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Abstract

Let X be a real Banach space. We prove that the existence of an injective, positive, symmetric and
not strictly singular operator fro into its dual implies that eithex admits an equivalent Hilbertian
norm or it contains a nontrivially complemented subspace which is isomorphic to a Hilbert space.
We also treat the nonsymmetric case.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this short paper our main aim is to study Banach spaces that contain an isomorphic
copy of an infinite dimensional closed subspace of their dual. This property is directly
related to the possibility of a unique representation, in terms of a bilinear form, of elements
of the dual by elements of the original space. Since this is a common fact in a Hilbert space
it seems natural to ask if any Hilbert space structure is present in spaces with this property.
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The well-known Lax—Milgram theorem (see [7]) provides sufficient conditions for such
a representation in the case of a Hilbert space. Lin in [5] showed (see Theorem 2.3 below)
that Hilbert space structure is actually necessary, since if the representation holds then
these conditions imply that the space is isomorphic to a Hilbert space.

In the same spirit, we show that if the operator that carries out the representation is one-
to-one, positive and symmetric then the underlying space is either isomorphic to a Hilbert
space or, at least, it contains a nontrivially complemented subspace which is isomorphic to
a Hilbert space. Moreover, we also deal with the case where the operator is not symmetric
by strengthening its positivity properties.

The history of characterizing Banach spaces that have a Hilbert space structure is a long
one and we do not intend to go through it here. We refer the interested reader to the books
of Amir [1] and Istratescu [4].

2. Preliminaries

Let X be a real normed space with nofm||, X* be its dual and-, -) be their duality
product. LetT : X — X* be a linear operator. We begin with two well-known definitions.
Definition 2.1. We say thafl is positive if

(Tx,x) >0, forallxeX.

If in addition (T'x, x) # 0, for x # 0, we say thaf’ is strictly positive.

Definition 2.2. We say thafl’ is symmetric if
(Tx,y)=(Ty,x), forallx,yeX.

We will use the, already mentioned in the introduction, theorem of Lin [5]:

Theorem 2.3. A Banach spacg is isomorphic to a Hilbert space if and only if there exists
an isomorphisn? from X onto X* such that
m||)c||2 <(Tx,x) <M|x||?, forall x € X,

wherem and M are positive constants.
Remark 2.4. It should be noted that the result is still trugifis not assumed to be oni¢*.
For completeness we include the following lemma:

Lemma 2.5. Let X be a real Banach space arfd: X — X* be a strictly positive, linear
operator. Then

@ llxll2=(Tx, x)% is a norm onX, there exists a positive constansuch that|x|j2 <
c|lx|l, forall x € X and (X, || - ||2) is an inner product space.
(i) If X is reflexive, therr (X) is dense inX*.
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Proof. (i) The strict positivity ofT implies that||x||2 = 0 < x = 0. The triangle inequality
follows from the fact that the positivity of implies that

(Tx,y)+ (Ty.x)| <2(Tx,x)2(Ty,y), forallx,yeX.

The inequalityj|x||2 < cllx]l, ¢ > 0, is immediate since every positive operator is bounded.
Finally by observing thaj - ||» satisfies the parallelogram law, we get that || - ||2) is an
inner product space.

(ii) 1t is a straightforward application of the Hahn—Banach theorem (see Hay-
den[3]). O

3. Thesymmetric case
In order to prove our main result, we need the following Hilbert space characterization:

Proposition 3.1. A real Banach spac& is isomorphic to a Hilbert space if and only if
there exists a positive and symmetric isomorphisnX — X*.

Proof. The necessity is obvious. We show that our claim is also sufficient. By the positivity
and the symmetricity of’ we have that

(Tx, y)|* <(Tx,x)(Ty,y), forallx,yeX.

Lete > 0 andx € X. Then there existg € X with ||y| = 1 such that
(Tx,y)>|Tx| —e¢,

which implies that
(Tx.x)2|T)2 > | Tx|| - .

Sincee is arbitrary, we conclude that

1 2
(Tx,x)> mIITxll , forallxeX.

SinceT is an isomorphism, we get

(Tx, x) T Ix|I?, forallxe X.

2 e —
ITIIT—
Therefore, there exist and M positive constants such that

mx|?> < (Tx,x) < M|x|? forallxeX.

Applying Theorem 2.3, we conclude thatis isomorphic to a Hilbert space.o

Remark 3.2. If we also assume tha is reflexive, then by using Lemma 2.5(ii) it can be
shown thatT" is automatically onta(*. On the other hand, it should be noted thaf'ifs
assumed to be onts* then the symmetricity of alone guarantees thatis reflexive. For
details see Lin [5] or Hayden [3].
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We also need the following definition:

Definition 3.3. An operatorT : X — Y is called strictly singular if the restriction df to
any infinite dimensional subspace Xfis not an isomorphism (see [6]).

Our main theorem is the following:

Theorem 3.4. Let X be a real Banach space. If there exists a linear, injective, symmetric
and positive operatofl : X — X*, which is not strictly singular, then eithex is iso-
morphic to a Hilbert space or it contains a nontrivially complemented subspace which is
isomorphic to a Hilbert space.

Proof. First note that sinc& is one-to-one, symmetric and positive, it is strictly positive.
Hence by Lemma 2.5(i),

1
lxll2=(Tx,x)2

isanormonX and(X, |- |2) is an inner product space. LAt be the completion oX with
respect td| - ||2. SinceT is not strictly singular, there exists an infinite dimensional, closed
subspaceé/ of X such thatl'(M) is closed inX*. By the symmetricity and the positivity
of T we have that

(Tx,x)>c|x||?, forallxe M.

Hence,|| - ||2 is an equivalent norm ol to the initial norm ofX and thereforeM is also
closed inH. SinceH is a Hilbert space we have that

H=M&M™*.
By noticing thatN = X N M is closed inX, we get
X=M®®&N.

If M has finite codimension, theh is an isomorphism oX and by Proposition 3.1X is
isomorphic to a Hilbert space.O

Remark 3.5. As we have mentioned in the introduction, Theorem 3.4 implies that a
representation of an infinite dimensional subspacé&dfby a positive, symmetric and
nondegenerate (see [3]) bilinear form is possible only if eitkies itself isomorphic to a
Hilbert space or it contains a nontrivially complemented subspace which is isomorphic to
a Hilbert space.

Remark 3.6. I1 @ [ is an example of a Banach space, not isomorphic to a Hilbert space,
that satisfies the conditions of Theorem 3.4.

4. The nonsymmetric case
If T is not symmetric, we can still have similar results to those of the previous section

provided that we strengthen its positivity properties. To this end we need the following
definition:
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Definition 4.1. We say that a linear operatdr: X — X is accretive, if for any € X, there
existsx* € X*, such that|x*||2 = || x||% = (x*, x) and (x*, T'x) > 0 (see [2]).

More suitable for our purposes is the next equivalent definition:

Proposition 4.2. A linear operatorT : X — X is accretive if and only if

lx +ATx|| > |x||, forallxe Xandallx>0.
(See [2].)
Remark 4.3. If X is a Hilbert space then, obviously, accretivity is equivalent to positivity.
In order to proceed, we need the following Hilbert space characterization:

Proposition 4.4. A real Banach spac« is isomorphic to a Hilbert space if and only if
there exists a positive isomorphisit X — X* onto X*, such thatl' ~17*¢ is accretive
(wherer is the canonical isomorphism &f into X**).

Proof. The necessity is obvious. To prove the sufficiency of our claim we first note that
sinceT is a positive isomorphism ont®*, T 4+ T*t is a bounded, linear, symmetric and
positive operator fronX into its dual. By hypothesig ~17*t is accretive and hence by
Proposition 4.2] 4+ T~1T*t is an isomorphism. But

T+T*t=T(I+T7'T*7)
and hencd + T*r is also an isomorphism. Applying Proposition 3.1, we concludeXhat
is isomorphic to a Hilbert space.

Remark 4.5.

(i) If T isasin Proposition 3.1, then it trivially satisfies the hypotheses of Proposition 4.4.
(i) If X is assumed to be reflexive, then the assumptiofT dfeing ontoX™ can be
dropped.
(iii) If X is a Hilbert space, the requirement tiat17*z is accretive is equivalent t62
being positive.

Our main theorem for this section reads as follows:

Theorem 4.6. Let X be a real Banach space. If there exists a positive isomorphism
T:X — X* onto X* and an infinite dimensional, closed subspadeof X, such that
T-1T*t|) is accretive, then eithek is isomorphic to a Hilbert space or it contains a
nontrivially complemented subspace which is isomorphic to a Hilbert space.

Proof. As in the proof of Proposition 4.4,
T+T*1:X - X*
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is an injective, bounded, linear, symmetric and positive operator fkointo its dual.
Arguing as before, we see that

(T +T*t)(M) = (T (I + T~ 'T*7)) (M)
is closed inX*. Applying Theorem 3.4 the result follows.O
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