,4,4) 75 o.o.t. o.o.t. 35,000 3,801,607 00:41:02 (3,25) 155,379 00:08:15 20,666,509 14:32:56

regular g-Sdbs, namely that increasingβ not necessarilymeans getting a better result. Themain cause for this is tie-breaking,

i.e. the fact that pruning is sometimes not being done only based on f , but also on other criteria, simply because more than

β states turn out to be promising enough. Although this mainly has a noticeable effect in smaller instances, it is undesired

and does not occur in its flexible variant. Because of this, the flexible search provides better insight into the effectiveness of

the estimation function used.

Furthermore, it is interesting that for smaller instances, the distributed algorithm performs worse than the sequential

version,which can be seen in the (50,50,20) case,wherewe performed both a sequential and a distributed search. TheLi sets

in theWlts are all relatively small, making the communication overhead of the distributed algorithm noticeable. This seems

to be directly related to the argument found in the literature, for instance by [7], against distributed Bs in a more traditional

setting. Besides that, note that the result obtainedwith the distributed search is better than the one of the sequential search,

even though the beamwidths are equal. This, again, is due to tie-breaking, which, in a distributed environment, can happen

atmultiple places in a single level, instead of only at onepoint. In theflexible search,where tie-breaking is avoided altogether,

this behaviour does not appear.

The (100,100,50) and the (100,100,80) case have a big difference in execution time, while the number of states in the

latter is even smaller. However, although the number of expanded states is smaller there, the number of encountered and

evaluated states is much greater. This is directly related to the maximum size of the travelling group k.

Finally, as stated earlier in Section 5.4, for the flexible search, overallβ ismore stable compared to the non-flexible search.

Due to this, in the two biggest cases, the flexible search is even more efficient than the non-flexible one. The stability of

β means in general that, given some search results, it is easier to determine β for a new flexible search than for a new

non-flexible one.

9.3. Other benchmarks

The Clinical Chemical Analyser (Cca) is a case study taken from industry [66]: it is used to analyse batches of test receipts

on patient samples, such as blood and plasma, that are uniquely described by a triplewhich indicates the number of samples

of each fluid (see Table 3). We have extensively described the Cca case in [69]. Table 3 reports the results of applying Mcs,

g-Sdbs, g-Spbs and g-Sfpbs to solve theproblemof scheduling theCca. TheResult columnprovides the total-cost (i.e. required

time units) of the solution found. We remark that all these searches are tuned to find the optimal answer (for those cases

where it was known to us). In case of g-Sfpbs, the value of (α, l) is fixed to (1, 1). The benefit of flexible variants of Bs is

thus clear here: A stable beamwidth is mostly sufficient. However, as a draw-back we observe that Fpbs exhibits early state

space explosion, compared to Pbs. 9

We observe that β is not directly related to the number of fluids in a test case. We believe this can be due to the ordering

of states while searching, since a stable β suffices when using the flexible Sfpbs. We conclude this discussion with noting

that the Cca provides a case study which can better be tackled using Pbs, compared to Dbs variants.

Finally, we have taken someplanning benchmarks from the Beem database10 and translated these toμCRL specifications.

Two of these, blocks world (BW) and schedule world (SW), were also used in the AIPS 2000 planning competition. 11 We are

therefore able to compare our Bs results for several instances of these problems with the ones obtained in the planning

competition (although it should be noted that the Beem version of SW is a slightly modified variant of the AIPS problem).

A third problem we analysed is the Exit game, instance 4, where each of a finite number of locations in a city contains a

number of puzzles to solve. Some of the puzzles can only be solved in some specified time periods, and several teams must

compete in solving a given number of puzzles (in this case 8 out of 15) and moving to the finish. The goal of the problem

is to find a schedule such that all teams are finished as quickly as possible. With μCRL Mcs, a solution with length 51 was

found after exploration of 35, 643, 844 states, which took 4 h, 34 min, and 27 s, while μCRL g-Sfdbs with β = 1 produced

a result of equal length, after exploration of 3, 966 states, which took 2 s. For all three problems, we used abstract data

types to express a heuristic guiding function in μCRL; for Exit, the function is based on a simplified, untimed, version of

the problem. For BW, in which a finite number of blocks on a table needs to be placed on a stack in a specific order, we use

the well-known global heuristic which compares the sizes of correct substacks with those of incorrect substacks. Finally,

9 In Fpbs, once the beam width is stretched, it cannot be readjusted to its initial value, see Section 5.4.
10 http://anna.fi.muni.cz/models, visited 11 February 2011.
11 http://www.cs.toronto.edu/aips2000., visited 11 February 2011.

http://anna.fi.muni.cz/models
http://www.cs.toronto.edu/aips2000.

64 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

Table 4

Experimental results for several planning problems from AIPS 2000. Times are in hours:minutes:seconds. n.a., not available.

Case μCRL g-Sfdbs (β = 1) Hsp2 PbR

Result # States Time Result Time Result Time

BW10-0 34 413 00:00:14 34 00:00:12 34 00:00:00
BW13-0 44 896 00:01:05 72 00:00:22 42 00:00:00
BW16-1 56 4739 00:09:23 n.a. n.a. 56 00:00:00
BW30-0 104 14,501 03:04:57 n.a. n.a. 98 00:00:02
SW8-0 11 341 00:00:01 11 00:00:25 10 00:00:05
SW10-0 18 11,968 00:00:08 n.a. n.a. 15 00:00:10
SW25-0 29 4215 00:04:00 n.a. n.a. 39 00:02:20
SW50-0 68 22,136 01:19:47 n.a. n.a. 87 00:14:22

for SW, in which a number of products need to be processed in a specific way by a number of machines, a guiding function

was designed which stimulates to perform as many productive tasks in parallel as possible. Table 4 shows a comparison

of results for several instances of BW and SW obtained with g-Sfdbs, with β = 1, and with the planners Heuristic Search

Planner 2 (Hsp2) [10] and Planning by Rewriting (PbR) [3]. In the AIPS 2000 competition, there were two planner categories,

consisting of automatic planners and hand tailored planners. Planners of the latter category are allowed somemanual input

in addition to the problem specification, e.g. a guiding heuristic, while the planners in the former category are not. Hsp2, an

automatic planner, performed very well in the competition. It uses a weighted A∗ search through a state space representing

the problem, and guiding heuristics are extracted from the representation. PbR is a hand tailored planner, which generates

plans by a set of plan rewriting rules, where some rules are automatically generated and others are given manually.

We remark that it is in general very difficult to compare these planning tools with the μCRL toolset. This is because,

firstly, there is a considerable difference between themodels used in planners andμCRLmodels. Secondly, theμCRL toolset

has a general-purpose state space generation tool, while the planners are geared towards solving planning problems. That

is, the expressive power of μCRL for modelling case studies, along with the possibility of performing qualitative model

checking based on μCRL models, gives the μCRL toolset an advantage over the planners. However, one would expect that

the planners outperform the μCRL toolset in terms of efficiency of searching for optimal plannings. There are other sources

of complications in comparing the μCRL toolset with the planners. For instance, the μCRL algorithms do not automatically

extract heuristics from a specification, as opposed to Hsp2. Moreover, the experiments were run on different architectures:

the μCRL experiments were performed on a 2.6 GHz amd opteron 885 with 126 GB RAM running Linux, and the planner

experiments were run on a 500Mhz Pentium III with 1GB RAM running Linux.

Nevertheless, meaningful conclusions can be drawn from Table 4. Firstly, the quality of the results (expressed by the

number of steps in the suggested plan) with g-Sfdbs is on average high. Secondly, the time needed to generate the plans

with g-Sfdbs is often comparable to the time needed by the planners (in the SW cases evenwith PbR, which also depends on

additional manual input). We expect that the planners outperform our algorithmswhen run on the same architecture, but it

should be noted that apart from the Bs implementation, theμCRL toolset is not tailored towards solving planning problems.

From Table 4, we conclude that model checkers, in particular the μCRL toolset, can be used for solving planning problems.

The quality of the solutions are (favourably) comparable to the results produced by the tools which are devoted to planning.

The benefits of using μCRL for this purpose is the possibility to simultaneously perform qualitative model checking on the

same models that are used to solve the planning problem.

10. Related work

10.1. Other uses of beam search

The literature on traditionalBsmainly focuses onhowBs is useful for solving a specific problemandno general framework

is presented. E.g. in [63], a relatively small specification of a typical jobshop problem is provided that does not include data

structures, which are often necessary when dealing with practical systems. In [47], a very specific program is used, which is

only able to simulate the case study presented there. In these papers,Bs is used on a case by case basis, therefore reusing their

implementation of Bs on other case studies is not straightforward. We provide a general framework, based on an expressive

specification language, instead of case-based tools. This allows us to easily describe complex systems and various problem

restrictions.

In many applications of Bs, no restrictions, neither timing nor data, are initially put on scheduling jobs (e.g. in simple

jobshop scheduling problems [50] or in the case of [47]). However, in single machine early/ tardy jobshop scheduling

problems [63,64], for instance, there are (timing) restrictions on scheduling jobs. But the violation of these restrictions is

usually allowed while penalties are put on them, hence not excluding violations from the search space. These restrictions,

in their most general form, can either be hard, meaning that they have to be necessarily met, or soft, that is the violation

of these requirements will result in a penalty, but is still allowed. Soft restrictions can simply be modelled by adding extra

costs on prohibited actions. We contend that hard restrictions should be specified in themodel, because allowing unwanted

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 65

executions leads to a search space larger than necessary. This, however, requires an expressive specification language, which

seems not readily available, e.g. for [63,64], where restrictions are applied on themodel after generation. InμCRL, conditions

on data and timing restrictions can be specified in a straightforward manner.

The flexible variants of Bs presented in this article are remotely similar to Bswith variable width, as described by Valente

and Alves [63]. They completely leave out a predefined beam width and introduce deviation parameters so that, broadly

speaking, the algorithm calculates how far the evaluation of a node may be from the optimal evaluation value of that level

to still be selected for exploration. In comparison, Valente and Alves take away some influence of the evaluation function,

to be able to consider more possibilities when searching a tree, whereas we give more influence to the evaluation function

and do not allow any other criteria to affect the selection, in order to reestablish the importance of the evaluation function

after we moved the searches to theWlts setting. There are significant implementation differences between flexible Bs and

Bswith variable width of [63]. In Dbswith variable width, at each level, the largest total-cost value of the states of the level

must be known before selection can proceed. This completely disables the second optimisation mentioned in Section 5.3.

Furthermore, in Pbs with variable width, the priority threshold has to be separately computed for each node, which can be

computationally expensive.

Our g-synchronised Bs can probably best be compared with filtered Bs [59], since both are two-phase Bss; in filtered Bs,

first a Pbs is applied, and on the outcome of that,Dbs is used, this to lessen the computational complexity. In g-synchronised

Bs, we first postpone exploring some states, and then prune states from the remaining set. Both searches can be seen as

instances of m-Befs (Section 3).

A number of search algorithms is used in [30], one ofwhich is called Bs. Their Bs, however, deviates fromour usage, in that

they let f (s) = h(s), making it practically a linear space greedy search; it is, nevertheless, according to the original notion,

a Bs. Furthermore, they include duplicate detection, but do not consider other extensions in order to deal more efficiently

with arbitraryWltss, such as a flexible beam width.

Bs is extended to a complete search in [72], by using a new data structure, called a beam stack. With this, it is possible

to achieve a range of searches, from Dfs (β = 1) to Bfs (β = ∞). Considering our extensions for arbitrary Wltss, it would

be interesting to try to combine these two approaches. Iterative broadening [28] and iterative widening [71] are two other

closely related approaches tomake Bs complete. Essentially, these iterative searches incorporate applying Bsmultiple times,

each time increasing β . As noted by [72], although this means that these searches are complete, they are only so because the

final iteration will exhaustively search the entireWlts. Hence, worst-case, they require that the entireWlts can be stored in

memory. In [18], a searchwidth k is applied on Bfs BnB for priced timed automata. The resulting algorithm ismade complete

by using iterative broadening. There, k expresses the percentage of states that should be explored per level of theWlts; they

also allow the selection of more than k%, which is comparable to our flexible beam width. The usage of a heuristic function

is not considered; instead, selection is done based on cumulated costs.

10.2. Connections to other heuristic search algorithms

We observe that the Por algorithm of [14] for security protocols can be seen as an instance of flexible Pbs. The main

principle of Por is to exploit the commutativity of concurrently executed transitions in order to generate only a sufficient

fraction of the state space by exploring a subset of enabled transitions ample(s) ⊆ enM(s) at each state s. This resembles

Pbs, since at each state, based on the suitability of the enabled transitions, some of the successors are pruned away while

generating. However, in contrast to Pbs, no essential information is lost in Por as the ample set is selected such that a certain

class of desired properties is preserved. We refer to [13,49] for a general introduction to Por. In [62], a translation from this

algorithm to the general pruning framework is provided, and in [25], the algorithmwithin this framework is extended to be

applicable to branching security protocols.

In [24], Befs is extended to k-Befs, allowing to compensate for inaccuracies in the evaluation function by selecting in each

iteration more than only the best state. Essentially, the difference between k-Befs and Bs is the decision to keep states not

selected in one iteration for the next iteration, i.e. to not prune away any states. This makes k-Befs a complete search, but it

also means its memory requirement is higher. A trade-off can, however, be achieved, by using inadmissible heuristics, such

that fewer states are expanded, but the solution will be near-optimal. This trade-off is also used for weighted A∗ [52], and
linear-space Befs [37], where the h-function ismultiplied by some factor. Besides that, in the latter, thememory requirement

is linear to the size of the search depth.

Iterative deepening A∗ (IDA∗) [35] performs multiple depth-bounded A∗ searches, each time increasing the depth bound.

Since our detailed Bs algorithms also employ an evaluation function f (s) = g(s)+ h(s), the only difference between these

algorithms and a single iteration of IDA∗ lies in the way they prune; the latter prunes in the depth, while the former prune

in the width. The effect of this is that an iteration of IDA∗ is complete up to the depth bound, while Bs is not, but it can

reach great depths much faster. In total, IDA∗ is complete, but it suffers from the same drawback as iterative broadening (see

Section 10.1).

Our work is related to the body of research on Dmc, where, to find a counter-example to a functional property (usually

belonging to Ltl) with a minimal exploration of the Wlts, heuristics (based on the property) are used to guide the search.

Using A∗ [19] and genetic algorithms [29] to guide the search are among notable works in this field. In contrast to Dmc,

we generate a partial Wlts in which an arbitrary property can be checked afterwards (the result would of course not be

exact, hence being useful mainly in quantitative analyses where a near-optimal solution for a problem often suffices). In this

66 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

Fig. 10. Hierarchical diagram of searches; r.w.c.: recursive-weight-computation [48], a.e.: additive evaluation [48], flex.: flexible β .

sense, these approaches are different in spirit, addressing rather different problems (i.e. checking qualitative vs. quantitative

properties) from different angles (directing the search vs. searching an approximation to the Wlts). Nonetheless, there are

strong similarities as well: the approach of [29] is similar to ours, as it is in general not guaranteed to explore the whole

Wlts, and A∗ can be seen as an instantiation of our Bs extensions. Related to the latter remark, in [48], a hierarchical

diagram is given in which A∗ is considered a special case of Befs. More specifically, A∗ is a special case of Z∗, which is

a subclass of Befs consisting of searches which have delayed-termination, i.e. termination is detected once a goal state is

selected for exploration, and recursive-weight-computation, meaning that for each state, a weight is computed, which is

defined recursively. Befs in [48] does not incorporate irrevocable pruning, though. Instead, adding this option leads to a

hybrid called Hc-Befs, where Hc stands for Hill-Climbing. Fig. 10 presents a diagram similar to the one in [48], in which

the relations between m-Befs and the Dbs extensions are shown. A connection with [48] can be made as follows: our Befs,

which is a special case ofm-Befs, corresponds withHc-Bf∗ in [48]. By requiring that recursive-weight-computation is done,

m-Befs can be tuned to m-Hc-Z∗, a multi-phase version with pruning of Z∗. Fixing the number of phases n can lead to

Hc-Z∗ (1-phase) and Synchronised Hc-Z∗ (2-phase). Of course, variants of Hc-Z∗ with more phases are feasible as well. By

requiring additive evaluation [48], which means that some notion of cumulated cost is computed, we can obtain Dbswith 1

or 2 phases. By making β flexible, we get flexible Bs variants. If f1 (the evaluation function used in the first phase) is made

constant, e.g. f1 = 1, then a synchronised search is changed into a 1-phase search, and if f1 = g, then g-synchronised Bss

are created. A similar diagram can be drawn for Pbs-variants; in that case, instead of additive evaluation, priority evaluation

should be used (which is more local). When moving to g-synchronised Bss, though, additive evaluation is still added, since

a cumulated cost computation must then also be performed.

10.3. Applicability in other quantitative model checking areas

In this article, Bs has exclusively been applied on specifications of scheduling problems. However, since Bs can be applied

on general Wltss, the technique is also applicable on other types of (quantitative) problems. In this section, a few of these

are briefly discussed.

First of all, basic (unweighted) model checking [13] can be seen as a special kind of quantitative model checking, where

all transitions have cost 1. In model checking, the goal is to check whether a specification of a system, which implicitly

describes an Lts containing all potential behaviour of the system, meets a set of requirements. These requirements are

expressed formally in temporal logics formulae, using, e.g. regular alternation-free μ-calculus [45]. Many requirements are

so-called safety properties, which express that some bad situation never happens. Such a formula can be mapped to a subset

of S , i.e. G , which technically represents counter-examples to the property. Hence, in model checking, we are interested in

‘bad’ situations, and how these can occur, which is represented by the traces from I to G . Since short traces are easier to

interpret, Bfs is a popular search for model checking (note that when all transitions have cost 1, Ucs coincides with Bfs). In

order to perform Bs, we need an estimation function. In, e.g. [22,30,44], several methods are described to compute these.

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 67

In stochasticmodel checking, probabilities are assigned to the transitions, indicating the probability that the represented

behaviour occurs. A common question in that context is not only if some bad situation can occur, but what the probability is

that it occurs. The cumulated cost, or probability, of a state via a specific trace canbe computedbymultiplying all probabilities

of the included transitions, which means that this function is not monotonic. Furthermore, typically, one is interested in

the sum of the cumulated costs of all traces to a bad state [22], as opposed to the minimal cumulated cost associated with

a single trace. This makes that Ucs is not very useful here. In [2], an algorithm is described to iteratively produce a Markov

Chain12 containing the set of all traces from I to G . This algorithm searches for bad traces on-the-fly by using an evaluation

function f (s) = g(s)× h(s), with g(s) the cumulated probability of s, and h(s) an estimate of the probability to reach a bad

state from s. Note that with such a function, the states with the highest f -value are the most interesting. Suggestions how

to construct an estimation function are given in [1]. If we would apply pruning on the algorithm of [2], we would get a Bs,

which could be used to generate a subset of the set of all bad traces. Depending on the quality of the heuristics, this subset

would contain those bad traces with the highest cumulated probability.

Real-time model checking involves some notion of time to verify timed systems. Dmc techniques can be applied in this

setting as well, as shown by, e.g. [5,6,39]. Bs could also be applied in this setting without any significant changes. If one

wants to incorporate the timing itself in the guiding functions, and the timing is continuous, then it should be represented

by some discrete cost. For hybrid systems, in which multiple variables may represent continuous behaviour, [51] describes

a technique combining model checking and motion planning; Ucs is used on a discrete representation of the hybrid system

behaviour, and the intermediate results of this are used by the motion planner to build a tree describing part of the hybrid

behaviour. Applying pruning in combinationwith this techniquewould yield a Bs suitable for approximately checking safety

properties of hybrid systems.

11. Conclusions

In this article, we extended and made available an existing search technique to be used for quantitative analysis within

a setting used for system verification. By doing so, we contribute to attempts to achieve a general framework in which

different types of analysis, such as functional verification and scheduling, can be performed on a single system specification.

Moving Bs to the field of state spaces, we experienced that the algorithms needed to be extended in order to counter a

decrease of influence of the heuristic function used. Bswith a flexible beamwidth can cope with encountering more than β
sufficiently promising states. Using the algorithm for generatingWltss also introduces the well-known issue of re-opening

states in Dmc. G-synchronised Bs is another introduced extension of Bs, of which the instance g-synchronised Bs, in cases

where the g-function is monotonic, avoids re-opening states, by using a two-phase approach; in the first phase, states are

ordered based on the cost needed to reach them from I . In the second phase, the states are considered in this order and an

estimation function is applied to prune relatively unpromising states. This extension can be identified, among some other

searches found in the literature, as a particular instance of a Befs not previously discussed in the literature. We propose to

call this extension of Befs m-Befs. In m-Befs, several search criteria can be ‘stacked’ by using multiple guiding functions;

given a search horizon, these functions are applied in sequence, leading to a final selection of states to be explored.

Themodelling languageμCRL iswell-suited formodelling schedulingproblems. Thedata support it has is very convenient

when working with complex data structures. In this regard, no changes had to bemade to the currentμCRL toolset. In other

regards, the μCRL toolset had to be extended with search algorithms other than Bfs. Although not a necessity, a useful

feature in the modelling language μCRL would be a priority operator, which could be used to assign priorities to actions.

We showed that g-synchronised (flexible) Bs is suitable for finding near-optimal solutions for instances of several river

crossing problems and planning problems, as well as for an industrial case study. In these particular problems, theWltss in-

corporate cycles, confluence of traces, and unsuccessful termination states, thereby they are useful examples to demonstrate

that the Bs variants presented in this article can deal with arbitraryWltss. Bs allows one to make a trade-off between com-

putation time and the quality of the solutions to find. Having both Dbs and Pbs to work with, even increases the possibilities

for such a trade-off. If one wants a certain level of quality, however, choosing the right beam width becomes a problem.

Because of this, in this article, we proposed extensions of both Dbs and Pbs, called flexible Bs, in which the actual beam

width can change while searching, in order to keep track of all actions with a sufficient priority in each level (i.e. avoiding

tie-breaking). The experiments suggest that from case to case, the beam widths of flexible Bss do not have to be increased

often. The major benefits of flexible Bss are the relative ‘stability’ of the beam widths (i.e. when increasing the size of the

test configuration, the beamwidth can often be left unchanged) and the avoidance of tie-breaking, but this comes at a price,

namely that the space and computation time requirements of these searches are not linear to the maximum search depth.

Acknowledgements

We thank the anonymous reviewers of the Journal of Logic and Algebraic Programming for their constructive comments.

12 Markov Chains are more related to weighted Kripke structures, in which the states instead of the transitions are labelled, than toWltss. However, after some

minor changes, the algorithm of [2] could also be applied on Wltss.

68 A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69

References

[1] H. Aljazzar, H. Hermanns, S. Leue, Counterexamples for timed probabilistic reachability, Proc. FORMATS 2005, LNCS, vol. 3829, Springer-Verlag, Heidelberg,
2005, pp. 177–195.

[2] H. Aljazzar, S. Leue, Directed explicit state-space search in the generation of counterexamples for stochastic model checking, IEEE Trans. Softw. Eng. 36 (1)
(2010) 37–60.

[3] J.L. Ambite, C.A. Knoblock, Planning by rewriting, J. Artif. Intell. Res. 15 (1) (2001) 207–261.
[4] G. Behrmann, A. David, K.G. Larsen, A tutorial on Uppaal, Proc. SFM-RT 2004, LNCS, vol. 3185, Springer-Verlag, Heidelberg, 2004, pp. 200–236.

[5] G. Behrmann, A. Fehnker, T. Hune, K.G. Larsen, P. Pettersson, J.M.T. Romijn, Efficient guiding towards cost-optimality in Uppaal, Proc. TACAS 2001, LNCS,

vol. 2031, Springer-Verlag, Heidelberg, 2001, pp. 174–188.
[6] G. Behrmann, K.G. Larsen, J.I. Rasmussen, Optimal scheduling using priced timed automata, SIGMETRICS Perform. Eval. Rev. 32 (4) (2005) 34–40.

[7] R. Bisiani, Beam search, Encyclopedia of Artificial Intelligence, Wiley, 1992, pp. 1467–1568.
[8] S.C.C. Blom,W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, J.C. van de Pol,μCRL: a toolset for analysing algebraic specifications, Proc. CAV 2001, LNCS,

vol. 2102, Springer-Verlag, Heidelberg, 2001, pp. 250–254.
[9] S.C.C. Blom, J.C. van de Pol, M. Weber, LTSmin: distributed and symbolic reachability, Proc. CAV 2010, LNCS, vol. 6174, Springer-Verlag, Heidelberg, 2010,

pp. 354–359.

[10] B. Bonet, H. Geffner, Heuristic search planner Ver. 2.0, AI Mag. 22 (3) (2001) 77–80.
[11] E. Brinksma, H. Hermanns, J.P. Katoen (Eds.), Lectures on Formal Methods and Performance Analysis, LNCS, vol. 2090, Springer-Verlag, Heidelberg, 2001

[12] S. Christensen, L.M. Kristensen, T.Mailund, A sweep-linemethod for state space exploration, Proc. TACAS 2001, LNCS, vol. 2031, Springer-Verlag, Heidelberg,
2001, pp. 450–464.

[13] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, The MIT Press, 1999.
[14] E.M. Clarke, S. Jha, W. Marrero, Partial order reductions for security protocol verification, Proc. TACAS 2000, LNCS, vol. 1785, Springer-Verlag, Heidelberg,

2000, pp. 503–518.

[15] F. Della Croce, V. T’kindt, A recovering beam search algorithm for the one-machine dynamic total completion time scheduling problem, J. Oper. Res. Soc.
53 (11) (2002) 1275–1280.

[16] E.W. Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1 (1959) 269–271.
[17] H.E. Dudeney, Amusements in Mathematics, Dover Publications Inc., 1958., pp. 12–114 (Chapter 9).

[18] S. Edelkamp, S. Jabbar, Real-timemodel checking on secondary storage, Proc. MoChArt 2006, LNAI, vol. 4428, Springer-Verlag, Heidelberg, 2007, pp. 68–84.
[19] S. Edelkamp, S. Leue, A. Lluch-Lafuente, Directed explicit-state model checking in the validation of communication protocols, Int. J. Softw. Tools Technol.

Transfer 5 (2) (2004) 247–267.

[20] S. Edelkamp, A. Lluch-Lafuente, S. Leue, Directed explicit model checking with HSF-Spin, Proc. SPIN 2001, LNCS, vol. 2057, Springer-Verlag, Heidelberg,
2001, pp. 57–79.

[21] S. Edelkamp, A. Lluch-Lafuente, S. Leue, Protocol verificationwith heuristic search, AAAI SymposiumonModel-Based Validation of Intelligence, AAAI, 2001,
pp. 84–92.

[22] S. Edelkamp, V. Schuppan, D. Bošnački, A.J. Wijs, A. Fehnker, H. Aljazzar, Survey on directed model checking, Proc. MoChArt 2008, LNAI, vol. 5348,
Springer-Verlag, Heidelberg, 2009, pp. 65–89.

[23] K. Etessami, M. Kwiatkowska, M.Y. Vardi, M. Yannakakis, Multi-objective model checking of Markov decision processes, Proc. TACAS 2007, LNCS, vol. 4424,
Springer-Verlag, Heidelberg, 2007, pp. 50–65.

[24] A. Felner, S. Kraus, R.E. Korf, KBFS: K-Best-First Search, Ann. Math. Artif. Intell. 39 (1–2) (2003) 19–39.

[25] W.J. Fokkink, M. Torabi Dashti, A.J. Wijs, Partial order reduction for branching security protocols, Proc. ACSD 2010, IEEE Computer Society Press, 2010, pp.
191–200.

[26] M.S. Fox, Constraint-directed search: a case study of job-shop scheduling, Ph.D. Thesis, Carnegie-Mellon University, 1983.
[27] H. Garavel, F. Lang, R. Mateescu, An overview of Cadp 2001, European Association for Software Science and Technology (EASST) Newsletter, vol. 4, 2002,

pp. 13–24.
[28] M.L. Ginsberg, W.D. Harvey, Iterative broadening, Artif. Intell. 55 (2) (1992) 367–383.

[29] P. Godefroid, S. Khurshid, Exploring very large state spaces using genetic algorithms, Proc. TACAS 2002, LNCS, vol. 2280, Springer-Verlag, Heidelberg, 2002,

pp. 266–280.
[30] A. Groce, W. Visser, Heuristics for model checking Java programs, Int. J. Softw. Tools Technol. Transfer 6 (4) (2004) 260–276.

[31] J.F. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink, Y.S. Usenko, M. vanWeerdenburg, W.Wesselink, T.A.C. Willemse, J. van derWulp, The
mCRL2 Toolset, in: Proc. WASDeTT 2008, 2008, pp. 5–1/10.

[32] J.F. Groote, A. Ponse, The syntax and semantics of μCRL, Proc. ACP 1994, Workshops in Computing Series, Springer-Verlag, Heidelberg, 1995, pp. 26–62.
[33] G.J. Holzmann, An analysis of bitstate hashing, Formal Methods Syst. Des. 13 (3) (1998) 289–307.

[34] G.J. Holzmann, The SpinModel Checker: Primer and Reference Manual, Addison-Wesley, 2004.

[35] R.E. Korf, Depth-first iterative-deepening: an optimal admissible tree search, Artif. Intell. 27 (1) (1985) 97–109.
[36] R.E. Korf, Uniform-cost search, in: S. Shapiro (Ed.), Encyclopedia of Artificial Intelligence, Wiley, 1992, pp. 1461–1462.

[37] R.E. Korf, Linear-space best-first search, Artif. Intell. 62 (1) (1993) 41–78.
[38] V. Kumar, Branch-and-bound search, in: S. Shapiro (Ed.), Encyclopedia of Artificial Intelligence, Wiley, 1992, pp. 1468–1472.

[39] S. Kupferschmid, J. Hoffmann, H. Dierks, G. Behrmann, Adapting an AI planning heuristic for directed model checking, Proc. SPIN 2006, LNCS, vol. 3925,
Springer-Verlag, Heidelberg, 2006, pp. 35–52.

[40] K. Larsen, J. Rasmussen,Optimal conditional reachability formulti-priced timedautomata, Proc. FOSSACS2005, LNCS, vol. 3441, Springer-Verlag,Heidelberg,

2005, pp. 234–249.
[41] R. Lim, Cannibals and missionaries, Proc. APL 1992, ACM Press, 1992, pp. 135–142.

[42] B.T. Lowerre, The HARPY speech recognition system, Ph.D. Thesis, Carnegie-Mellon University, 1976.
[43] LTSView, 3D Interactive Visualisation of a State Space, 2007. Available from: <http://www.mcrl2.org> (accessed 10.05.07).

[44] A. Lluch-Lafuente, Directed search for the verification of communication protocols, Ph.D. Thesis, University of Freiburg, 2003.
[45] R.Mateescu,M. Sighireanu, Efficient on-the-flymodel-checking for regular alternation-freemu-calculus, Sci. Comput. Programming 46 (3) (2003) 255–281.

[46] R. Mateescu, A.J. Wijs, Hierarchical adaptive state space caching based on level sampling, Proc. TACAS 2009, LNCS, vol. 5505, Springer-Verlag, Heidelberg,

2009, pp. 215–229.
[47] S. Oechsner, O. Rose, Scheduling cluster tools using filtered beam search and recipe comparison, Proc. 2005Winter Simulation Conference, IEEE Computer

Society Press, 2005, pp. 2203–2210.
[48] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, 1984.

[49] D. Peled, V. Pratt, G. Holzmann (Eds.), Partial order methods in verification, Series in Discrete Mathematics and Theoretical Computer Science, vol. 29,
American Mathematical Society, 1996

[50] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice-Hall, 1995.

[51] E. Plaku, L.E. Kavraki, M.Y. Vardi, Falsification of LTL safety properties in hybrid systems, Proc. TACAS 2009, LNCS, vol. 5505, Springer-Verlag, Heidelberg,
2009, pp. 368–382.

[52] I. Pohl, Heuristic search viewed as path finding in a graph, Artif. Intell. 1 (3) (1970) 193–204.
[53] G. Polya, How to Solve it, second ed., Princeton University Press, 1945.

[54] D. Poole, A. Mackworth, R. Goebel, Computational Intelligence: A Logical Approach, Oxford University Press, 1998.

http://www.mcrl2.org

A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 69

[55] S. Rubin, The ARGOS image understanding system, Ph.D. Thesis, Carnegie-Mellon University, 1978.
[56] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall, 1995.

[57] T.C. Ruys, Optimal scheduling using Branch-and-Bound with SPIN 4.0, Proc. SPIN 2003, LNCS, vol. 2648, Springer-Verlag, Heidelberg, 2003, pp. 1–17.
[58] I. Sabuncuoglu, M. Bayiz, Job shop scheduling with beam search, Eur. J. Oper. Res. 118 (2) (1999) 390–412.

[59] P. Si Ow, E.T. Morton, Filtered beam search in scheduling, Int. J. Prod. Res. 26 (1) (1988) 35–62.

[60] P. Si Ow, E.T. Morton, The single machine early/tardy problem, Manag. Sci. 35 (2) (1989) 177–191.
[61] P. Si Ow, S.F. Smith, Viewing scheduling as an opportunistic problem-solving process, Ann. Oper. Res. 12 (1–4) (1988) 85–108.

[62] M. Torabi Dashti, A.J. Wijs, Pruning state spaces with extended beam search, Proc. ATVA 2007, LNCS, vol. 4762, Springer-Verlag, Heidelberg, 2007, pp.
543–552.

[63] J.M.S. Valente, R.A.F.S. Alves, Beam search algorithms for the singlemachine total weighted tardiness scheduling problemwith sequence-dependent setups,
Comput. Oper. Res. 35 (7) (2008) 2388–2405.

[64] J.M.S. Valente, R.A.F.S. Alves, Filtered and recovering beam search algorithms for the early/tardy scheduling problem with no idle time, Comput. Ind. Eng.

48 (2) (2005) 363–375.
[65] L.J.P. Vieillot, Taeniopygia. guttata, Abel Lanoe, 1817.

[66] S. Weber, Design of real-time supervisory control systems, Ph.D. Thesis, Eindhoven University of Technology, 2003.
[67] A.J. Wijs, What to do next? Analysing and optimising system behaviour in time, Ph.D. Thesis, Vrije Universiteit Amsterdam, 2007.

[68] A.J. Wijs, B. Lisser, Distributed extended beam search for quantitative model checking, vol. 4428Proc. MoChArt 2006, LNAI, vol. 12, Springer-Verlag,
Heidelberg, 2007, pp. 165–182.

[69] A.J. Wijs, J.C. van de Pol, E. Bortnik, Solving scheduling problems by untimed model checking – the clinical chemical analyser case study, 11J. Softw. Tools

Technol. Transfer (5) (2009) 375–392.
[70] R.A. Zann, The Zebra Finch – A Synthesis of Field and Laboratory Studies, Oxford University Press Inc., 1996.

[71] W. Zhang, State-Space Search – Algorithms Complexity Extensions and Applications, Springer-Verlag, 1999.
[72] R. Zhou, E.A. Hansen, Beam-stack search: integrating backtracking with beam search, Proc. ICAPS 2005, AAAI, 2005, pp. 90–98.

	Extended beam search for non-exhaustive state space analysis
	1 Introduction
	2 Searching through weighted state spaces
	3 Multi-phase best-first search
	4 Beam search
	5 Adapting beam search for state space generation
	5.1 Motivation
	5.2 Priority beam search for state space generation
	5.3 Detailed beam search for state space generation
	5.4 Flexible beam search
	5.5 G-synchronised beam search

	6 Beam search in the CRL toolset
	7 Memory management
	8 Heuristics and selecting the beam width
	9 Experiments
	9.1 Cannibals and missionaries
	9.2 The Zebra Finch problem
	9.3 Other benchmarks

	10 Related work
	10.1 Other uses of beam search
	10.2 Connections to other heuristic search algorithms
	10.3 Applicability in other quantitative model checking areas

	11 Conclusions
	Acknowledgements
	References

