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a b s t r a c t

Recently, the Banaś modulus of smoothness for the Bynum space b2,∞ was obtained by
Zuo and Cui (Z. Zuo, Y. Cui, Somemodulus and normal structure in Banach space, J. Inequal.
Appl. 2009 (2009) 15. doi:10.1155/2009/676373. Article ID 676373). It is however not true
in general. In this note, we will present the exact value for this modulus in the b2,∞ space.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let X be a Banach space and denote by SX the unit sphere of X . In connection with the Pythagorean theorem, Gao [1]
introduced the following parameter

f (X) = inf{‖x+ y‖2 + ‖x− y‖2 : x, y ∈ SX }.

This parameter has been considered by several authors. Gao–Saejung [2] and Wang–Yang [3] obtained some sufficient
conditions for normal structure by this parameter, which in turn implies the fixed point property of a Banach space.
Cui–Wang [4] also considered such a parameter in the Lorentz sequence space. It is known that

• X is uniformly nonsquare if and only if f (X) > 2;
• X has normal structure if f (X) > 4(3−

√
5);

• f (`p) = min(22/p+1, 22/q+1), where 1/p+ 1/q = 1;
• f (X) = inf{‖x+ y‖2 + ‖x− y‖2 : x, y ∈ X, ‖x‖, ‖y‖ ≥ 1}.

Recently, Zuo–Cui [6] stated a formula:

f (X) = inf
0≤τ≤2

{
τ 2 + 4(1− ρX (τ ))2

}
, (1)

where the modulus of smoothness [5] ρX (τ ) : [0, 2] → [0, 1] is defined as

ρX (τ ) = sup
{
1−
‖x+ y‖
2

: x, y ∈ SX , ‖x− y‖ ≤ τ
}
.

From this and the following equality

ρb2,∞(τ ) = τ/2
√
2 for τ ∈ [0, 2], (2)
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they obtained the value of f (X) for the Bynum space b2,∞ [6, Example 3.4]. However, the equality (2) does not always hold
for every τ ∈ [0, 2]. In fact from the definition of ρX (τ ) it follows that ρb2,∞(2) = 1, while (2) gives ρb2,∞(2) = 1/

√
2, a

contradiction. In this note, we will show that the exact value for ρb2,∞ may be the following

ρX (τ ) = max
(

τ

2
√
2
,
τ
√
2
+ 1−

√
2
)
.

2. Main results

Let us begin with some definitions. The James constant is defined as

J(X) = sup{min(‖x+ y‖, ‖x− y‖) : x, y ∈ SX },

while the Schäffer constant is defined as

g(X) = inf{max(‖x+ y‖, ‖x− y‖) : x, y ∈ SX }.

It is well known that J(X)g(X) = 2; see for instance [7]. To simplify the notation, we denote g := g(X) in the following. Also
it is proved that

g = 2(1− ρX (g)), (3)

(see for instance [8, Proposition 3]).

Proposition 1. Let X be the b2,∞ space, i.e., `2 space with the norm

‖x‖ = max{‖x+‖2, ‖x−‖2},

where x+ and x− are positive and negative parts of x ∈ `2. Then

ρX (τ ) = max
(

τ

2
√
2
,
τ
√
2
+ 1−

√
2
)
.

Proof. In view of [9], we know that

g(X) =
2
J(X)
= 2(2−

√
2).

Since ρX (τ ) is convex [8], we have from (3) that

ρX (τ ) ≤
ρX (g)
g

τ =
2− g
2g

τ =
τ

2
√
2

for τ ∈ (0, 2(2−
√
2)], and also that

ρX (τ ) ≤
2− τ
2− g

ρX (g)+
τ − g
2− g

ρX (2)

=
2− τ
2
+
τ − g
2− g

=
τ
√
2
+ 1−

√
2

for τ ∈ [2(2−
√
2), 2].

On the other hand, if τ ∈ (0, 2(2−
√
2)], let σ =

√
2τ/(2

√
2− τ) and let

x =

(
1−

2
√
2

√
2+ σ

, 1, 0, . . .

)
, y =

(
−1, 1−

2σ
√
2+ σ

, 0, . . .
)
.

It is easy to check that 0 ≤ σ <
√
2, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = τ and ‖x+ y‖ = 2− τ/2

√
2, which implies that

ρX (τ ) ≥ τ/2
√
2

for τ ∈ (0, 2(2−
√
2)]. If τ ∈ [2(2−

√
2), 2], let

x = (1− τ , 1, 0, . . .), y = (1, 1− τ , 0, . . .).
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Then we have x, y ∈ SX , ‖x− y‖ = τ , ‖x+ y‖ =
√
2(2− τ) and therefore

ρX (τ ) ≥
τ
√
2
+ 1−

√
2

for τ ∈ [2(2−
√
2), 2]. Combining all the cases, we get the result as desired. �

The above result together with (1) immediately yields f (X) = 8/3. It is worthwhile noting that Proposition 1 is also true
for the Day–James space `2 − `∞ space. The parameter f (X) for the Day–James space `2 − `∞ is also considered in [6]. We
now consider another Day–James space `2 − `1. Our method is due to [10, Example 3].

Proposition 2. Let X be the `2 − `1 space, i.e., R2 with the norm

‖x‖ =
{
‖x‖2 if x1x2 ≥ 0,
‖x‖1 if x1x2 ≤ 0.

Then we have f (X) = 3.

Proof. Let x = (1/
√
2, 1/
√
2), y = (−1/2, 1/2). It is easy to check that ‖x‖ = ‖y‖ = 1 and ‖x± y‖ =

√
3/2, which yields

f (X) ≥ 3. To show the converse, let x = (x1, x2), y = (y1, y2) ∈ SX . For the symmetry, we only consider three cases for
x, y ∈ SX .
Case 1. 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1, i = 1, 2. Obviously, ‖x‖ = ‖x‖2, ‖y‖ = ‖y‖2, (x1 + y1)(x2 + y2) ≥ 0 and

(x1 − y1)(x2 − y2) ≤ 0. Thus

‖x+ y‖2 + ‖x− y‖2 = ‖x+ y‖22 + ‖x− y‖
2
1

= ‖x+ y‖22 + ‖x− y‖
2
2 − 2(x1 − y1)(x2 − y2)

≥ 2(‖x‖22 + ‖y‖
2
2) = 4.

Case 2. 0 ≤ x2 ≤ 1/
√
2 ≤ x1 ≤ 1, 0 ≤ −y1 ≤ 1/2 ≤ y2 ≤ 1. Obviously, ‖x‖ = ‖x‖2, ‖y‖ = ‖y‖1, (x1+y1)(x2+y2) ≥ 0

and x1 − y1 ≥ 0. If x2 − y2 ≥ 0, then

‖x+ y‖2 + ‖x− y‖2 = ‖x+ y‖22 + ‖x− y‖
2
2

= 2(‖x‖22 + ‖y‖
2
2) ≥ 2‖x‖

2
2 + ‖y‖

2
1 = 3.

If not, we have

‖x+ y‖2 + ‖x− y‖2 = ‖x+ y‖22 + ‖x− y‖
2
1

= ‖x+ y‖22 + ‖x− y‖
2
2 − 2(x1 − y1)(x2 − y2)

≥ 2(‖x‖22 + ‖y‖
2
2) ≥ 2‖x‖

2
2 + ‖y‖

2
1 = 3.

Case 3. −1 ≤ x1 ≤ 0 ≤ x2 ≤ 1,−1 ≤ y1 ≤ 0 ≤ y2 ≤ 1. Obviously, ‖x‖ = ‖x‖1, ‖y‖ = ‖y‖1, (x1 + y1)(x2 + y2) ≤ 0
and (x1 − y1)(x2 − y2) = (x1 − y1)2 ≥ 0. Thus

‖x+ y‖2 + ‖x− y‖2 = ‖x+ y‖21 + ‖x− y‖
2
2

= 4+ 2(x1 − y1)2 ≥ 4.

Combining all the cases above, we get f (X) ≥ 3. �
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