Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

A note on the Banaś modulus of smoothness in the Bynum space

Huanhuan Cui^{*,1}, Yingrui Zhang

Department of Mathematics, Luoyang Normal University, Luoyang 471022, China

ARTICLE INFO

ABSTRACT

Article history: Received 2 June 2009 Accepted 5 October 2009

Keywords: Schäffer constant Modulus of smoothness lames constant Pythagorean constant

1. Introduction

Zuo and Cui (Z. Zuo, Y. Cui, Some modulus and normal structure in Banach space, J. Inequal. Appl. 2009 (2009) 15. doi:10.1155/2009/676373. Article ID 676373). It is however not true in general. In this note, we will present the exact value for this modulus in the $b_{2,\infty}$ space. © 2009 Elsevier Ltd. All rights reserved.

Recently, the Banaś modulus of smoothness for the Bynum space $b_{2,\infty}$ was obtained by

Let X be a Banach space and denote by S_X the unit sphere of X. In connection with the Pythagorean theorem, Gao [1] introduced the following parameter

 $f(X) = \inf\{\|x + y\|^2 + \|x - y\|^2 : x, y \in S_X\}.$

This parameter has been considered by several authors. Gao-Saejung [2] and Wang-Yang [3] obtained some sufficient conditions for normal structure by this parameter, which in turn implies the fixed point property of a Banach space. Cui–Wang [4] also considered such a parameter in the Lorentz sequence space. It is known that

- *X* is uniformly nonsquare if and only if f(X) > 2;
- X has normal structure if $f(X) > 4(3 \sqrt{5})$; $f(\ell_p) = \min(2^{2/p+1}, 2^{2/q+1})$, where 1/p + 1/q = 1;
- $f(X) = \inf\{\|x + y\|^2 + \|x y\|^2 : x, y \in X, \|x\|, \|y\| \ge 1\}.$

Recently, Zuo-Cui [6] stated a formula:

$$f(X) = \inf_{0 < \tau < 2} \left\{ \tau^2 + 4(1 - \rho_X(\tau))^2 \right\},\tag{1}$$

where the modulus of smoothness [5] $\rho_X(\tau)$: [0, 2] \rightarrow [0, 1] is defined as

$$\rho_X(\tau) = \sup\left\{1 - \frac{\|x+y\|}{2} : x, y \in S_X, \|x-y\| \le \tau\right\}.$$

From this and the following equality

$$\rho_{b_{2,\infty}}(\tau) = \tau/2\sqrt{2}$$
 for $\tau \in [0, 2]$,

Corresponding author.

Applied Mathematics Letters

(2)

E-mail address: huanhuancui@hotmail.com (H. Cui).

¹ The first author is supported by Youth Science Foundation of Luoyang Normal University (Grant No. 2008-QNJJ-011).

^{0893-9659/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2009.10.002

they obtained the value of f(X) for the Bynum space $b_{2,\infty}$ [6, Example 3.4]. However, the equality (2) does not always hold for every $\tau \in [0, 2]$. In fact from the definition of $\rho_X(\tau)$ it follows that $\rho_{b_{2,\infty}}(2) = 1$, while (2) gives $\rho_{b_{2,\infty}}(2) = 1/\sqrt{2}$, a contradiction. In this note, we will show that the exact value for $\rho_{b_{2,\infty}}$ may be the following

$$\rho_X(\tau) = \max\left(\frac{\tau}{2\sqrt{2}}, \frac{\tau}{\sqrt{2}} + 1 - \sqrt{2}\right).$$

2. Main results

Let us begin with some definitions. The James constant is defined as

 $J(X) = \sup\{\min(\|x + y\|, \|x - y\|) : x, y \in S_X\},\$

while the Schäffer constant is defined as

$$g(X) = \inf\{\max(\|x + y\|, \|x - y\|) : x, y \in S_X\}.$$

It is well known that J(X)g(X) = 2; see for instance [7]. To simplify the notation, we denote g := g(X) in the following. Also it is proved that

$$g = 2(1 - \rho_X(g)),$$
 (3)

(see for instance [8, Proposition 3]).

Proposition 1. Let X be the $b_{2,\infty}$ space, i.e., ℓ_2 space with the norm

 $||x|| = \max\{||x^+||_2, ||x^-||_2\},\$

where x^+ and x^- are positive and negative parts of $x \in \ell_2$. Then

$$\rho_X(\tau) = \max\left(\frac{\tau}{2\sqrt{2}}, \frac{\tau}{\sqrt{2}} + 1 - \sqrt{2}\right).$$

Proof. In view of [9], we know that

$$g(X) = \frac{2}{J(X)} = 2(2 - \sqrt{2}).$$

Since $\rho_X(\tau)$ is convex [8], we have from (3) that

$$\rho_X(\tau) \le \frac{\rho_X(g)}{g}\tau = \frac{2-g}{2g}\tau = \frac{\tau}{2\sqrt{2}}$$

for $\tau \in (0, 2(2 - \sqrt{2})]$, and also that

$$\rho_X(\tau) \le \frac{2-\tau}{2-g} \rho_X(g) + \frac{\tau-g}{2-g} \rho_X(2) \\ = \frac{2-\tau}{2} + \frac{\tau-g}{2-g} \\ = \frac{\tau}{\sqrt{2}} + 1 - \sqrt{2}$$

for $\tau \in [2(2 - \sqrt{2}), 2]$.

On the other hand, if $\tau \in (0, 2(2 - \sqrt{2})]$, let $\sigma = \sqrt{2}\tau/(2\sqrt{2} - \tau)$ and let

$$x = \left(1 - \frac{2\sqrt{2}}{\sqrt{2} + \sigma}, 1, 0, \ldots\right), \qquad y = \left(-1, 1 - \frac{2\sigma}{\sqrt{2} + \sigma}, 0, \ldots\right).$$

It is easy to check that $0 \le \sigma < \sqrt{2}$, $\|x\| = \|y\| = 1$, $\|x - y\| = \tau$ and $\|x + y\| = 2 - \tau/2\sqrt{2}$, which implies that

$$\rho_X(\tau) \ge \tau/2\sqrt{2}$$
for $\tau \in (0, 2(2 - \sqrt{2})]$. If $\tau \in [2(2 - \sqrt{2}), 2]$, let
 $x = (1 - \tau, 1, 0, ...), \quad y = (1, 1 - \tau, 0, ...).$

Then we have $x, y \in S_X$, $||x - y|| = \tau$, $||x + y|| = \sqrt{2}(2 - \tau)$ and therefore

$$\rho_X(\tau) \geq \frac{\tau}{\sqrt{2}} + 1 - \sqrt{2}$$

for $\tau \in [2(2-\sqrt{2}), 2]$. Combining all the cases, we get the result as desired. \Box

The above result together with (1) immediately yields f(X) = 8/3. It is worthwhile noting that Proposition 1 is also true for the Day–James space $\ell_2 - \ell_\infty$ space. The parameter f(X) for the Day–James space $\ell_2 - \ell_\infty$ is also considered in [6]. We now consider another Day–James space $\ell_2 - \ell_1$. Our method is due to [10, Example 3].

Proposition 2. Let X be the $\ell_2 - \ell_1$ space, i.e., \mathbb{R}^2 with the norm

$$\|x\| = \begin{cases} \|x\|_2 & \text{if } x_1x_2 \ge 0, \\ \|x\|_1 & \text{if } x_1x_2 \le 0. \end{cases}$$

Then we have f(X) = 3.

Proof. Let $x = (1/\sqrt{2}, 1/\sqrt{2})$, y = (-1/2, 1/2). It is easy to check that ||x|| = ||y|| = 1 and $||x \pm y|| = \sqrt{3/2}$, which yields $f(X) \ge 3$. To show the converse, let $x = (x_1, x_2)$, $y = (y_1, y_2) \in S_X$. For the symmetry, we only consider three cases for $x, y \in S_X$.

Case 1. $0 \le x_i \le 1, 0 \le y_i \le 1, i = 1, 2$. Obviously, $||x|| = ||x||_2, ||y|| = ||y||_2, (x_1 + y_1)(x_2 + y_2) \ge 0$ and $(x_1 - y_1)(x_2 - y_2) \le 0$. Thus

$$\begin{aligned} |x+y||^2 + ||x-y||^2 &= ||x+y||_2^2 + ||x-y||_1^2 \\ &= ||x+y||_2^2 + ||x-y||_2^2 - 2(x_1-y_1)(x_2-y_2) \\ &\ge 2(||x||_2^2 + ||y||_2^2) = 4. \end{aligned}$$

Case 2. $0 \le x_2 \le 1/\sqrt{2} \le x_1 \le 1, 0 \le -y_1 \le 1/2 \le y_2 \le 1$. Obviously, $||x|| = ||x||_2, ||y|| = ||y||_1, (x_1+y_1)(x_2+y_2) \ge 0$ and $x_1 - y_1 \ge 0$. If $x_2 - y_2 \ge 0$, then

$$\begin{aligned} \|x + y\|^2 + \|x - y\|^2 &= \|x + y\|_2^2 + \|x - y\|_2^2 \\ &= 2(\|x\|_2^2 + \|y\|_2^2) \ge 2\|x\|_2^2 + \|y\|_1^2 = 3. \end{aligned}$$

If not, we have

$$\begin{aligned} \|x + y\|^2 + \|x - y\|^2 &= \|x + y\|_2^2 + \|x - y\|_1^2 \\ &= \|x + y\|_2^2 + \|x - y\|_2^2 - 2(x_1 - y_1)(x_2 - y_2) \\ &\ge 2(\|x\|_2^2 + \|y\|_2^2) \ge 2\|x\|_2^2 + \|y\|_1^2 = 3. \end{aligned}$$

Case 3. $-1 \le x_1 \le 0 \le x_2 \le 1$, $-1 \le y_1 \le 0 \le y_2 \le 1$. Obviously, $||x|| = ||x||_1$, $||y|| = ||y||_1$, $(x_1 + y_1)(x_2 + y_2) \le 0$ and $(x_1 - y_1)(x_2 - y_2) = (x_1 - y_1)^2 \ge 0$. Thus

$$||x + y||^{2} + ||x - y||^{2} = ||x + y||_{1}^{2} + ||x - y||_{2}^{2}$$
$$= 4 + 2(x_{1} - y_{1})^{2} \ge 4$$

Combining all the cases above, we get $f(X) \ge 3$. \Box

References

- [1] J. Gao, A Pythagorean approach in Banach spaces, J. Inequal. Appl. (2006) 11. doi:10.1155/JIA/2006/94982. Article ID 94982, 2006.
- [2] J. Gao, S. Saejung, Remarks on a Pythagorean approach in Banach spaces, Math. Inequal. Appl. 11 (2008) 213–220.
- [3] F. Wang, C. Yang, Uniform nonsquareness, uniform normal structure and Gao's constants, Math. Inequal. Appl. 11 (2008) 607-614.
- [4] H. Cui, F. Wang, Gao's constants of Lorentz sequence spaces, Soochow J. Math. 33 (2007) 707–717.
- [5] J. Banas, On modulus of smoothness of Banach spaces, Bull. Pol. Acad. Sci. Math. 34 (1986) 287–293.
- [6] Z. Zuo, Y. Cui, Some modulus and normal structure in Banach space, J. Inequal. Appl. 2009 (2009) 15. doi: 10.1155/2009/676373. Article ID 676373.
- [7] M. Kato, L. Maligranda, Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 144 (2001) 275–295.
- [8] M. Baronti, P.L. Papini, Convexity, smoothness and moduli, Nonlinear Anal. 70 (2009) 2457–2465.
- [9] A. Jiménez-Melado, E. Llorens-Fuster, S. Saejung, The von Neumann-Joran constant, weak orthogonality and normal structure in Banach spaces, Proc. Amer. Math. Soc. 134 (2006) 355–364.
- [10] J. Alonso, P. Martín, P.L. Papini, Wheeling around von Neumann-Jordan constant in Banach spaces, Studia Math. 188 (2008) 135-150.