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a b s t r a c t

In this paper, we define and study some subclasses of analytic functions by using the
concept of k-uniformly convexity. Several interesting properties, coefficients and radius
problems are investigated. The behaviour of these classes under a certain integral operator
is also studied. We indicate the relevant connections of our results with various known
ones.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Let A be the class of functions f (z) of the form

f (z) = z +

∞−
n=2

anzn, (1.1)

which are analytic in the open unit disc E = {z : |z| < 1}. Let S denote the class of all functions in A which are univalent in
E. Also, let S∗

γ , Cγ be the subclasses of S which consist of starlike and convex functions of order γ (0 ≤ γ < 1) respectively.
For details, see [1]. Kanas and Wisniowska [2,3] studied the classes of k-uniformly convex functions, denoted by k − UCV ,
and the corresponding class of k − ST related by the Alexander type relation.

For 0 ≤ k < ∞, define the domain Ωk as follows: see [4],

Ωk = {u + iv : u > k


(u − 1)2 + v2}. (1.2)

For fixed k, Ωk represents the conic region bounded, successively, by the imaginary axis (k = 0), the right branch of
hyperbola (0 < k < 1), a parabola (k = 1) and an ellipse (k > 1).

Also, we note that, for no choices of k (k > 1), Ωk reduces to a disc. We define the domain Ωk,γ , see [5], as

Ωk,γ = (1 − γ )Ωk + γ , (0 ≤ γ < 1).
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The following functions, denoted by pk,γ (z), are univalent in E and map E onto Ωk,γ such that pk,γ (0) = 1 and p′

k,γ (0) > 0:

pk,γ (z) =



1 + (1 − 2γ )z
1 − z

(k = 0),

1 +
2(1 − γ )

π2


log

1 +
√
z

1 −
√
z

2

, (k = 1)

1 +
2(1 − γ )

1 − k2
sin h2

[
2
π

arccos k

arctan h

√
z
]

, (0 < k < 1)

1 +
(1 − γ )

k2 − 1
sin


π

2R(t)

∫ u(z)
√
t

0

1
√
1 − x2


1 − (tx)2

dx


+

1 − γ

k2 − 1
, (k > 1),

(1.3)

where u(z) =
z−

√
t

1−
√
tz
, t ∈ (0, 1), z ∈ E and z is chosen such that k = cosh


πR′(t)
4R(t)


, R(t) is the Legendre’s complete elliptic

integral of the first kind and R′(t) is the complementarity integral of R(t), see [6,2,5].
We note that the function pk,γ (z) is continuous as regards to k, k ∈ [0, ∞) and has real coefficients for k ∈ [0, ∞),

see [7,8].
We define a subclass of Caratheodory class P as follows.

Definition 1.1. Let k − P(γ ) ⊂ P be the class consisting of functions p(z) which are analytic in E with p(0) = 1, and which
are subordinate to pk,γ (z) in E. We write p ∈ k − P(γ ) implies p ≺ pk,γ where pk,γ is given by (1.3) That is p(E) ⊂ pk,γ (E).
We note that 0 − P(0) = P and p ∈ 0 − P(γ ) = P(γ ) implies that Rep(z) > γ , z ∈ E. It is easy to note that the class
k − P(γ ) is a convex set.

We extend the class k − P(γ ) as follows.

Definition 1.2. Let p(z) be analytic in E with p(0) = 1. Then p ∈ k − Pm(γ ) if and only if, for m ≥ 2, 0 ≤ γ < 1, k ∈

[0, ∞), z ∈ E,

p(z) =


m
4

+
1
2


p1(z) −


m
4

−
1
2


p2(z), p1, p2 ∈ k − P(γ ). (1.4)

We note that

k − P2(γ ) = k − P(γ )

and

0 − P(0) = Pm,

is the class introduced and studied by Pinchuk [9].
We now define the following.

Definition 1.3. Let f ∈ A. Then f ∈ k − UVm(γ ), 0 ≤ γ < 1, k ∈ [0, ∞) andm ≥ 2, if and only if
1 +

zf ′′(z)
f ′(z)


∈ k − Pm(γ ), z ∈ E.

We call k−UVm(γ ) the class of functions of k-uniform bounded boundary rotationmwith order γ . It can easily be seen that
0 − UVm(0) = Vm coincides with the class of functions of bounded boundary rotation, see [1,10–12].

The corresponding class k − URm(γ ) is defined as

k − URm(γ ) = {g ∈ A : g = zf ′, f ∈ k − UVm(γ )}.

We have the following special cases.

(i) If u+ iv =


1 +

zf ′′(z)
f ′(z)


, z ∈ E, then f ∈ 1− UVm(0) means that the range of the expression


1 +

zf ′′(z)
f ′(z)


is the region

bounded by a parabola u =
v2

2 +
1
2 and its boundary rotation is bounded bymπ .

(ii) For k = 1,m = 2 and γ = 0, we obtain the class 1 − UR2(0) = 1 − ST and if f ∈ 1 − ST , then

Re

zf ′(z)
f (z)


>

1
2

and
arg zf ′(z)

f (z)

 <
π

4
, see [13].

(iii) 0−URm(0) = Rm is the class of analytic functions with bounded radius rotation, see [14,2]. Also we denote k−UR2(γ )
as k − ST (γ ).

(iv) Form = 2, γ = 0, we have k − UV2(0) = k − UCV , the class of uniformly convex functions.

Remark 1.1. It is known [3] that k − UCV ⊂ C
 k
k+1


for k ∈ [0, ∞).

Throughout this paper, we assume that k ≥ 0, 0 ≤ γ < 1 andm ≥ 2 unless otherwise specified.
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2. Preliminary results

Let Vm(ρ), m ≥ 2, 0 ≤ ρ < 1 be the class of functions f (z), analytic and locally univalent in E with f (0) = 0, f ′(0) = 1
and satisfying the condition∫ 2π

0



Re (zf ′(z))′

f ′(z) − ρ


(1 − ρ)

 dθ ≤ mπ. (2.1)

When ρ = 0, the class Vm(0) = Vm coincides with the class of functions of bounded boundary rotation.
We shall need the following known results.

Lemma 2.1 ([15]). An analytic function f ∈ Vm(ρ) if and only if, there exists f1 ∈ Vm such that

f ′(z) = (f ′

1(z))
1−ρ, see [16]. (2.2)

We give an easy extension of a result proved in [4] as follows.

Lemma 2.2. Let 0 ≤ k < ∞ and let β, δ be any complex numbers with β ≠ 0 and Re


βk
k+1 + δ


> γ . If h(z) is analytic in

E, h(0) = 1, and satisfies
h(z) +

zh′(z)
βh(z) + δ


≺ pk,γ (z), (2.3)

and qk,γ (z) is an analytic solution of

qk,γ +
zq′

k,γ (z)

βqk,γ (z) + δ
= pk,γ (z), (2.4)

then qk,γ is univalent,

h(z) ≺ qk,γ (z) ≺ pk,γ (z),

and qk,γ (z) is the best dominant of (2.3).

Lemma 2.3 ([15]). Let f ∈ Vm(ρ) and let F1(z) =
(zf ′(z))′

f ′(z) with

F1(z) = 1 +

∞−
n=1

cnzn.

Then, with z = reiθ , z ∈ E,
(i)

1
2π

∫ 2π

0
|F1(reiθ )|2dθ ≤

1 − {m2(1 − ρ2) − 1}r2

1 − r2
.

(ii)

1
2π

∫ 2π

0
|F ′

1(re
iθ )|dθ ≤

m(1 − ρ)

1 − r2
.

3. Main results

Theorem 3.1. Let f ∈ k − URm(γ ). Then there exists s1, s2 ∈ k − ST (γ ) such that

f (z) =
(s1(z))

m+2
4

(s2(z))
m−2
4

, m ≥ 2, k ∈ [0, ∞).

Proof. For s ∈ k − ST (γ ), we have

zs′(z)
s(z)

≺ pk,γ (z)

and therefore

s(z) ≺ z exp
∫ z

0

pk,γ (t) − 1
t

dt.
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Let µm be the class of real-valued functions µ(t) of bounded variation on [−π, π] satisfying the conditions∫ π

−π

dµ(t) = 2,
∫ π

−π

|dµ(t)| ≤ m.

Since f ∈ k−URm(γ ),
zf ′

f ∈ k−Pm(γ ) and from this, we can easily deduce a representation formula for the class k−URm(γ )

as follows.

f (z) = z exp
∫ z

0

pk,γ (t) − 1
t

dµ(t), µ ∈ µm.

We can write the real-valued function of bounded variation as

µ(t) = µ1(t) − µ2(t),

where µ1 and µ2 are nonnegative increasing functions. Thus

f (z)
z

=
exp

 z
0

pk,γ (t)−1
t dµ1(t)

exp
 z
0

pk,γ (t)−t
t dtµ2(t)

=
N(z)
D(z)

, (3.1)

where∫ π

−π

dµ1(t) − dµ2(t) = 2, and
∫ π

−π

dµ1(t) + dµ2(t) ≤ m

since µ ∈ µm.
These, in turn, imply that∫ π

−π

dµ1(t) ≤
m + 2

2
,

∫ π

−π

dµ2(t) ≤
m − 2

2
. (3.2)

From (3.1), we note that
 π

−π
dµ1(t) and

 π

−π
dµ2(t) are the boundary rotation of the image of E under the mappings

w1(z) =

∫ z

0
N(ξ)dξ and w2(z) =

∫ z

0
D(ξ)dξ

respectively.
From (3.2), the functions

w1(z) = (N(z))
4

m+2

and

w2(z) = (D(z))
4

m−2

are the derivatives of functions whose boundary rotations are 2. In other words, these are the derivatives of functions
belonging to k − UCV (γ ).

Let

s1(z) = z(N(z))
4

m+2

s2(z) = z(D(z))
4

m−2 .

This means s1, s2 ∈ k − ST (γ ). Hence

f (z) =
(s1(z))

m+2
4

(s2(z))
m−2
4

, m ≥ 2, k ∈ [0, ∞).

The proof is complete. �

Theorem 3.2. Let f ∈ k − UVm(γ ). Then f ∈ k − URm(γ ) for z ∈ E.

Proof. Let f ∈ k − UVm(γ ) and let

zf ′(z)
f (z)

= p(z) =


m + 2

4


p1(z) −


m − 2

4


p2(z). (3.3)
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Then 
1 +

zf ′′(z)
f ′(z)


=


p(z) +

zp′(z)
p(z)


∈ k − Pm(γ ). (3.4)

Define

φ(z) =
1
2

[
z

1 − z
+

z
(1 − z)2

]
=

z

1 −

z
2


(1 − z)2

.

Let ⋆ denote convolution (Hadamard product). Then, using the convolution technique, we note that
p(z) ⋆

φ(z)
z


= p(z) +

zp′(z)
p(z)

,

and from (3.3) and (3.4), it follows that
pi(z) +

zp′

i(z)
pi(z)


∈ k − P(γ ), i = 1, 2.

This implies that, for i = 1, 2
pi +

zp′

i

pi


≺ pk,γ .

Applying Lemma 2.2 with β = 1, δ = 0, we have

pi ≺ qk,γ =

[∫ 1

0


exp

∫ tz

t

pk,γ (u) − 1
u

du

dt
]−1

≺ pk,γ .

This proves that f ∈ k − URm(γ ). �

We have the following special cases of Theorem 3.2.

Corollary 3.1. For k = 0 and γ = 0, f ∈ Vm. Then it follows that f ∈ Rm
 1
2


, see [11]. Since


pi +

zp′
i

pi


≺

1+z
1−z in E, it implies

that

pi ≺ q(z) =
z

1 − z
,

and q(−1) =
1
2 . This means that p ∈ Pm

 1
2


and the result follows.

For m = 2, we obtain a well-known result that every convex function is starlike of order 1
2 .

Corollary 3.2. Let γ = 0, k ∈ (1, ∞) and f ∈ k − UVm(0). Then, from Theorem 3.2 , f ∈ k − URm(γ1), where

γ1 =
1

(k + 1) log

1 +

1
k

 ,
since in this case, for i = 1, 2

pi +
zp′

i

pi


≺

k
k − z

, in E.

This implies

pi(z) ≺ qk,0(z) =
z

(z − k) log

1 −

z
k

 , i = 1, 2

and

qk,0(−1) =
1

(k + 1) log

1 +

1
k

 ,
the assertion follows.

For the case k = 2, we note that f ∈ 2 − UVm(0) which implies f ∈ 2 − URm
 4
5


. In fact, in this case,

pi +
zp′

i

pi


≺ q2,0(z) =

1
1 −

z
2

, i = 1, 2,
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which implies

Re
[
pi(z) +

zp′

i(z)
pi(z)

]
>

2
3
, i = 1, 2.

This gives us

Re{pi(z)} >
1

3 log 3
2

≈ 0.813, i = 1, 2.

Corollary 3.3. For k = 1, γ = 0, let f ∈ 1 − UVm(0). Then it follows directly from Theorem 3.2 that f ∈ 1 − URm
 1
2


. In this

case pi(z) ≺ q1,0(z) with

q1,0(z) = 1 +
2
π2


log

1 +
√
z

1 −
√
z

2

,

the branch of
√
z is chosen such that Im

√
z ≥ 0 and q1,0(−1) =

1
2 .

We now deal with a partial converse case of Theorem 3.2 as follows.

Theorem 3.3. Let f ∈ 0 − URm(0) ≡ Rm for z ∈ E. Then f ∈ k − UVm(0) for |z| < rk, where

rk =
1

2(k + 1) +
√
4k2 + 6k + 3

. (3.5)

Proof. Let

zf ′(z)
f (z)

= p(z) =


k
4

+
1
2


p1(z) −


k
4

−
1
2


p2(z). (3.6)

Since f ∈ Rm, so p ∈ Pm and pi ∈ P, i = 1, 2 for z ∈ E. From Theorem 3.1, we can write

zf ′(z)
f (z)

=


m
4

+
1
2


zs′1(z)
s1(z)

−


m
4

−
1
2


zs′2(z)
s2(z)

,

with

pi(z) =
zs′i(z)
si(z)

, si ∈ S⋆
⊂ C, i = 1, 2

and it is known [3] that si ∈ k − UCV for |z| < rk. This implies that
pi(z) +

zp′

i(z)
pi(z)


∈ k − P(0) = k − P, i = 1, 2, for |z| < rk.

Therefore, from (3.6), it follows that

(zf ′(z))′

f ′(z)
=


p(z) +

zp′(z)
p(z)


∈ k − Pm(0), for |z| < rk,

which implies that f ∈ k − UVm(0) for |z| < rk where rk is given by (3.5). This completes the proof. �

Corollary 3.4. With k = 0, it follows that f ∈ Rm is a function of bounded boundary rotation for |z| < r0 =
1

2+
√
3
, see [11,12].

When k = 1, r1 =
4−

√
13

3 and this result coincides with that for m = 2 proved in [17].

Theorem 3.4. Let f ∈ k − UVm(γ ) and be given by (1.1). Then

an = O(1).nβ1−2, (n −→ ∞),

where

β1 =


1 − γ

1 + k

m
2

+ 1


(3.7)

and O(1) is a constant depending only on k,m and γ . The exponent (β1 − 2) is best possible when k = 0 = γ , see [15].
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Proof. Since k − UCV ⊂ C
 k
1+k


for k ∈ [0, ∞), it easily follows from Theorem 3.1 that f ∈ k − UVm(0) implies that

f ∈ Vm(ρ), ρ =
k

1+k . Also, from Lemma 2.1, we can write

f ′(z) = (f ′

1(z))
1−ρ, f1 ∈ Vm.

Now, from Theorem 3.1,

f ′(z) =
(s′1(z))

m
4 +

1
2

(s′2(z))
m
4 −

1
2
, s1, s2 ∈ k − UV2(γ )

=
(g ′

1(z))

1− k

k+1


m
4 +

1
2



(g ′

2(z))

1− k

k+1


m
4 −

1
2

 , g1, g2 ∈ V2(γ )

=
(φ′

1(z))


1
k+1


(1−γ )


m
4 +

1
2



(φ′

2(z))


1
k+1


(1−γ )


m
4 −

1
2

 , φ1, φ2 ∈ C . (3.8)

Hence, using a result due to Brannan [14], it follows that, for f ∈ k − UVm(γ ), we can write

f ′(z) = (F ′

1(z))
1−γ
1+k , F1 ∈ Vm. (3.9)

Set

F(z) = (z(zf ′(z))′)′

= (zf ′(z)h′(z))′, h(z) =
(zf ′(z))′

f ′(z)
∈ Pm


γ + k
1 + k


= f ′(z)[h2(z) + zh′(z)]. (3.10)

Now, for z = reiθ ,

n3
|an| =

1
2πrn

∫ 2π

0
F(z)e−inθdθ

 ,
and using (3.8)–(3.10), we have

n3
|an| ≤

1
2πrn

∫ 2π

0

|φ1(z)|

1−γ
1+k


m
4 +

1
2



|φ2(z)|

1−γ
1+k


m
4 −

1
2

 |h2(z) + zh′(z)|dθ,

whereφ1, φ2 ∈ C and h ∈ Pm


γ+k
1+k


for z ∈ E. Thus, on usingwell-known distortion results for convex functions, Lemma 2.3

with

ρ =
γ + k
1 + k

, r =


1 −

1
n


,

we have

an = O(1)nβ1−2, (n −→ ∞),

where β1 is given by (3.7), and O(1) depends only on γ , k and m. �

For γ = 0 = k and m = 2, we note that f (z) is convex in E and an = O(1), which is a well known result.
For the class 0 − UVm(γ ), we have

an = O(1)n(1−γ )(m
2 +1)−2.

For different choices of γ , k and m, we obtain several new and known results as special cases of Theorem 3.4.
It is known [18] that, for a z1 with |z1| = r such that for any univalent function,

max
|z|=r

|(z − z1)s(z)| ≤
2r2

1 − r2
. (3.11)

Using (3.11) and a similar technique of Theorem 3.4, we can easily prove the following.
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Theorem 3.5. Let f ∈ k − UVm(γ ) and be given by (1.1). Then, for m ≥ 2


γ+k
1−γ


,

||an| − |an+1|| ≤ A(k,m, γ )nβ1−3, (n −→ ∞),

where β1 is given by (3.7) and A(k,m, γ ) is a constant depending upon k,m and γ only.
For γ = 0 = k, the exponent

m
2 − 2


is the best possible, see [19].

We shall now study the behaviour of the class k − URm(γ ) under an integral operator as follows.

Theorem 3.6. Let f , g ∈ k − URm(γ ) and let α, c, δ and ν be positively real with (ν + δ) = α. Then, the function F , defined by

[F(z)]α = czα−c
∫ z

0
t(c−δ−ν)−1(f (t))δ(g(t))νdt (3.12)

belongs to k − URm(γ ) for z ∈ E.

Proof. First we show that the function F , defined by (3.12), is well-defined. Let

G(z) = z−(ν+δ)(f (z))δ(g(z))ν = 1 + d1z + d2z2 + · · · ,

and choose the branches which equal 1 when z = 0. Now, for

K(z) = c(c−ν−δ)−1(f (z))δ(g(z))ν = zc−1G(z),

we have

L(z) =
c
zc

∫ z

0
K(t)dt = 1 +

c
c + 1

d1z +
c

c + 2
d2z2 + · · · .

This shows that L(z) is well-defined and analytic in E.
We now let

F(z) = [zαL(z)]
1
α = z[L(z)]

1
α

and here we choose the branch of [L(z)]
1
α which equals 1 when z = 0. Thus F is analytic and satisfies (3.12). Now, from

(3.12), we have

z(c−α)
[F(z)]α

[
(c − α) +

αzF ′(z)
F(z)

]
= cz(c−δ−ν)−1(f (z))δ(g(z))ν . (3.13)

We write

zF ′(z)
F(z)

= H(z) (3.14)

and note that H is analytic in E with H(0) = 1. Also, since f , g ∈ k − URm(γ ), we have

zf ′(z)
f (z)

= H1(z),
zg ′(z)
g(z)

= H2(z), H1,H2 ∈ k − Pm(γ ). (3.15)

Differentiating (3.13) logarithmically and using (3.14) and (3.15), we have

α

[
H(z) +

zH ′(z)
(c − α) + αH(z)

]
= δH1(z) + νH2(z).

That is
H(z) +

1
α
zH ′(z)

H(z) +
c−α
α


=

δ

α
H1(z) +

ν

α
H2(z).

Since δ + ν = α and k − Pm(γ ) is a convex set, we have
H(z) +

1
α
zH ′(z)

H(z) +
c−α
α


∈ k − Pm(γ ). (3.16)

Define

φa,b(z) =
1

a + b
z

(1 − z)a
+

b
1 + b

z
(1 − z)a+1

,
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with a =
1
α
, b =

c−α
α

, and let

H(z) =


m
4

+
1
2


h1(z) −


m
4

−
1
2


h2(z).

Then 
H(z) ⋆

φa,b(z)
z


=


H(z) +

1
α
zH ′(z)

H(z) +
c−α
α



=


m
4

+
1
2


h1(z) +

1
α
zh′

1(z)

h1(z) +
c−α
α


−


m
4

−
1
2


h2(z) +

1
α
zh′

2(z)

h2(z) +
c−α
α


.

Thus it follows, from (3.16) that, for i = 1, 2[
hi(z) +

zh′

i(z)
αhi(z) + (c − α)

]
≺ pk,γ (z).

Using Lemma 2.2, we have

hi ≺ pk,γ , i = 1, 2.

Consequently, H ∈ k − Pm(γ ) and hence F ∈ k − URm(γ ). This complete the proof. �

We have several interesting special cases by appropriate choosing various permitted values of parameters k,m and γ .
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