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Abstract

Let X be a real Banach space. We prove that the existence of an injective, positive, symme
not strictly singular operator fromX into its dual implies that eitherX admits an equivalent Hilbertia
norm or it contains a nontrivially complemented subspace which is isomorphic to a Hilbert s
We also treat the nonsymmetric case.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this short paper our main aim is to study Banach spaces that contain an isom
copy of an infinite dimensional closed subspace of their dual. This property is di
related to the possibility of a unique representation, in terms of a bilinear form, of ele
of the dual by elements of the original space. Since this is a common fact in a Hilbert
it seems natural to ask if any Hilbert space structure is present in spaces with this pr
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The well-known Lax–Milgram theorem (see [7]) provides sufficient conditions for s
a representation in the case of a Hilbert space. Lin in [5] showed (see Theorem 2.3
that Hilbert space structure is actually necessary, since if the representation hold
these conditions imply that the space is isomorphic to a Hilbert space.

In the same spirit, we show that if the operator that carries out the representation
to-one, positive and symmetric then the underlying space is either isomorphic to a H
space or, at least, it contains a nontrivially complemented subspace which is isomor
a Hilbert space. Moreover, we also deal with the case where the operator is not sym
by strengthening its positivity properties.

The history of characterizing Banach spaces that have a Hilbert space structure is
one and we do not intend to go through it here. We refer the interested reader to the
of Amir [1] and Istratescu [4].

2. Preliminaries

Let X be a real normed space with norm‖ · ‖, X∗ be its dual and〈· , ·〉 be their duality
product. LetT :X → X∗ be a linear operator. We begin with two well-known definition

Definition 2.1. We say thatT is positive if

〈T x,x〉 � 0, for all x ∈ X.

If in addition 〈T x,x〉 �= 0, for x �= 0, we say thatT is strictly positive.

Definition 2.2. We say thatT is symmetric if

〈T x,y〉 = 〈Ty,x〉, for all x, y ∈ X.

We will use the, already mentioned in the introduction, theorem of Lin [5]:

Theorem 2.3. A Banach spaceX is isomorphic to a Hilbert space if and only if there exi
an isomorphismT fromX ontoX∗ such that

m‖x‖2 � 〈T x,x〉 � M‖x‖2, for all x ∈ X,

wherem andM are positive constants.

Remark 2.4. It should be noted that the result is still true ifT is not assumed to be ontoX∗.

For completeness we include the following lemma:

Lemma 2.5. Let X be a real Banach space andT :X → X∗ be a strictly positive, linea
operator. Then:

(i) ‖x‖2 = 〈T x,x〉 1
2 is a norm onX, there exists a positive constantc such that‖x‖2 �

c‖x‖, for all x ∈ X and(X,‖ · ‖2) is an inner product space.

(ii) If X is reflexive, thenT (X) is dense inX∗.
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Proof. (i) The strict positivity ofT implies that‖x‖2 = 0⇔ x = 0. The triangle inequality
follows from the fact that the positivity ofT implies that

∣∣〈T x,y〉 + 〈Ty,x〉∣∣ � 2〈T x,x〉 1
2 〈Ty,y〉 1

2 , for all x, y ∈ X.

The inequality‖x‖2 � c‖x‖, c > 0, is immediate since every positive operator is bound
Finally by observing that‖ · ‖2 satisfies the parallelogram law, we get that(X,‖ · ‖2) is an
inner product space.

(ii) It is a straightforward application of the Hahn–Banach theorem (see
den [3]). �

3. The symmetric case

In order to prove our main result, we need the following Hilbert space characteriz

Proposition 3.1. A real Banach spaceX is isomorphic to a Hilbert space if and only
there exists a positive and symmetric isomorphismT :X → X∗.

Proof. The necessity is obvious. We show that our claim is also sufficient. By the pos
and the symmetricity ofT we have that

∣∣〈T x,y〉∣∣2 � 〈T x,x〉〈Ty,y〉, for all x, y ∈ X.

Let ε > 0 andx ∈ X. Then there existsy ∈ X with ‖y‖ = 1 such that

〈T x,y〉 > ‖T x‖ − ε,

which implies that

〈T x,x〉 1
2 ‖T ‖ 1

2 > ‖T x‖ − ε.

Sinceε is arbitrary, we conclude that

〈T x,x〉 � 1

‖T ‖‖T x‖2, for all x ∈ X.

SinceT is an isomorphism, we get

〈T x,x〉 � 1

‖T ‖‖T −1‖2
‖x‖2, for all x ∈ X.

Therefore, there existm andM positive constants such that

m‖x‖2 � 〈T x,x〉 � M‖x‖2, for all x ∈ X.

Applying Theorem 2.3, we conclude thatX is isomorphic to a Hilbert space.�
Remark 3.2. If we also assume thatX is reflexive, then by using Lemma 2.5(ii) it can
shown thatT is automatically ontoX∗. On the other hand, it should be noted that ifT is
assumed to be ontoX∗ then the symmetricity ofT alone guarantees thatX is reflexive. For

details see Lin [5] or Hayden [3].
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We also need the following definition:

Definition 3.3. An operatorT :X → Y is called strictly singular if the restriction ofT to
any infinite dimensional subspace ofX is not an isomorphism (see [6]).

Our main theorem is the following:

Theorem 3.4. Let X be a real Banach space. If there exists a linear, injective, symm
and positive operatorT :X → X∗, which is not strictly singular, then eitherX is iso-
morphic to a Hilbert space or it contains a nontrivially complemented subspace wh
isomorphic to a Hilbert space.

Proof. First note that sinceT is one-to-one, symmetric and positive, it is strictly positi
Hence by Lemma 2.5(i),

‖x‖2 = 〈T x,x〉 1
2

is a norm onX and(X,‖ ·‖2) is an inner product space. LetH be the completion ofX with
respect to‖ · ‖2. SinceT is not strictly singular, there exists an infinite dimensional, clo
subspaceM of X such thatT (M) is closed inX∗. By the symmetricity and the positivit
of T we have that

〈T x,x〉 � c‖x‖2, for all x ∈ M.

Hence,‖ · ‖2 is an equivalent norm onM to the initial norm ofX and thereforeM is also
closed inH . SinceH is a Hilbert space we have that

H = M ⊕ M⊥.

By noticing thatN = X ∩ M⊥ is closed inX, we get

X = M ⊕ N.

If M has finite codimension, thenT is an isomorphism onX and by Proposition 3.1,X is
isomorphic to a Hilbert space.�
Remark 3.5. As we have mentioned in the introduction, Theorem 3.4 implies th
representation of an infinite dimensional subspace ofX∗ by a positive, symmetric an
nondegenerate (see [3]) bilinear form is possible only if eitherX is itself isomorphic to a
Hilbert space or it contains a nontrivially complemented subspace which is isomorp
a Hilbert space.

Remark 3.6. l1 ⊕ l2 is an example of a Banach space, not isomorphic to a Hilbert sp
that satisfies the conditions of Theorem 3.4.

4. The nonsymmetric case

If T is not symmetric, we can still have similar results to those of the previous se
provided that we strengthen its positivity properties. To this end we need the follo

definition:
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Definition 4.1. We say that a linear operatorT :X → X is accretive, if for anyx ∈ X, there
existsx∗ ∈ X∗, such that‖x∗‖2 = ‖x‖2 = 〈x∗, x〉 and〈x∗, T x〉 � 0 (see [2]).

More suitable for our purposes is the next equivalent definition:

Proposition 4.2. A linear operatorT :X → X is accretive if and only if

‖x + λT x‖ � ‖x‖, for all x ∈ X and allλ > 0.

(See [2].)

Remark 4.3. If X is a Hilbert space then, obviously, accretivity is equivalent to positiv

In order to proceed, we need the following Hilbert space characterization:

Proposition 4.4. A real Banach spaceX is isomorphic to a Hilbert space if and only
there exists a positive isomorphismT :X → X∗ ontoX∗, such thatT −1T ∗τ is accretive
(whereτ is the canonical isomorphism ofX into X∗∗).

Proof. The necessity is obvious. To prove the sufficiency of our claim we first note
sinceT is a positive isomorphism ontoX∗, T + T ∗τ is a bounded, linear, symmetric an
positive operator fromX into its dual. By hypothesisT −1T ∗τ is accretive and hence b
Proposition 4.2,I + T −1T ∗τ is an isomorphism. But

T + T ∗τ = T
(
I + T −1T ∗τ

)

and henceT +T ∗τ is also an isomorphism. Applying Proposition 3.1, we conclude thX

is isomorphic to a Hilbert space.�
Remark 4.5.

(i) If T is as in Proposition 3.1, then it trivially satisfies the hypotheses of Propositio
(ii) If X is assumed to be reflexive, then the assumption ofT being ontoX∗ can be

dropped.
(iii) If X is a Hilbert space, the requirement thatT −1T ∗τ is accretive is equivalent toT 2

being positive.

Our main theorem for this section reads as follows:

Theorem 4.6. Let X be a real Banach space. If there exists a positive isomorph
T :X → X∗ onto X∗ and an infinite dimensional, closed subspaceM of X, such that
T −1T ∗τ |M is accretive, then eitherX is isomorphic to a Hilbert space or it contains
nontrivially complemented subspace which is isomorphic to a Hilbert space.

Proof. As in the proof of Proposition 4.4,
T + T ∗τ :X → X∗
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is an injective, bounded, linear, symmetric and positive operator fromX into its dual.
Arguing as before, we see that

(T + T ∗τ)(M) = (
T

(
I + T −1T ∗τ

))
(M)

is closed inX∗. Applying Theorem 3.4 the result follows.�
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