A note on the Banaś modulus of smoothness in the Bynum space

Huanhuan Cui ${ }^{*, 1}$, Yingrui Zhang
Department of Mathematics, Luoyang Normal University, Luoyang 471022, China

ARTICLE INFO

Article history:

Received 2 June 2009
Accepted 5 October 2009

Keywords:

Schäffer constant
Modulus of smoothness
James constant
Pythagorean constant

Abstract

Recently, the Banaś modulus of smoothness for the Bynum space $b_{2, \infty}$ was obtained by Zuo and Cui (Z. Zuo, Y. Cui, Some modulus and normal structure in Banach space, J. Inequal. Appl. 2009 (2009) 15. doi:10.1155/2009/676373. Article ID 676373). It is however not true in general. In this note, we will present the exact value for this modulus in the $b_{2, \infty}$ space. © 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let X be a Banach space and denote by S_{X} the unit sphere of X. In connection with the Pythagorean theorem, Gao [1] introduced the following parameter

$$
f(X)=\inf \left\{\|x+y\|^{2}+\|x-y\|^{2}: x, y \in S_{X}\right\}
$$

This parameter has been considered by several authors. Gao-Saejung [2] and Wang-Yang [3] obtained some sufficient conditions for normal structure by this parameter, which in turn implies the fixed point property of a Banach space. Cui-Wang [4] also considered such a parameter in the Lorentz sequence space. It is known that

- X is uniformly nonsquare if and only if $f(X)>2$;
- X has normal structure if $f(X)>4(3-\sqrt{5})$;
- $f\left(\ell_{p}\right)=\min \left(2^{2 / p+1}, 2^{2 / q+1}\right)$, where $1 / p+1 / q=1$;
- $f(X)=\inf \left\{\|x+y\|^{2}+\|x-y\|^{2}: x, y \in X,\|x\|,\|y\| \geq 1\right\}$.

Recently, Zuo-Cui [6] stated a formula:

$$
\begin{equation*}
f(X)=\inf _{0 \leq \tau \leq 2}\left\{\tau^{2}+4\left(1-\rho_{X}(\tau)\right)^{2}\right\} \tag{1}
\end{equation*}
$$

where the modulus of smoothness $[5] \rho_{X}(\tau):[0,2] \rightarrow[0,1]$ is defined as

$$
\rho_{X}(\tau)=\sup \left\{1-\frac{\|x+y\|}{2}: x, y \in S_{X},\|x-y\| \leq \tau\right\} .
$$

From this and the following equality

$$
\begin{equation*}
\rho_{b_{2, \infty}}(\tau)=\tau / 2 \sqrt{2} \text { for } \tau \in[0,2] \tag{2}
\end{equation*}
$$

[^0]they obtained the value of $f(X)$ for the Bynum space $b_{2, \infty}$ [6, Example 3.4]. However, the equality (2) does not always hold for every $\tau \in[0,2]$. In fact from the definition of $\rho_{X}(\tau)$ it follows that $\rho_{b_{2, \infty}}(2)=1$, while (2) gives $\rho_{b_{2, \infty}}(2)=1 / \sqrt{2}$, a contradiction. In this note, we will show that the exact value for $\rho_{b_{2, \infty}}$ may be the following
$$
\rho_{X}(\tau)=\max \left(\frac{\tau}{2 \sqrt{2}}, \frac{\tau}{\sqrt{2}}+1-\sqrt{2}\right) .
$$

2. Main results

Let us begin with some definitions. The James constant is defined as

$$
J(X)=\sup \left\{\min (\|x+y\|,\|x-y\|): x, y \in S_{X}\right\},
$$

while the Schäffer constant is defined as

$$
g(X)=\inf \left\{\max (\|x+y\|,\|x-y\|): x, y \in S_{X}\right\}
$$

It is well known that $J(X) g(X)=2$; see for instance [7]. To simplify the notation, we denote $g:=g(X)$ in the following. Also it is proved that

$$
\begin{equation*}
g=2\left(1-\rho_{X}(g)\right) \tag{3}
\end{equation*}
$$

(see for instance [8, Proposition 3]).
Proposition 1. Let X be the $b_{2, \infty}$ space, i.e., ℓ_{2} space with the norm

$$
\|x\|=\max \left\{\left\|x^{+}\right\|_{2},\left\|x^{-}\right\|_{2}\right\}
$$

where x^{+}and x^{-}are positive and negative parts of $x \in \ell_{2}$. Then

$$
\rho_{X}(\tau)=\max \left(\frac{\tau}{2 \sqrt{2}}, \frac{\tau}{\sqrt{2}}+1-\sqrt{2}\right) .
$$

Proof. In view of [9], we know that

$$
g(X)=\frac{2}{J(X)}=2(2-\sqrt{2})
$$

Since $\rho_{X}(\tau)$ is convex [8], we have from (3) that

$$
\rho_{X}(\tau) \leq \frac{\rho_{X}(g)}{g} \tau=\frac{2-g}{2 g} \tau=\frac{\tau}{2 \sqrt{2}}
$$

for $\tau \in(0,2(2-\sqrt{2})]$, and also that

$$
\begin{aligned}
\rho_{X}(\tau) & \leq \frac{2-\tau}{2-g} \rho_{X}(g)+\frac{\tau-g}{2-g} \rho_{X}(2) \\
& =\frac{2-\tau}{2}+\frac{\tau-g}{2-g} \\
& =\frac{\tau}{\sqrt{2}}+1-\sqrt{2}
\end{aligned}
$$

for $\tau \in[2(2-\sqrt{2}), 2]$.
On the other hand, if $\tau \in(0,2(2-\sqrt{2})]$, let $\sigma=\sqrt{2} \tau /(2 \sqrt{2}-\tau)$ and let

$$
x=\left(1-\frac{2 \sqrt{2}}{\sqrt{2}+\sigma}, 1,0, \ldots\right), \quad y=\left(-1,1-\frac{2 \sigma}{\sqrt{2}+\sigma}, 0, \ldots\right)
$$

It is easy to check that $0 \leq \sigma<\sqrt{2},\|x\|=\|y\|=1,\|x-y\|=\tau$ and $\|x+y\|=2-\tau / 2 \sqrt{2}$, which implies that

$$
\rho_{X}(\tau) \geq \tau / 2 \sqrt{2}
$$

for $\tau \in(0,2(2-\sqrt{2})]$. If $\tau \in[2(2-\sqrt{2})$, 2], let

$$
x=(1-\tau, 1,0, \ldots), \quad y=(1,1-\tau, 0, \ldots)
$$

Then we have $x, y \in S_{X},\|x-y\|=\tau,\|x+y\|=\sqrt{2}(2-\tau)$ and therefore

$$
\rho_{X}(\tau) \geq \frac{\tau}{\sqrt{2}}+1-\sqrt{2}
$$

for $\tau \in[2(2-\sqrt{2}), 2]$. Combining all the cases, we get the result as desired.
The above result together with (1) immediately yields $f(X)=8 / 3$. It is worthwhile noting that Proposition 1 is also true for the Day-James space $\ell_{2}-\ell_{\infty}$ space. The parameter $f(X)$ for the Day-James space $\ell_{2}-\ell_{\infty}$ is also considered in [6]. We now consider another Day-James space $\ell_{2}-\ell_{1}$. Our method is due to [10, Example 3].

Proposition 2. Let X be the $\ell_{2}-\ell_{1}$ space, i.e., \mathbb{R}^{2} with the norm

$$
\|x\|= \begin{cases}\|x\|_{2} & \text { if } x_{1} x_{2} \geq 0 \\ \|x\|_{1} & \text { if } x_{1} x_{2} \leq 0\end{cases}
$$

Then we have $f(X)=3$.
Proof. Let $x=(1 / \sqrt{2}, 1 / \sqrt{2}), y=(-1 / 2,1 / 2)$. It is easy to check that $\|x\|=\|y\|=1$ and $\|x \pm y\|=\sqrt{3 / 2}$, which yields $f(X) \geq 3$. To show the converse, let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in S_{X}$. For the symmetry, we only consider three cases for $x, y \in S_{X}$.

Case $1.0 \leq x_{i} \leq 1,0 \leq y_{i} \leq 1, i=1$, 2. Obviously, $\|x\|=\|x\|_{2},\|y\|=\|y\|_{2},\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right) \geq 0$ and $\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right) \leq 0$. Thus

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =\|x+y\|_{2}^{2}+\|x-y\|_{1}^{2} \\
& =\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2}-2\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right) \\
& \geq 2\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right)=4 .
\end{aligned}
$$

Case $2.0 \leq x_{2} \leq 1 / \sqrt{2} \leq x_{1} \leq 1,0 \leq-y_{1} \leq 1 / 2 \leq y_{2} \leq 1$. Obviously, $\|x\|=\|x\|_{2},\|y\|=\|y\|_{1},\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right) \geq 0$ and $x_{1}-y_{1} \geq 0$. If $x_{2}-y_{2} \geq 0$, then

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2} \\
& =2\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right) \geq 2\|x\|_{2}^{2}+\|y\|_{1}^{2}=3 .
\end{aligned}
$$

If not, we have

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =\|x+y\|_{2}^{2}+\|x-y\|_{1}^{2} \\
& =\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2}-2\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right) \\
& \geq 2\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right) \geq 2\|x\|_{2}^{2}+\|y\|_{1}^{2}=3 .
\end{aligned}
$$

Case 3. $-1 \leq x_{1} \leq 0 \leq x_{2} \leq 1,-1 \leq y_{1} \leq 0 \leq y_{2} \leq 1$. Obviously, $\|x\|=\|x\|_{1},\|y\|=\|y\|_{1},\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right) \leq 0$ and $\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)=\left(x_{1}-y_{1}\right)^{2} \geq 0$. Thus

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =\|x+y\|_{1}^{2}+\|x-y\|_{2}^{2} \\
& =4+2\left(x_{1}-y_{1}\right)^{2} \geq 4
\end{aligned}
$$

Combining all the cases above, we get $f(X) \geq 3$.

References

[1] J. Gao, A Pythagorean approach in Banach spaces, J. Inequal. Appl. (2006) 11. doi:10.1155/JIA/2006/94982. Article ID 94982, 2006.
[2] J. Gao, S. Saejung, Remarks on a Pythagorean approach in Banach spaces, Math. Inequal. Appl. 11 (2008) 213-220.
[3] F. Wang, C. Yang, Uniform nonsquareness, uniform normal structure and Gao's constants, Math. Inequal. Appl. 11 (2008) $607-614$.
[4] H. Cui, F. Wang, Gao's constants of Lorentz sequence spaces, Soochow J. Math. 33 (2007) 707-717.
[5] J. Banaś, On modulus of smoothness of Banach spaces, Bull. Pol. Acad. Sci. Math. 34 (1986) 287-293.
[6] Z. Zuo, Y. Cui, Some modulus and normal structure in Banach space, J. Inequal. Appl. 2009 (2009) 15. doi:10.1155/2009/676373. Article ID 676373.
[7] M. Kato, L. Maligranda, Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 144 (2001) 275-295.
[8] M. Baronti, P.L. Papini, Convexity, smoothness and moduli, Nonlinear Anal. 70 (2009) 2457-2465.
[9] A. Jiménez-Melado, E. Llorens-Fuster, S. Saejung, The von Neumann-Joran constant, weak orthogonality and normal structure in Banach spaces, Proc. Amer. Math. Soc. 134 (2006) 355-364.
[10] J. Alonso, P. Martín, P.L. Papini, Wheeling around von Neumann-Jordan constant in Banach spaces, Studia Math. 188 (2008) 135-150.

[^0]: * Corresponding author.

 E-mail address: huanhuancui@hotmail.com (H. Cui).
 1 The first author is supported by Youth Science Foundation of Luoyang Normal University (Grant No. 2008-QNJJ-011).

