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Abstract 

We show that the problem of deciding whether a given planar graph (complete with planar 

embedding) of degree at most 7 has a cubic subgraph is NP-complete. 

In Garey and Johnson’s compendium of NP-complete problems [l], many of the 

references are personal communications between themselves and others, and the 

proofs of some NP-completeness results have not appeared before in print. One such 

(to our knowledge) is the proof that CUBIC SUBGRAPH is NP-complete, attributed 

to Chvatal in Cl], where CUBIC SUBGRAPH is the problem of deciding whether 

a given graph has a nontrivial subgraph with each vertex of degree 3, i.e. a cubic 

subgraph: the hint given in [l] is to reduce GRAPH 3-COLOURABILITY to 

CUBIC SUBGRAPH. The nonexistence of such proofs in the literature has probably 

restricted further interest in these and related problems. 

In this paper we exhibit a logspace reduction from ONE-IN-THREE 3SAT 

to CUBIC SUBGRAPH and then show how, from this reduction, a logspace reduc- 

tion from ONE-IN-THREE 3SAT to CUBIC SUBGRAPH PLANAR can be 

constructed: ONE-IN-THREE 3SAT is the version of 3-SATISFIABILITY where 

exactly one literal in each clause of exactly 3 literals is satisfied and it was shown to be 

complete for NP via logspace reductions in [3], and CUBIC SUBGRAPH PLANAR 

is the version of CUBIC SUBGRAPH where all instances are planar graphs. In fact, 

we show that the problem obtained from CUBIC SUBGRAPH PLANAR where all 
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Fig. 1. A tag on a vertex u and its pictoral abbreviation. 

instances are of degree at most 7 and come with a planar embedding is complete for 
NP via logspace reductions. Our results provide more information on those proper- 
ties which are hard to verify computationally for both general and planar graphs. 

Our technique is similar to that used in [2], although the word ‘technique’ is 
probably a misnomer. What we do is to convert the logspace reduction from 
ONE-IN-THREE 3SAT to CUBIC SUBGRAPH into one from ONE-IN-THREE 
3SAT to CUBIC SUBGRAPH PLANAR by replacing any crossing edges with 
a suitable planar graph. As remarked in [2], it is often feasible to use this approach 
when specializing a given reduction to planar graphs, but finding appropriate graphs 
with which to replace crossing edges is usually hard. 

Before we proceed with the proof of Theorem 1, we need to introduce some 
nonstandard notation. We say that there is a tag on a vertex u of a graph G if there is 
a subgraph of G as in Fig. 1 such that no other edges of G involve the vertices of the 
tag (except for perhaps u): we abbreviate a tag pictorially as in Fig. 1. A vertex can 
have any number of tags on it in some graph. Notice that one edge of a tag occurs in 
a cubic subgraph of G if and only if all of the edges of the tag do. 

Theorem 1. There exists a logspace reduction from ONE-IN-THREE 3SAT to CUBIC 
SUBGRAPH. 

Proof. Let (X,C) be an instance of ONE-IN-THREE 3SAT, where 
X=(X1,X*, . ..) X,} is a set of Boolean variables and C = { Ci, CZ, . . . , C,} is a set of 
clauses, each containing exactly 3 literals. We build the corresponding instance G of 
CUBIC SUBGRAPH in stages. 

Stage A: For each iE{1,2, . . . . p>, we build the graph Gi as follows. 
(i) Gi has vertices: 

{xi~lXi~xi,j~lxi,j~ K::, 1 Yi, Yi,/c,l Yi,k, Ui,/c,l ui.1~3 K,k,l V,k: j=1,2,3; 

k=l,2 )...) q}, 

amongst others. 
(ii) Gi has edges: 
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S2 = {two tags on Xi, one tag on x}; 

~~~={(1Xit1Xi,l)r(1Xi,l~1Xi,Z)~(1Xi,2~1Xi,3)~(1Xi,3~1 yi)9 

(1 Xi,j, Xi): j= 1,2,3}; 

i Sz = {two tags on i Xi, one tag on 1 &}. 

(iii) If Xi (resp. 1 Xi) appears in the clauses Cil, CL27 . . . , Ci,, for some r > 1, then Gi has 

edges: 

S3={(Yi,ij, Yi,ij+,),(yi,ij, Vi,i,):j=l,2,...,r-2)U((Yi,i~-,, vi,i,),(yi3 yi,il)> 

U{(Ui,ij, Vi,ij): j= 1,2, ...Y r} u { one tag on Ui, ij: j = 1,2, . . . , r> 

(resp. 

1SJ = ((1 Yi,i,,l Yi,i,+,),(l Yi,i,,l Vi,,,): j= 1,2, ... ,r-2) 

U{(l Yi,i,_l,l vi,i,),(l yi,l yi,il)}u((lui,ij~l Vi,ij):j=1,2,...,r) 

u{one tag on 1 Ui,ij: j= 1,2, . . . ,r}). 

Stage B: The graph G,, is defined as follows. 

(i) Go has vertices: 

{Cj,Dj: j=l,2, . . ..q}. 

amongst others. 

(ii) Go has edges: 

{(Cj,Dj): j=l,2, . . . ,q}U{(Dj,Dj+l):j=1,2,...,4-1} 

u {one tag on D1, one tag on Dq (or two tags on D1 if q= l)}. 

Stage C: The graph G is the (disjoint) union of the graphs {Gi: i=O, 1,. . . , p}, 

together with the edges: 

Ti={(Ui,j,Cj),(Vi,j,Cj): j=l,2, ...,q; XieCj}, 

1 K={(l Ui,j,Cj),(l Vi,j,Cj): j= 192, ... 34; lXiECj>, 

for i=l,2 ,..., p. 

The subgraph of G consisting of Go, some Gi, for k{ 1,2, . . . ,p}, and the edges 

between Go and Gi is shown in Fig. 2: we assume in this particular instance that 

Xi (resp. 1 Xi) appears in the clauses Ci, C3 and C4 (resp. Ci, C2 and C,). For each 

i=l,2, . . . ,p, we call the edges of S1US2US3UTi (resp. ~S~U~S~U~S~U~ Ti) the 

edges belonging to Xi (resp. 1 Xi). 

Suppose that (X, C) is a yes-instance of ONE-IN-THREE 3SAT. So, there is a truth 

assignment t on the Boolean variables of X such that exactly one literal in each clause 

of C is set at True under t. Consider the graph G corresponding to (X, C), as defined 

above. In G, mark all edges of Go, and for each iE{ 1,2, . . . , p}, if Xi (resp. 1 Xi) is set at 
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Ui,l vi,1 . . . ui,q vi,, 

Fig. 2. The subgraph induced by Go and Gi. 

True under t and appears in some clause of C then mark all those edges of G belonging 

to Xi (resp. 1 Xi). In the illustration of the subgraph of G consisting of Go, Gi, for some 

iE{1,2, . . . , p>, and the edges between Go and Gi, in Fig. 2, the edges belonging to Xi 

and the edges of Go are drawn in bold. Let E be the set of marked edges of G and let 

H be the subgraph of G with edges E. AS the edges belonging to Xi and 1 Xi, for some 

i, cannot be simultaneously marked, the only way that H could fail to be cubic is for 

some vertex Ci to have degree different from 3 in H. This is impossible as every clause 

of C has exactly one literal set at True under t. Hence, G has a cubic subgraph. 

Conversely, suppose that G has a cubic subgraph H, where G is the graph 

corresponding to some instance (X, C) of ONE-IN-THREE 3SAT. It is easy to see 

that all edges of Go must appear in H, and consequently that each vertex Ci must have 

degree 3 in H. For each Ci, k { 1,2, . . . , q}, let Li be the unique literal for which two of 

the edges belonging to Li involve Ci, and set L = {L,, L2,. . . , L4}. It should be clear 

that Xi and lXi, for some i, cannot both be in L (as, for instance, there is no cubic 

subgraph of Gi whose edges involve both the vertices Yi and 1 Yi). Define the truth 

assignment t by setting t (Li) = True, for each i = 1,2, . . . , q. This truth assignment is 

well-defined and is such that exactly one literal in each clause Ci is set at True under 

t (as each vertex Ci has degree 3 in H). Hence, (X, C) is a yes-instance. 
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u2 

e2 

Fig. 3. The graph K of Proposition 3. 

Given an instance (X, C) of ONE-IN-THREE 3SAT, the corresponding instance 

G of CUBIC SUBGRAPH can clearly be constructed in logspace and so the result 

follows. 0 

Schaefer’s result, mentioned earlier, now implies that of Chvatal, also mentioned 

earlier. 

Corollary 2. CUBIC SUBGRAPH is complete for NP via logspace reductions. 

The following proposition involves the graph we are to use to replace crossing edges 

in a nonplanar graph (see the initial preamble). 

Proposition 3. Consider the graph K in Fig. 3. If K is a subgraph of some graph G such 
that no other edges of G involve the vertices of K\{ul,u2,vl,~2} and H is a cubic 
subgraph of G, then the edge ei appears in H if and only ly the edge1; appears in H, for 
i= 1.2. 

Proof (sketch). In turn, consider the cases when e, and e2 both appear in H, when one 

of them appears in H, and when none of them appears in H. For each case, mark the 

rest of the edges of K remembering that each vertex of K\{u1,u2,vl,v2} must be of 

degree 3 or 0 in H: notice that either g1 and g2 are both in H or neither of them is in 

H. 0 

Theorem 4. There exists a logspace reduction from ONE-IN-THREE 3SAT to CUBIC 

SUBGRAPH PLANAR. 
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Proof. Consider the logspace reduction from ONE-IN-THREE 3SAT to CUBIC 

SUBGRAPH as described in the proof of Theorem 1 (we work throughout with the 

terminology introduced in the proof of Theorem 1). It should be clear that the graph 

G corresponding to some instance (X, C) of ONE-IN-THREE 3SAT is planar except, 

possibly, for some crossing edges joining the subgraphs {Gi: i= 1,2, . . . ,p} to the 

subgraph Go (any Gi is planar even though it is not drawn as such in Fig. 2). 

Consequently, if we can ‘remove’ these crossings (by introducing more vertices and 

edges) whilst still retaining the pertinent properties of G (and do this in logspace), then 

we are done. 

Our strategy is as follows. Firstly, we show that an output graph G from the 

logspace reduction from ONE-IN-THREE 3SAT to CUBIC SUBGRAPH, men- 

tioned above, can be transformed, in logspace, to another graph G’ where the crossing 

edges of G are encoded as line segments on a grid, but where G and G’ are, in fact, 

identical. Secondly, we show that a graph G’ can be transformed, in logspace, to 

another graph G” (essentially by adding some extra vertices and edges) such that G 

has a cubic subgraph if and only if G” has. Finally, we show that the crossings of the 

graph G” (which are essentially the crossings of the graph G) can be removed by 

replacing each crossing with a fixed planar graph in the style of [2]. The grid 

embedding of the relevant subraph of G” (which is still available) enables us to 

systematically identify and remove each crossing whilst using only logspace. 

Consider the subgraph M of such a graph G, above, consisting of all edges with one 

end-vertex in { Ui,j, vi,j, 1 Ui,j, 1 vi,j: i = 1,2, . . . , p; j = 1,2, . . . , 4) and the other in { Cj: 

j=l,2 , . . . , q}. For ease of readability, we prefer to rename the vertices of 

{Ui,j, Vi,j,lUi,j,lK,j: i=l,2 ,..., p; j=1,2 ,..., 4) as fOllOWS: 

for i=l,2, . . . ,p and j=1,2,... ,4q = r, wi,j is defined as 

ui,j+ l/2 if j<2q and odd; vi, j/2 if j < 2q and even; 

l ui,j+ l- Zq/Z if j>2q and odd; l vi,j-2q/2 if j>2q and even. 

Also, for each Cj we introduce new vertices {zj,i: i= 1,2, . . . , r}. 

We rearrange the vertices of (Wi,k, Zj,k: i = 1,2, . . . , p; k = 1,2, . . . , r; j = 1,2, . . . , q) on 

the perimeter of a grid as shown in Fig. 4. If there is an edge (Wi,k, Cj) in G then we draw 

a horizontal line segment on the grid from Wi,k to the node of the grid vertically above 

zj,k, and then draw a vertical line segment down to zj,k. The grid, complete with line 

segments corresponding to the edges of the subgraph M of the graph G of Fig. 2, is 

shown in Fig. 4 (with the line segments drawn in bold and assuming that the variable 

i in Fig. 2 is actually equal to 1). By removing each vertex zj,k from the grid and 

extending any vertical line segment involving Zj,k to the vertex Cj, we clearly have 

another representation of the subgraph M of G. In particular, the nodes of the grid 

where line segments cross correspond to the crossing points of the edges of M in the 

original graph G. Denoting our new representation of G, where the edges of M are 

represented as line segments on a grid, by G’, it is easy to see how the graph G’ can be 
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Fig. 4. The grid and some line segments 

obtained from G in logspace (G and G’ are actually identical, but more information is 

present in the encoding of G’ regarding the embedding of M on the grid). 

Having completed the first phase of our strategy, we now amend the graph G’ 

slightly. Consider the embedding of M on the grid in G’, as described above. For each 

crossing point of line segments on the grid, we place a tagged vertex to the left of (resp. 

to the right of, above, below) the crossing point on the horizontal (resp. horizontal, 

vertical, vertical) line segment involved in the crossing: these tagged vertices should 

appear before any other introduced vertices or crossing points. A portion of the 

amended grid of Fig. 4 is shown in Fig. 5 (in order to refer to the line segments on the 

grid, we pretend that the vertices of {Zj,k: j= 1,2, . . , q; k= 1,2, . . . , I} are still present 

even though in reality they are not). Denoting the amended graph by G”, it is easy to 

see that G” can be constructed from G’ in logspace (we retain the grid structure in the 

encoding of G”), and that G’ has a cubic subgraph if and only if G” does. This 

completes the second phase of our strategy. 
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Fig. 5. The amended graph G” 

Finally, we must remove the crossings of G” (in logspace: remember that G” is 

planar except possibly for the grid crossings of the line segments). Notice that the 

addition of the vertices and edges to G’, to get G”, has increased the number of rows 

and columns of our grid: this is of no consequence. Consider a crossing point in the 

grid. Then according to the construction in the second phase, 4 new tagged vertices 

have been introduced: 1, r, a and b, where 1 (resp. r, a, b) is the vertex to the left of (resp. 

to the right of, above, below) the crossing point. Remove the edges (E, r) and (a, b) from 

the graph and replace them with the graph K of Proposition 3, with u1 = r, u2 = a, 

v1 = 1 and v2 = b. By Proposition 3, the amended graph has a cubic subgraph if and 

only if G” does, and one of the ‘obstructions to planarity’ has been removed. If we 

repeat this procedure for every crossing point then we obtain a planar graph G”’ 

which has a cubic subgraph if and only if G does. The removal of all crossing points 

can be achieved in logspace (as there are only polynomially many of them and we can 

identify them using the grid structure). Consequently, as logspace reductions are 

transitive, there is clearly a logspace reduction from ONE-IN-THREE 3SAT to 

CUBIC SUBGRAPH PLANAR. 0 

Again, Schaefer’s result yields the following corollary. 
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JBGRAPH PLANAR is complete for NP via logspace reduc- JBIC S1 

In fact, by scrutinizing the graphs involved in the proofs of Theorems 1 and 4 and 

Proposition 3, it is easy to see that more can be said. 

Corollary 6. The version of CUBIC SUBGRAPH PLANAR where all instances have 
degree at most I and come with a planar embedding is complete for NP via logspace 
reductions. 
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