
Artificial Intelligence 182–183 (2012) 58–67
Contents lists available at SciVerse ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A min-flow algorithm for Minimal Critical Set detection in Resource
Constrained Project Scheduling

Michele Lombardi, Michela Milano ∗

DEIS Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 October 2010
Received in revised form 27 October 2011
Accepted 8 December 2011
Available online 9 December 2011

Keywords:
Constraint-based scheduling
Constraint programming
Precedence Constraint Posting
Minimal Critical Set
Min-flow algorithm

We propose a min-flow algorithm for detecting Minimal Critical Sets (MCS) in Resource
Constrained Project Scheduling Problems (RCPSP). The MCS detection is a fundamental step
in the Precedence Constraint Posting method (PCP), one of the most successful approaches
for the RCPSP. The proposed approach is considerably simpler compared to existing flow
based MCS detection procedures and has better scalability compared to enumeration- and
envelope-based ones, while still providing good quality Critical Sets. The method is suitable
for problem variants with generalized precedence relations or uncertain/variable durations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Resource Constrained Project Scheduling Problem (RCPSP) is one of the most important problems in project manage-
ment, manufacturing and resource optimization. The RCPSP has received enormous attention in Operations Research, [3] and
in Artificial Intelligence [1]; the aim is to schedule at minimal duration a set of activities subject to precedence constraints
(represented in a project graph) and to limited resource availability.

One of the most successful techniques for solving the RCPSP is Precedence Constraint Posting (PCP – see [18]) where
the set of initial precedence constraints is augmented during the solution process to avoid resource over-usage, detected in
the form of Minimal Critical Sets (MCS). A MCS is a minimal set of potentially overlapping activities collectively overusing
a resource; due to minimality, the removal of a single activity from the set wipes out the conflict. To obtain a feasible
solution, all MCSs should be removed. However, their number is exponential in the size of the project graph. Therefore,
their efficient discovery is a fundamental ingredient for any RCPSP solver.

Building on our results in [16], we propose to cast the detection of a (non-minimal) Critical Set to a min-flow problem
on a resource graph where activities are annotated with their resource requirements; an MCS is then extracted by removing
activities in a greedy fashion. The flow optimization at the core of our method is considerably simpler than those found
in the literature [12,17]. As a second contribution, we carried on extensive experimentation on MCS detection algorithms,
employed within a tree-search scheme to solve the PSPlib benchmarks [13,14]; the min-flow approach exhibits better scal-
ability compared to existing enumeration- and envelope-based MCS detection procedures [15,19], featuring a significant
speed-up as the number of MCSs grows.

* Corresponding author.
E-mail address: michela.milano@unibo.it (M. Milano).
0004-3702/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2011.12.001

http://dx.doi.org/10.1016/j.artint.2011.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:michela.milano@unibo.it
http://dx.doi.org/10.1016/j.artint.2011.12.001

M. Lombardi, M. Milano / Artificial Intelligence 182–183 (2012) 58–67 59
Fig. 1. A RCPSP instance: (A) precedence constraints; (B) resource requirements; (C) durations.

The PCP technique is particularly well-suited to tackle RCPSP variants with variable/uncertain durations (e.g. the Stochas-
tic or the Multi-mode RCPSP), where fixed start times cannot be assigned, while precedence constraints can still be used to
avoid resource conflicts; as a consequence, here we restrict to MCS detection algorithms suitable to deal with such a case.

2. Resource Constrained Project Scheduling

The classical Resource Constrained Project Scheduling Problem (RCPSP) is defined on a directed acyclic graph 〈A, E〉
(referred to as a project graph), where A is a set of n activities ai having fixed duration di , and E is a set of directed edges
(ai,a j), defining precedence relations over activities. Without loss of generality, we assume there is a single source activity
(a0) with no ingoing arcs and a single sink activity (an−1) with no outgoing arcs. Each activity ai requires a certain amount
reqi,k of one or more renewable resources rk from a set R (source and sink nodes require no resource); each resource rk
has finite capacity capk . The problem consists of finding a schedule (that is, an assignment of start times to activities), such
that no resource capacity is exceeded and the overall completion time (makespan) is minimized. Fig. 1 shows an example
of a small RCPSP instance. As a common extension, release times and deadlines can be specified on the execution of each
activity.

In this work we are interested in some variants of the RCPSP [3]: in the Multi-mode RCPSP each activity can be executed
in one of a set of possible modes, corresponding to a different resource requirement/duration combination; as a consequence,
durations are variable until the mode is fixed. A second RCPSP variant considers durations that are uncertain, and vary at
execution time according to a probability distribution; the best known example is the Stochastic RCPSP, where the objective
is to minimize the expected makespan.

3. PCP: background and related work

The Precedence Constraint Posting approach is one of the most successful techniques for the RCPSP; in PCP resource
conflicts are resolved by adding precedence constraints between the involved activities. The resulting augmented graph
defines a set of possible contention-free schedules, rather than a specific schedule; this makes the approach particularly
well suited for RCPSP variants where start times can be assigned only late during search (e.g. when all activity modes
are decided) or only at execution time (e.g. in case of uncertain durations). A feasible schedule can be obtained from the
augmented graph by assigning start times according to the precedence constraints.

A key step for any PCP approach is the detection of possible resource conflicts, usually encoded as Minimal Critical
Sets [11]. A MCS is a minimal set S of activities, collectively overusing a resource rk; the activities must potentially overlap
in time. We provide the following MCS definition (from [15]):

Definition 1. A MCS for a resource rk ∈ R is a set of activities such that:

1.
∑

ai∈MCS reqi,k > capk;
2. ∀ai ∈ MCS:

∑
a j∈MCS\{ai} req j,k � capk;

3. ∀ai,a j ∈ MCS: ai and a j may overlap, given the temporal constraints,

where (1) requires the set to be a conflict, while (2) and (3) respectively are the minimality/overlapping conditions. By
relaxing the minimality requirement we get a so-called Critical Set (CS). A MCS can be resolved by posting a precedence
constraint (i.e. a resolver) between any pair of activities in the set.

PCP approaches proceed by the repeated identification and resolution of MCSs, until the graph becomes conflict free.
The method in [15] adopts a tree search scheme where choice points correspond to MCSs and each branch represents
a possible resolver; the paper introduces the so-called preserved space measure to rank resolvers and MCSs. Other tree
search methods include [2,5], where min/max time lags are also considered and [9] for the Multi-mode RCPSP. Many PCP
approaches target the Stochastic RCPSP [10,11,21]. In [18,19] the PCP technique is used to generate robust schedules; the
combination of uncertain durations and time lags has been considered in [16].

60 M. Lombardi, M. Milano / Artificial Intelligence 182–183 (2012) 58–67
A MCS can be identified via enumeration [15,21], allowing one to find the optimal set according to a ranking heuristic,
but with exponential worst case complexity. Alternatively [19], one can start from a so-called resource usage envelope
[17,20]: each possible over-usage instant in the envelope corresponds to a CS; then a Minimal CS can be extracted via
enumeration (with exponential complexity) or via heuristic sampling.

In this work, we identify a MCS by sampling a single usage peak; this is detected from the solution of a min-flow
problem by exploiting the transitivity of temporal precedence graphs [8]. Related techniques are outlined in [12,17,20], the
latter being the core for the resource envelope computation in [19]. Compared to those approaches our method has similar
computational complexity, but is considerably simpler.

Finally, note that in case durations are fixed one can restrict to peaks in a specific schedule, e.g. assuming all activities
are started as soon as possible [19,18]: the method is fast and obtains good results, but does not work with variable or
uncertain durations and is therefore not considered here.

4. Minimal Critical Set detection

We propose to detect possible conflicts by: (1) solving a min-flow problem on a specific resource rk to identify the
maximal-weight CS; (2) sampling a MCS via steepest descent. As a quality measure, we adopt the preserved space heuristic
from [15]; our method always finds a MCS unless the graph is conflict free. In this section each step is described in detail,
while Section 5 investigates the efficiency and effectiveness of the approach in guiding MCS based tree-search.

4.1. MCS detection as a maximal weight independent set problem

The input for the MCS detection process is a so-called Resource Graph (RG):

Definition 2. A Resource Graph for rk is a directed acyclic graph 〈Ark , Erk 〉; Ark is a set of requirements (nodes) ρi , each
representing a time span when the resource is used; w(ρi) is the requirement value; Erk is the set of arcs and contains the
pair (ρi,ρ j) if and only if requirement ρi is expired when ρ j starts.

Without loss of generality, we assume the RG has a single source node with no predecessor and a single sink node with
no successor; source/sink nodes are connected to all other nodes in the graph. Observe that, in the context of the RG, the
term “requirement” refers to a node. Since arcs in the RG represent temporal precedence relations, the transitivity property
holds1 and the (undirected) RG is a comparability graph [8], i.e. an undirected graph connecting comparable pairs of elements
in a partial order.

A Resource Graph can be associated to the problem from Section 2 by:

(1) building a requirement ρi for each activity2 ai , with w(ρi) = reqik;
(2) building an arc (ρi,ρ j) if (ai,a j) ∈ E .

The RG formalism is not restricted to the basic RCPSP definition: release times and deadlines can be taken into account
by adding arcs (ρi,ρ j) for each activity pair such that ai is bound to end before a j starts3; more complex situations can also
be modeled. In general, if a Resource Graph can be built as from Definition 2, our MCS detection approach can be applied.

Fig. 2(A) shows the RG corresponding to the RCPSP instance from Fig. 1, where an additional deadline constraint has
been specified on a7 (namely dl7 = 13); the deadline leads to additional arcs: in particular, by reasoning on longest paths
we deduce activity a2 must end before time 5; since a3,a4 cannot start earlier than 5, arcs (a2,a3) and (a2,a4) are added
to the graph.

Since the activities in a CS must be possibly overlapping, we obtain that activities in a CS always form an Independent Set
(IS) in the Resource Graph, i.e. a subset S ⊆ Ark such that no pair of requirements ρi,ρ j ∈ S is connected by an arc in Erk . An
Independent Set S on the RG is a CS if and only if

∑
ρi∈S w(ρi) > capk .

4.2. Maximal weight independent set as a minimum flow problem

We can therefore test the existence of a CS on a resource rk by checking the weight of the maximal weight IS on the
Resource Graph. As stated in [8], this is a polynomial complexity problem on comparability graphs and can be solved via
flow-theory results. Since no detailed algorithm is given in the reference, in the following we provide and prove a simple
solution method.

1. Problem formulation: Let Π be the set of all source-to-sink paths π j in RG (an exponential number) and let n(π j) be the
number of nodes in the path. Due to the transitivity, each path corresponds to a maximal size, fully connected set of nodes

1 Transitively implied arcs are usually omitted in the figures for sake of simplicity.
2 One may restrict to activities with reqik > 0 for the sake of readability.
3 Checked (e.g.) via longest path or Temporal Constraint Network reasoning [6].

M. Lombardi, M. Milano / Artificial Intelligence 182–183 (2012) 58–67 61
Fig. 2. (A) Resource graph, corresponding to the instance from Fig. 1; (B) Path-clique analogy; (C) Graph for min-flow computation; (D) Part of the initial
flow.

in the (undirected) RG, i.e. a maximal clique (see Fig. 2(B), where the dotted arcs are implied by the transitivity property);
this is often referred to as Clique Path. In any IS no two nodes can be selected from the same maximal clique, therefore the
problem of finding a maximal weight IS can be formulated as the Integer Linear Program P′:

P′: max
∑

ρi∈Ark

w(ρi) · xi,

s.t.
∑

ρi∈π j

xi � 1, ∀π j ∈ Π, (1)

xi ∈ {0,1},

P′′: min
∑

π j∈Π

y j +
∑

ρi∈Ark

ui,

s.t.
∑

ρi∈π j

y j + ui � w(ρi), ∀ρi ∈ A,

y j � 0, ui � 0,

(2)

where xi are the decision variables and xi = 1 if requirement ρi is in the selected set; Constraints (1) ensure no two
requirements are chosen from the same Clique Path. Note P′ has an exponential number of constraints. By relaxing the
integrality restriction, we can get a dual problem P′′ , with an exponential number of variables. There exists an optimal solution
for P′′ using y j variables only.

Proof. Each ui variable in P′′ appears in exactly one Constraint (2), while each y j variable in n(π j) constraints, with
n(π j) � 1; hence, for each optimal solution for P′′ with a ui variable equal to 1, it is possible to replace ui with some
y j with no change in the objective value. �

Observe that each yi variable represents a value assigned to path π j in order to satisfy the covering Constraints (2);
equivalently, one may think of each yi as an amount of flow to be routed from source to sink along path π j . Therefore, we
deduce that Program P′′ consists of routing the minimum amount of flow from source to sink, such that all covering constraints are
satisfied; by duality, the minimum flow f ∗ is an upper bound on the maximal IS weight.

2. Solving P′′: Program P′′ can be solved by:

(1) splitting each node ρi into two sub-nodes ρ ′
i ,ρ

′′
i , connected by an arc;

(2) labeling each arc (ρ ′
i ,ρ

′′
i) with minimum flow requirement w(ρi);

(3) labeling remaining arcs in the RG with zero minimum flow requirement;

Fig. 2(C) shows the modified resource graph after node splitting; as one can see, the result is very similar to a Temporal
Constraint Network, where all arcs represent precedence constraints with non-negative time lag. An optimal solution can be
found by (1) starting from an initial feasible flow and (2) performing iterative reductions with the inverse Ford–Fulkerson’s
method4; the complexity is O (|Erk | · F) (where F is the value of the initial flow).

3. Computing an initial flow: An initial solution can be computed by adding, for each requirement ρi , a flow of w(ρi) units
on the path ρ ′

0 → ρ ′
i → ρ ′′

i → ρ ′′
n−1 (where ρ0,ρn−1 respectively denote the source and the sink requirements). Fig. 2(D)

shows (part of) the initial solution for the example.

4. Extracting a solution for P′: We still have to show that an optimal (integer) solution for P′ can be extracted by the optimal
solution of P′′ . By definition, the flow through the source/sink cut is f ∗; moreover, all arcs in the cut have zero residual

4 In detail, we use the inverted version of the classical Edmonds–Karp algorithm [7]; the pseudo-code is available at http://ai.unibo.it/node/424.

http://ai.unibo.it/node/424

62 M. Lombardi, M. Milano / Artificial Intelligence 182–183 (2012) 58–67
flow, i.e. the flow exactly equals the minimum flow requirement; now, let P∗ be the set of ρi such that (ρ ′
i ,ρ

′′
i) is in the

source/sink cut; we have∑
ρi∈P∗

w(ρi) = f ∗.

Let us assume xi = 1 if ρi ∈ P∗ (xi = 0 otherwise) as a candidate P′ solution; by duality of P′′ , such a solution is optimal;
hence we just have to show it is feasible, i.e. no two requirements ρi are covered by the same path π j .

Proof. Since f (ρ ′
i ,ρ

′′
j) = ∑

ρi∈π j
y j we get

f ∗ =
∑

ρi∈P∗
w(ρi) =

∑
ρi∈P∗

f
(
ρ ′

i ,ρ
′′
j

) =
∑

ρi∈P∗

∑
ρi∈π j

y j . (3)

Since the solution is optimal, we have y j = 0 if path π j is not covering any requirement in the source/sink cut and therefore,
from the objective of P′′:

f ∗ =
∑

π j∈Π

y j =
∑

∃ρi∈P∗: ρi∈π j

y j. (4)

By combining (3) and (4) we deduce that no y j covers more than one ρi in the source/sink cut; hence, not two ρi,ρ j ∈ P∗
belong to the same clique. �
Final remarks: In a tree search scheme where MCS are resolved by adding precedence constraints, a starting feasible flow at
each search node is provided by the minimum flow of its parent. Since the complexity of Ford–Fulkerson’s algorithm depends on
the initial flow value, such an incremental approach allows a substantial performance improvement.

Thanks to the similarity between the graph used for flow minimization and a Temporal Constraint Network, in many
cases it is possible to perform CS detection on the temporal model itself, with little or no graph transformation (unlike in
[17,20]). Moreover, extracting the maximal weight IS from the source/sink is simpler compared to the re-routing method
described in [12].

4.3. Reduction to MCS

If at the end of each minimization process the weight of the IS is higher than capk , then a CS has been identified.
However: (1) the detected CS is not necessarily minimal (branching on a non-minimal CS can result in exploring unnecessary
search paths); (2) the detected CS does not necessarily yield a good choice point when used in tree search. We propose to
tackle both problems by a simple greedy minimization step.

As evaluation criterion for a given set S we adopt the so-called preserved space heuristic, introduced in [15]; the preserved
space of a resolver (ai,a j) is an estimate of the amount of search space left after the addition of the precedence constraint;
the preserved space of the MCS is the total preserved space of its resolvers. Once a CS is identified via the min-flow based
approach, we extract a Minimal CS by iteratively removing the activity causing the largest reduction of preserved space (i.e.
via steepest descent); the process stops when removing any activity causes the set weight to drop under capk (i.e. the CS is
minimal). The approach has time complexity O (|CS|2), where |CS| is the size of the original CS.

5. Experimental results

In order to assess the effectiveness of the proposed method w.r.t. approaches from the literature, we perform an extensive
experimentation on RCPSP benchmarks from the PSPlib; in detail, we consider three MCS detection techniques, using the
(smallest) preserved space as ranking heuristic:

(1) the one described in this work, referred to as MINFLOW;
(2) the enumerative procedure defined in [15], referred to as ENUM;
(3) the procedure in [19] (based on heuristically sampling MCS from peaks in the resource usage envelope), referred to as

PEAKS.

Our ENUM implementation is analogous to the one in the original paper; as an exception, the incremental computation of
the CS score is replaced by a caching scheme (each CS is evaluated only once): preliminary results showed the performance
difference to be limited. In the PEAKS procedure, the usage envelope is computed with the method introduced in [17];
the incremental computation steps described in [19] and (more prominently) in [20] are not implemented, actually leaving
room for further improvements. MCS are sampled from peaks as in [4]: for a peak with size n, we extract up to n MCS,
with no upper limit on the set cardinality.

M. Lombardi, M. Milano / Artificial Intelligence 182–183 (2012) 58–67 63
The MCS detection methods are employed in a Depth First Search scheme: at each node of the search tree an MCS is
selected for each resource rk; then the best set among all resources is chosen for branching. We use binary choice points:
we identify the resolver (ai∗ ,a j∗) with the highest preserved space; this is posted on the left branch, forbidden on the right
branch:

end(ai∗) � start(a j∗) or start(a j∗) > end(ai∗).

We perform resolver simplification as described in [15]; the technique consists of discarding (for each MCS) the resolvers
(ai,a j) such that another resolver (ah,ak) exists and (ai,a j) ⇒ (ah,ak). Timetable, disjunctive and edge-finding filtering is
used for all resources. Optimization (i.e. makespan minimization) is done in the usual CP fashion (i.e. by posting constraints
on the problem objective whenever an improving solution is found).

We have run the optimization process on the j30, j60, j90 and j120 benchmarks, the number in the benchmark name
identifying the size of the graph; each solution attempt was capped at 600 seconds. The approach is implemented in IBM-
ILOG Solver and Scheduler 6.7 and all experiments are performed on an Intel Xeon E5410, 2.33 GHz, 7 GB RAM. In the
following, an excerpt of the experimentation results is reported: detailed information is available on-line5.

Table 1 reports results for the MINFLOW approach on the j30, j60, j90 benchmarks; the j120 set is considered separately
in Table 4, since it is generated with different parameters. Instances are grouped by Resource Factor (RF – the average
number of required resources, averaged over the number of activities) and Resource Strength (RS – the ratio between
a resource capacity and its average requirement); each group counts 30 graphs and row OP/TO shows the number of
optimally solved and timed-out ones; for optimally solved instances, row time and fail are the average solution time and
number of fails (backtracks), while tmcs is the average portion of the solution time spent in MCS detection.

The toughest challenge comes from high RF and low RS instances, usually having many, large size MCS and yielding
the biggest search trees. As the number of nodes grows, detecting MCS (min-flow + steepest descent) takes an increasing
portion of the total solution time; in detail, solving the flow problem accounts for up to 25% of the MCS detection, with
peaks for low RS values; conversely, the CS greedy minimization step seems to be heavier for higher RS and more sensitive
to the size of the graph: this explains the growing tmcs for increasing RS values on j120.

Table 2 reports results for the comparison between MINFLOW and ENUM on j30, j60 and j90 (j120 is considered in
Table 4). Here, row OP/TO is the number of optimally-solved/timed-out instances for the ENUM approach, while OP∗/TO∗
counts the number of instances where both ENUM and MINFLOW find the optimal solution/hit the time limit. Row time, is
the average solution time gap, defined for a single instances as

time =
{

0 if timeMINFLOW < 10 msec and timeENUM < 10 msec,
timeMINFLOW−timeENUM

max(timeMINFLOW ,timeENUM)
otherwise

where timeMINFLOW and timeENUM are the solution time of the two approaches; analogously, the fail and mk columns are
the average fail and makespan gap. Time and fail gaps are computed on instances solved to optimality by both approaches;
the makespan gap is computed only when at least one method reports a time-out and is ±100% in case one of the two
approaches has found no solution. In the table, results are in bold font whenever MINFLOW is doing better than or as well
as ENUM.

As expected, MCS detection for the ENUM approach is heavier than MINFLOW, taking from 8%–85% (on j30) to basically
all the solution time (for the larger graphs). This is a consequence of the exponential worst case complexity of the enu-
meration; the gap is more evident for large RF and RS, corresponding to the highest number of MCS: no instance for the
corresponding groups in j90 is solved to optimality by ENUM, while MINFLOW reports no time-outs. In some cases on large
graphs the ENUM approach was not able to find a solution at all, getting stuck when searching for the optimal MCS; this
is the reason for the large negative mk on j60 and j90, caused by MINFLOW scoring −100% when ENUM does not find any
feasible schedule. Even when ENUM is able to reach an optimal or suboptimal solution, the MINFLOW approach is usually
faster and achieves comparable makespan. In general, ENUM seems to perform best for small graphs and small RF, RS
values; this is why the scalability issues are less apparent on j120, since the highest RS values are not considered there.
Quite unexpectedly, the ENUM approach does not seem to produce consistently smaller search trees when both approaches
achieve optimality, raising interest in investigating the effectiveness of the preserved space as a search heuristic.

Table 3 reports results for the comparison between MINFLOW and PEAKS; results for j120 are in Table 4. The PEAKS
approach can be considered a compromise between the ENUM and the MINFLOW approach: the set of all peaks in the
resource usage envelope is obtained via a polynomial time procedure, then MCS are extracted from each peak via an enu-
merative process, stopped once a given number of Critical Sets has been considered. PEAKS performs very well on the
smaller instances, considerably better than MINFLOW and ENUM in terms of number of time-outs; the method is partic-
ularly effective for low/average RF and low RS values; in this case, the quality of the returned schedules is very good,
even when the optimal schedule is not reached (see the mk values). On instances solved to optimality by both approaches,

5 At the address http://ai.unibo.it/node/424.

64
M

.Lom
bardi,M

.M
ilano

/A
rtificialIntelligence

182–183
(2012)

58–67

0.75 1.00 1.00 1.00 1.00
1.00 0.20 0.50 0.70 1.00

30/0 0/30 29/1 30/0 30/0
0.02 – 32.55 3.63 0.03
26 – 62493 7025 26
26.7% – 49.3% 39.5% 22%

30/0 0/30 8/22 30/0 30/0
0.22 – 15.03 0.62 0.37
106 – 13601 303 114
66.7% – 61.3% 66.9% 66.2%

30/0 0/30 12/18 30/0 30/0
1.62 – 6.79 2.76 2.70
240 – 1762 353 252
79.6% – 82.7% 80.3% 81.8%

0.75 1.00 1.00 1.00 1.00
1.00 0.20 0.50 0.70 1.00

30/0 0/30 26/4 30/0 30/0
30/0 0/30 26/1 30/0 30/0
−54.5% – −48.7% −70.7% −74.7%
−2.9% – 0.5% −7.9% −10.2%
– 0.7% −1.9% – –

27/3 0/30 2/28 16/14 17/13
27/0 0/30 2/22 16/0 17/0
−98.8% – −98.5% −99.3% −99.7%
−13.6% – 25.8% −19.3% −23.2%
−100% −1.5% −30% −93% −100%

0/30 0/30 0/30 0/30 0/30
0/0 0/30 0/18 0/0 0/0
– – – – –
– – – – –
−100% −67.8% −100% −100% −100%
Table 1
Results for the MINFLOW approach.

RF 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.50 0.75 0.75 0.75
RS 0.20 0.50 0.70 1.00 0.20 0.50 0.70 1.00 0.20 0.50 0.70

J3
0

OP/TO 30/0 30/0 30/0 30/0 29/1 30/0 30/0 30/0 7/23 30/0 30/0
time 0.02 0.01 0.01 0.01 25.66 3.84 0.02 0.01 229.45 6.10 1.91
fail 72 22 18 13 83154 14236 36 23 492517 17167 4450
tmcs 15.6% 11.7% 10% 3.3% 35.4% 20.9% 21.7% 20% 38.4% 39.4% 32.7%

J6
0

OP/TO 25/5 30/0 30/0 30/0 0/30 28/2 30/0 30/0 0/30 18/12 30/0
time 10.54 0.05 0.04 0.03 – 15.05 0.12 0.11 – 8.38 0.28
fail 27 372 98 68 46 – 21869 124 92 – 8892 197
tmcs 28.7% 35.2% 33.7% 30.2% – 49.8% 55.4% 56.5% – 58.2% 63.5%

J9
0

OP/TO 11/19 29/1 30/0 30/0 0/30 22/8 30/0 30/0 0/30 17/13 30/0
time 70.90 0.22 0.16 0.13 – 6.70 0.66 0.70 – 50.15 1.69
fail 84 016 244 131 107 – 7316 245 201 – 43734 343
tmcs 44.3% 55.3% 57.4% 61.8% – 66.3% 73.5% 75.7% – 68.9% 78.7%

Table 2
Results for the comparison with the ENUM approach.

RF 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.50 0.75 0.75 0.75
RS 0.20 0.50 0.70 1.00 0.20 0.50 0.70 1.00 0.20 0.50 0.70

J3
0

OP/TO 30/0 30/0 30/0 30/0 29/1 30/0 30/0 30/0 12/18 30/0 30/0
OP∗/TO∗ 30/0 30/0 30/0 30/0 28/0 30/0 30/0 30/0 6/17 30/0 30/0
time −12.1% 3.3% 8.3% −10% 36.6% −18.3% −28.9% −34.4% 10.1% −28.3% −42.1%
fail −3.6% −2.9% 2.5% −6.5% 49.9% −2.4% −1.2% −1.1% 32.1% −0.4% 0.9%
mk – – – – −5.7% – – – 0.2% – –

J6
0

OP/TO 25/5 30/0 30/0 30/0 0/30 24/6 30/0 30/0 0/30 15/15 30/0
OP∗/TO∗ 23/3 30/0 30/0 30/0 0/30 23/1 30/0 30/0 0/30 13/10 30/0
time −6.2% −40% −42.2% −47.2% – −66.9% −89.8% −91.8% – −97.7% −98%
fail 0.9% 2.6% −4% −6.2% – −0.4% −4.9% −6.6% – −40.9% −11.6%
mk −0.6% – – – −0.8% −1% – – −0.2% −1.2% –

J9
0

OP/TO 7/23 30/0 29/1 30/0 0/30 15/15 22/8 17/13 0/30 0/30 5/25
P∗/TO∗ 6/18 29/0 29/0 30/0 0/30 14/7 22/0 17/0 0/30 0/13 5/0
time 9.4% −70.6% −80.3% −87.2% – −98.7% −99.2% −99.2% – – −99.8%
fail 16.1% −3.4% −11% −3% – −13.1% −12.7% −5.3% – – −12.4%
mk −2.7% 1.1% −5.7% – −1.4% −27.8% −100% −100% −30.4% −74.2% −100%

M
.Lom

bardi,M
.M

ilano
/A

rtificialIntelligence
182–183

(2012)
58–67

65

0.75 1.00 1.00 1.00 1.00
1.00 0.20 0.50 0.70 1.00

30/0 13/17 30/0 30/0 30/0
30/0 0/17 29/0 30/0 30/0
−86.3% – −16.1% −80.7% −90.3%
9.3% – 73.3% 14.8% 7.5%
– 3.8% 0% – –

30/0 0/30 7/23 29/1 28/2
30/0 0/30 5/20 29/0 28/0
−98.1% – −63.8% −98.6% −99.1%
10.3% – 24.1% 13% 7.8%
– 2.7% 0.4% −100% −100%

12/18 0/30 1/29 7/23 9/21
12/0 0/30 1/18 7/0 9/0
−99.4% – −99.6% −99.7% −99.6%
11.4% – 16.1% 4.6% 17.9%
−100% −36% −75.9% −100% −100%

0.75 1.00 1.00 1.00 1.00 1.00
0.50 0.10 0.20 0.30 0.40 0.50

14/16 0/30 0/30 0/30 1/29 9/21
36.69 – – – 18.55 16.89
8717 – – – 915 734
76.5% – – – 88.2% 88.3%

0/30 0/30 0/30 0/30 0/30 0/30
0/16 0/30 0/30 0/30 0/29 0/21
– – – – – –
– – – – – –
−100% −96.5% −100% −100% −100% −100%

0/30 0/30 0/30 0/30 0/30 0/30
0/16 0/30 0/30 0/30 0/29 0/21
– – – – – –
– – – – – –
−100% −100% −100% −100% −100% −100%
Table 3
Results for the comparison with the PEAKS approach.

RF 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.50 0.75 0.75 0.75
RS 0.20 0.50 0.70 1.00 0.20 0.50 0.70 1.00 0.20 0.50 0.70

J3
0

OP/TO 30/0 30/0 30/0 30/0 30/0 30/0 30/0 30/0 26/4 30/0 30/0
P∗/TO∗ 30/0 30/0 30/0 30/0 29/0 30/0 30/0 30/0 7/4 30/0 30/0
time −28.8% −31.9% −25% −11.7% 51.6% −57.4% −73.2% −77.2% 77.5% −37.3% −78.5%
fail 8.4% 9.2% 7.4% −0.6% 88.2% 17.7% 11.6% 7.2% 97.8% 36.8% 23.4%
mk – – – – 5% – – – 3.2% – –

J6
0

OP/TO 30/0 30/0 30/0 30/0 4/26 29/1 30/0 30/0 0/30 17/13 30/0
P∗/TO∗ 25/0 30/0 30/0 30/0 0/26 28/1 30/0 30/0 0/30 16/11 30/0
time −28% −76.6% −80.2% −79.4% – −56.6% −95.2% −95.4% – −85.4% −98%
fail 13.4% 10.8% 6.5% 6% – 23.7% 15% 10.2% – 11.5% 12%
mk 4.4% – – – 5.5% 6.2% – – 4.2% 1% –

J9
0

OP/TO 22/8 30/0 30/0 30/0 0/30 23/7 28/2 24/6 0/30 4/26 14/16
P∗/TO∗ 11/8 29/0 30/0 30/0 0/30 20/5 28/0 24/0 0/30 3/12 14/0
time −0.2% −87.5% −91.2% −92.1% – −89.8% −98.7% −98.8% – −99.5% −99.3%
fail 54.1% 11.6% 6.7% 8.8% – 25.3% 8.6% 9.9% – −18.9% 16.6%
mk 2.7% 1.1% – – 3.8% −9.7% −100% −83.3% 4.1% −44.6% −100%

Table 4
Results for the J120 benchmark.

RF 0.25 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.50 0.50 0.75 0.75 0.75 0.75
RS 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40

M
IN

F
L

O
W OP/TO 0/30 6/24 21/9 23/7 29/1 0/30 0/30 0/30 6/24 16/14 0/30 0/30 0/30 0/30

time – 98.75 25.51 2.72 0.83 – – – 8.83 15.37 – – – –
fail – 27145 21746 1689 331 – – – 3717 8170 – – – –
tmcs – 60.3% 54% 53.5% 61% – – – 60.1% 73.2% – – – –

vs
E

N
U

M

OP/TO 0/30 2/28 15/15 19/11 27/3 0/30 0/30 0/30 0/30 2/28 0/30 0/30 0/30 0/30
P∗/TO∗ 0/30 2/24 13/7 17/5 26/0 0/30 0/30 0/30 0/24 1/13 0/30 0/30 0/30 0/30
time – 36.3% −78.2% −81.7% −89.8% – – – – −99.6% – – – –
fail – 64.5% −4.3% −9.1% −0.8% – – – – −22.8% – – – –
mk −0.2% −3% −2.4% −0.6% −0.1% 0.6% −24.1% −45.4% −67.6% −79.7% −52.7% −83.5% −96.7% −100%

vs
P

E
A

K
S OP/TO 1/29 11/19 20/10 26/4 29/1 0/30 0/30 1/29 1/29 6/24 0/30 0/30 0/30 0/30

P∗/TO∗ 0/29 6/19 17/6 22/3 28/0 0/30 0/30 0/29 1/24 6/14 0/30 0/30 0/30 0/30
time – −33.3% −81.6% −80% −93.9% – – – −99.4% −94.6% – – – –
fail – 41.7% 6.4% 19.5% 0.3% – – – 16.2% 19.6% – – – –
mk 3% 2% −0.9% 1.5% 2% 8.2% 4.7% −17.3% −33.9% −58.6% −47% −65.9% −79.6% −93.2%

66 M. Lombardi, M. Milano / Artificial Intelligence 182–183 (2012) 58–67
the MINFLOW method is usually much faster, but reports a larger number of fails; therefore, even if finding the optimal MCS
according to the preserved space heuristic does not necessarily produce smaller search trees, the heuristic is still providing
a valuable guide. This is especially appealing since the conflict detection time of PEAKS could be reduced by introducing
incremental computation techniques. On large instances, for high RF and RS the PEAKS approach suffers from the same
scalability issues as ENUM and in several cases it is not able to find any feasible solution, as hinted by the large negative
makespan gap. Results on the j120 set follow the same general trends, stressed by the large instance size.

5.1. Other tested variants

Since only possibly overlapping activities are considered by enumerative techniques, the ENUM approach may be strongly
affected by the width of the time windows. This is in part the rationale behind the search method used in [15]: an ini-
tial lower bound is set as a global deadline constraint, then the resulting scheduling problem is solved to feasibility; in
case infeasibility is proven, the lower bound is improved by one unit, until an optimal solution is found. We tested this
search method on the whole benchmark set: for optimally solved instances, the number of fails is reduced by 70–80% on
average, the solution time improves by 25–35% for MINFLOW, 35–45% for ENUM and even more for PEAKS; obviously, no
feasible solution is returned in case of time-outs. Interestingly, despite the improvements on optimally solved instances, the
scalability issue of ENUM and PEAKS are neither solved nor consistently reduced. When it comes to pairwise comparisons,
the general trends observed in Tables 2 and 3 for the solution time and number of fails still hold. Detailed results for this
second experimentation are available on-line5.

Finally, on the purpose to further investigate the trade-off between MCS quality and detection time, we experimented a
MINFLOW variant where the greedy CS minimization step is replaced by random activity removal (computationally lighter).
On j30 and j60 this leads to a considerably larger number of time-outs and more fails (10% on average); when optimal-
ity is reached, search is however faster (10% on average). On the larger benchmarks, the number of time-outs becomes
comparable and the solution time gap broadens; very interestingly, this is not only a by-product of the increased MCS
detection time: random minimization often produces smaller search trees, in particular on the j120 benchmarks (13% fewer
fails). Somehow, the reliability of the preserved space heuristic seems to decrease as the graph gets bigger. Detailed results
for this experimentation are available on-line5.

6. Conclusion

We propose a min-flow algorithm for detecting MCS in Precedence Constraint Posting; the idea is simple and easier to
implement than current approaches. Evidence of the method’s effectiveness is provided through an extensive experimenta-
tion with the PSPlib benchmark, where the min-flow approach exhibits improved scalability compared to two state-of-art
MCS detection procedures. Additionally, the results give insight into the effectiveness of the preserved space heuristic, ap-
parently decreasing as the instance size grows. Finally, our method could be employed for envelope computation in the
peak-based MCS detection, providing a (considerably simpler) alternative to the technique currently in use; this is a relevant
remark, considered the results obtained by PEAKS in our experimentation.

References

[1] P. Baptiste, C. Le Pape, W. Nuijten, Constraint-Based Scheduling, Kluwer Academic Publishers, 2001.
[2] M. Bartusch, R.H. Möhring, F.J. Radermacher, Scheduling project networks with resource constraints and time windows, Ann. Oper. Res. 16 (1) (1988)

199–240.
[3] P. Brucker, A. Drexl, R.H. Möhring, K. Neumann, E. Pesch, Resource-constrained project scheduling: Notation, classification, models, and methods,

European J. Oper. Res. 112 (1) (1999) 3–41.
[4] A. Cesta, A. Oddi, S.F. Smith, A constraint-based method for project scheduling with time windows, J. Heuristics 8 (1) (2002) 109–136.
[5] B. De Reyck, W. Herroelen, A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence

relations, European J. Oper. Res. 111 (1) (1998) 152–174.
[6] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Artificial Intelligence 49 (1–3) (1991) 61–95.
[7] J. Edmonds, R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, J. ACM 19 (2) (1972) 248–264.
[8] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, second ed., Elsevier, 2004.
[9] R. Heilmann, A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time

lags, European J. Oper. Res. 144 (2) (January 2003) 348–365.
[10] G. Igelmund, F.J. Radermacher, Algorithmic approaches to preselective strategies for stochastic scheduling problems, Networks 13 (1) (January 1983)

29–48.
[11] G. Igelmund, F.J. Radermacher, Preselective strategies for the optimization of stochastic project networks under resource constraints, Networks 13 (1)

(January 1983) 1–28.
[12] D. Kagaris, S. Tragoudas, Maximum independent sets on transitive graphs and their applications in testing and CAD, in: Proc. of ICCAD, IEEE Computer

Society, 1997, pp. 736–740.
[13] R. Kolisch, PSPLIB – A project scheduling problem library, European J. Oper. Res. 96 (1) (January 1997) 205–216.
[14] R. Kolisch, C. Schwindt, A. Sprecher, Benchmark instances for project scheduling problems, in: Handbook on Recent Advances in Project Scheduling,

Kluwer, 1999, pp. 197–212 (Chapter 9).
[15] P. Laborie, Complete MCS-based search: Application to resource constrained project scheduling, in: Proc. of IJCAI, Professional Book Center, 2005,

pp. 181–186.
[16] M. Lombardi, M. Milano, A precedence constraint posting approach for the RCPSP with time lags and variable durations, in: Proc. of CP, 2009, pp. 569–

583.

M. Lombardi, M. Milano / Artificial Intelligence 182–183 (2012) 58–67 67
[17] N. Muscettola, Computing the envelope for stepwise-constant resource allocations, in: Proc. of CP, 2002, pp. 139–154.
[18] N. Policella, A. Cesta, A. Oddi, S.F. Smith, From precedence constraint posting to partial order schedules: A CSP approach to Robust Scheduling, AI

Commun. 20 (3) (2007) 163–180.
[19] N. Policella, S. F. Smith, A. Cesta, A. Oddi, Generating robust schedules through temporal flexibility, in: Proc. of ICAPS, 2004, pp 209–218.
[20] T.K. Satish Kumar, Incremental computation of resource-envelopes in producer-consumer models, in: Proc. of CP, 2003, pp. 664–678.
[21] F. Stork, Stochastic resource-constrained project scheduling, PhD thesis, Technische Universitat Berlin, 2001.

	A min-ﬂow algorithm for Minimal Critical Set detection in Resource Constrained Project Scheduling
	1 Introduction
	2 Resource Constrained Project Scheduling
	3 PCP: background and related work
	4 Minimal Critical Set detection
	4.1 MCS detection as a maximal weight independent set problem
	4.2 Maximal weight independent set as a minimum ﬂow problem
	4.3 Reduction to MCS

	5 Experimental results
	5.1 Other tested variants

	6 Conclusion
	References

