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1. INTRODUCTION

Let C be a family of nonnegative integrable functions in [0, 1] such that C
has the following properties.

(a) 1eGC;

(b) if e(x) € C and for a measurable function ¢;(x), 0 < ¢;(x) < c(x) a.e.
in [0, 1], then ¢,(x) € C;

(¢) the integrals [g ¢(x) d¥, ¢(x) € C are uniformly bounded.

Define the Kéthe space X(C) as the space of all functions f(x) integrable in
[0, 1] and such that

11 = sup [ als) 1G] d < oo.
ceC Yo

With || || as the norm of £, it was proved by Lorentz ([7], p. 67), who had
introduced the space, that X({C) is a complete normed space. For C the family
of nonnegative integrable functions g(x) in [0, 1] satlsfymgfo [g(x)])2dx < 1,
where 1 < ¢ < o0, the space X(C) is L?[0, 1] where 1/p + 1/g = 1. For C
the family of nonnegative measurable functions g(x) which are essentially
bounded in [0, 1], the space X(C) is LY0, 1]. For additional examples see
Lorentz ([7], Section 3.5).

Let the sequence {);} (¢ > 0) satisfy the following

= 0. (L1)

0<A0<A1<...<An<...'rw, AL

uMe

It is our purpose in this article to obtain necessary and sufficient conditions
on a sequence {u,} (# == 0) so that it should possess the representation

1
o = f tft)dt  n=0,1,2,.., (1.2)
(1]
where f e X(C).
295
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For the sequence A, = n, #n = 0, 1, 2,..., necessary and sufficient conditions
on {u,} (n = 0) were given by Lorentz ([7], Section 3.8). The problem was
discussed recently by Ramanujan [8] for the sequence A, =n+1,2=0, 1,2,...
and by Jakimovski and Ramanujan [3] for the sequence A, = n + «,
n=0,1,2,.., where a > 0.

2. PRELIMINARIES AND AUXILIARY LEMMAS

Denote
—~1m . t/\i —
Aum(t) = (— 1) Ay X X )\”i;n w;zm()‘i)’ 0L m<n=1,2,...,
2.1)
Anl(t) = thn n=0,1,2,..,
where
Wp(®) = (x — A,) X = X (® —A,), 0<m<n=0,1,2,..., (2.2)
and denote
Af(t) = '%’ﬂ/\,,m(t), 0O m<n=1,2,.
" (2.3)

A () = the n=0,1,2,u..

By [7], p. 46 (10),
A >0 for 0<t<l and O0<m<n=0,1,2,...(24)

If Ay = 0, it follows by [7], p. 46 (11) that
i Aemlt) =1 for 0<t<l and n=0,1,2,.. (2.5)
m=0

and so by (2.4) and (2.5) it follows that for A; > 0,
i () < 1 for 0<t<!l and 2=0,1,2,... (2.6)
=0

Also by [2], Theorem 2.3,
Z AR =1 for 0<t<l,
- @7
Z Af . (0)=0 for m > 1.
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Let o =[(1 —=AfAna) - (L — AN, 0<m<n=1,2,.,
Opp =1 and let B, =y gmq | <Km<n=12,... Then if 4 =0, it
follows by {7], Theorem 2.2.2 that for every continuous function f(x} in
[0, 1]

Lirg Y An®) f (o) = f () uniformlyin 0 x < L. (2.8)
m=0

Only a slight modification is needed to show that if Ay > 0 then for every
continuous function f(x) in [0, 1]

m S An®)fGom) =f()  for  O<x<l  (29)

m=0

Again by {2], Theorem 2.3, it follows that for every continuous function f(x)
in [0, 1],

lim 3 MGG =f(6)  for  O<x<L  (210)

We make use of the following lemmas.

LemMA 1. For every n, m, 0 <m <n=1,2,...,

Amga X 0 X Ag
mt+F DX X @A+ 1)

f : Aenlt)dt = 5

and

t 1
fo/\,,,,(t)dt =TI "= 0L2e.
Proof. 'The proof follows readily by induction on # — m using the equal-
ity
Anm(t) — ’\n’\n—l,m(t; __A;n+l/\ﬂ.m+l(t) , 0 < t < 1’ n > m.

(See [7], Section 2.7 (1), (8).) This completes our proof.

LEMMA 2. Let

X — Am-\*-l X X /\n
S P | I (N )]

and let n(p), m(p) be functions assuming integral values only. Then
n(p) — 0 and X, (z),m( —> x >0 as p— 00 imply oty (p),m(p) —> *-
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Proof. For —1 <x <1, log]l —x= —x — (x%2) (1 — 0x)"* where
6 = 8(x), 0 < 6§ < 1. Hence,

it ()< (1)

- exp{ Y )\;1] exp [— 1 Y A1+ 0,0)\;1)_2]

k=m+1 k=m-+1

o= [(1 =) e (1= 3]

_ exp{— 5 Azl] exp[- P Y X — 0k*A1A;‘)-2],

=m-+1 k=m+1

and
1A

where 0 < 6,,, 6,* < 1. Thus,

- exp[—%x TR — 6N Y N+ ekle)-ﬁ}

k=m+1 k=m+1

(2.11)
Now,

0 < Xpm < €Xp [—— Y A+ 1)‘1] and Yum —> % >0,

k=m+1

consequently S—ms1 (A + 1)1 remains bounded as p— oo, whence
S iems1 Az ® remains bounded as p — co. Since Yo At = oo, it follows that
m(p) — 00 and s0 Ay, ()13 — . Therefore,

Y O+ EANI< L Y AP0, as  p— o0,

k=m+1 k=m-+1

and

n
Z )‘;2(1 - Bk*’\ﬂrl S (1 - Al)‘z_l)—z )‘;Llﬂ Z AZI —0,
k—m+1 k=m+1
as p—> 0.
By (2.11) it follows now that

: -1
1im oty (p), mi)Xnip) m(m = 1,

and so our proof is complete.
The following lemma, the proof of which is left for the reader, is an
extension of [7], p. 79, Theorem 3.8.2, and Remark 1.
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LemMA 3. Let f,(x) be integrable functions in [0, 1] and suppose that the set
functions F.(e) = [, fu(x) dx, e C [0, 1), e is measurable are uniformly absolutely
continuous. Then there is a subsequence Jo (%) and an integrable function f(x)
such that for every umiformly bounded sequence of integrable functions g.(x)
tending almost everywhere to g(x),

f :fnk(x) g(x) dx — f : fx)gx)dx, as k- oo,

3. Tae MomenT ProBLEM IN X(C)

For a sequence {u,,} (n > 0), let

A == (— 1™ Xy X 0 X A, Z O<m<n=1,2,.

) (3.1)
’\Vm = M n=012,..,
where w,,,(*) Is defined by (2.2); and let
’\:m:;n—m/\nma O<m<n=12,..,
3.2
A = Hn s n=0,1,2,...
Denote
moo1
Agm =Y f M) dt, O0<m<n=012,..,
B=0°0
and
A, = Z f A (t) de, n=m=0,1,2,...
k=n
Define the functions f,(x) by
- ‘ _
fn(x) if An m=1 =X o< A?’L’m ’ (An,—-l _ 0);
f Aunlt) dt
(3.3)
Ju(x) =0 elsewhere;
and the functions £, *(x) by
A*
fnt (%) = if Al <2< AT,, O =0 (34)

f A (£) dt
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TuroreM 1. Let X(C) have a rearrangement-invariant norm (see [7],
Section 3.4) and let the set functions F(e) = [, f(x)dx fe X(C), | fi} <1 be
uniformly absolutely continuous. Then the sequence {n,} (n = 0) possesses the
representation (1.2) where f € X(C), | fIl < M, if, and only if, | f, || < M for
all n > 0.

For A, =7 n >0, Theorem 1 reduces to [7], Theorem 3.8.4, and for
A, = n + &, n 2= 0 it reduces to [3], Theorem 4.

Proof. Tt follows by (1.2), (2.1), and (3.1) that

1
Do = f A fB)dt 0K m<n=0,1,2,...
0
Thus, if the kernels K,(x, t) are defined by

Kn(x,t):——lﬁ’i(ﬂ— f Ay <<y, 01
Aum(t) At

0
and

K, (x,t)=0 elsewhere,

then by (3.3)

1
fn(x)=j K ) f@)d, 0<ax<l, n=012... (3.5
0
Now,
j Nunlt) dt
J | Ky, ) dt = 0 =1 for Ay <& < A,
[ Aante) a
and

1
f | Kp(x, )} dt =0 elsewhere,
0

hence,

1
j|K,,(x,t); <1 for 0<x<1. (3.6)
L]

By (2.5) and (2.6)

fl}K,,(x, Didy= Y Am<1 for 0<t<l  (37)
0 m=0



MOMENT PROBLEMS IN KOTHE SPACES 301

Since X(C) has a rearrangement-invariant norm, it follows by (1.2) where
fe X(C), || f| < M,(3.5),(3.6), (3.7), and [7], Theorem 3.8.3, that || £, | < M
for all # > 0. This completes the proof of the necessary part of the theorem.

Conversely, if || f, || <X M for all n > 0, then since 1 € C we have

n 1
Y o | = [ 1) ¥ < ISl <M, forall  n>0.

m=0
Therefore, by [4], Theorem 2.1, {u,} (n = 0) possesses the representation

1
= f tda(t) n=0,1,2,.., (3.8)
0

where oft) is of bounded variation in [0, I].
By (2.5), (2.6), (2.8), and (2.9) it follows that for any £ >0

fim Z Ak, = lim f Z A, () o daft)

. (3.9)
- f 1™ da(t) = py .
0
Let the function gt*(x) be defined by
g0 = for A, <x<d,,
2P (x) = . elsewhere.
We will prove that
g x)—>x* a5 m—oo0 for 0< <. (3.10)

Now, for x =0, (3.10) follows immediately since o, —0 as n— c0.
Assume that 0 < x <1 and let m = m(n), such that 4, ,, , <x < A,,.
For every fixed k& > 0, it follows by Hausdorff ([1], Section 2 and (25)) that
lim, . [ Au(t) & = 0, whence m(n)— oo, as n—> co. Consequently, by
Lemma 1,

1
0< Amn - An,m—l = J. Anm(t) dt
1)
_ Amya X o0 X Ay
Am +1) X X @Ay + 1)

1
< ——0, as n— o0.
A

Thus, 4, ) — % 8 n— ©.

409/30/2-5
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Again by Lemma I,

mo .1
Anm = Z f )‘nk(t) dt
k=0 "0

m

-3 Aer X X Ay
o Qe+ 1) X - X (A, + 1)

= Any X - Z Apir X 0 X Ay
Amsr +1) X - % ()‘ +1) 2 e+ 1) X X (A, +1)

= Xom 3, [ Aty ar.

k=0

(Xnm is defined as in Lemma 2.)
By (2.5) or (2.6) and (2.9), for f(t) = 1, we have

m ]
lim ¥ f Ai(t) dt = 1.
0vo

m-o0
ot

Hence, y,,m@m — % as n— o0. So by Lemma 2, o, ,,y — & and, thus,

¥ (my — ¥ as 7 — 0. This concludes the proof of (3.10).

Rewriting (3.9) we obtain
iy = lim f ) gP@)dx, k=0,1,2,... (3.11)

By (3.10) and Lemma 3, there is a subsequence f, (¥) and a function f(x)
such that

1
[ el ds— [ fywrds, s i,
0
whence by (3.11)
1
oy = f aMf(x)ds, k=0,1,2,...

That f € X(C) and || f|| << M follows by [7], p. 80, Remark 2. This completes
our proof.

CoroLLARY 1. The space LP[0, 1], 1 << p < o0, satisfies the assumptions of
Theorem 1, hence the sequence {ui,} (n = Q) possesses the representation (1.2)
where f e L?[0,1], 1 <p < oo, || fll, < M, if, and only if,

Pl <M, forall w0, ¥ 1<p<oo

- ([t
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and

1|>\m| <M, forall a,m0<m<n i p= o0
f/\,,m(t)dt
0

Corollary 1 can also be obtained by results in [4, 5].

Interpreting Theorem 1 for Lorentz’s spaces A(¢, p) and M(4, p),
1 < p < oo, is left for the reader. (For A, = n, n > 0, see such interpretation
in 7], p. 81.

THEOREM 2. Let X(C) satisfy the assumptions of Theorem 1. Then the
sequence{u,} (n = 0) possesses the representation (1.2) for n > 1, where f € X(C),
I fll < M, if, and only if, || f,.* || < M for all m > 1.

Remark. 1f Ay > 0, then Theorem 2 can be stated with >0, m > 0.
This is not the case, however, if Ay = 0, in which case y, may or may not have
the same representation even if || £, * || << M for all m = 0.

Theorem 2 for the sequence A, = n -} 1, # > 0, is due to Ramanujan [8];
it is due to Jakimovski and Ramanujan {3] for A, =n+4+a+ 1, 2 > 0.

Proof. 'The proof of the necessity part is similar to the proof of that part
in Theorem 1, using (2.3), (3.2), and (2.7) instead of (2.1), (3.1), and (2.5) and
(2.6), respectively. The kernels that are used in this proof are the following:

*
Km*(x,t):TA”m—(t)— if A . <x< Ak, 0<t< 1

[ Ay ae
0
and
K. %0,1)=0, 0<t<1.

In order to prove the sufficiency part, we see that since 1 € C it follows that
hd 1
Y Nl = [ @ <If5 IS M, forall  m>1.
—m 0

Therefore, by [6], Theorem 3.1, {u,} (n > 1) has the representation (3.8).
By (2.7) and (2.9) it follows that for every k > 1,

@« 1 o
lim ¥ AR = lim [ A% ()8, du(t)
m-0 e m=wo o o

. (3.12)
- fo 1% do(t) = p -
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Define the functions A{¥(x) by

atlan i
We will prove that for & = 1,

BPx)—>x —as m—>o for 0<Lx<<L (313

Then the rest of the proof will follow as in the proof of Theorem 1. For x = 0,

BP0) =0=0" for all k1. If 0 <x <1, let n=mn(m) such that
A¥, ,, <x <A, . By Lemma 1

n+l,m
0< 4% — M = [ N1
o M X o X An—l
o (Am + 1) >< ot X (An + 1)
< A———»O as m— o0,
Thus,
Afym—>x as  m— 0.

By (2.7) and Lermma 1,
Ak, = Z f N (2) dt

Z C X Ay
(Am + 1) XX (Ak + 1)

= Xn~1,m~1 Z f A (1) dt

= Xn-1,m—1 +
Hence, Xy, (m)—1,m—1 —> X a8 m — o0 and by Lemma 2, 8, (),, —> * 28 m — c0.

This completes the proof.

CoROLLARY 2. The sequence {1} (n == 1) possesses the representation (1.2)
for n > 1, where feL?[0, 1], 1 <p < oo, || fll, < M, if, and only if,

°° | Amn 17

n—m ( f AE () dt)

— <M forall m = 1.
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4. Tue MomeNnT ProBLEM IN L]0, 1]

As we noted in the introduction, L![0, 1] is an X(C) space and it is readily
seen to have a rearrangement-invariant norm. However, the set functions
F(e) = [,f(x)dx, feLY0,1],] f|| < 1, are not uniformly absolutely continu-
ous, hence, Theorems 1, 2 do not apply here. Moreover, the requirement of
uniformly absolute continuity is quite a strong one. Our results involve a
weaker condition.

DerINITION. The functions «,(x) defined in [0, 1] are said to be eventually
absolutely continuous if for every € > 0 there is a 8(¢) > 0 such that if = is a
finite union of disjoint intervals in [0, 1], = = Uf=1 (x: , ¥:), say, with
m(w) < 8, then there exists N(e, 7) such that

k
Z | on(%;) — ap(y3)l < e for all n > N.
i=1

For a sequence {u,} (n = 0) let

W0 =0, @)=Y Am, O0<x<I,

K

and
Otm*(O) =0, o‘m*(x) = Z A:m s 0<x <L

Bamsx

THEOREM 3. The sequence {u,} (n > 0) possesses the representation (1.2),
where f € L[0, 1], if, and only if, the function o,(x) are of uniformly bounded
variations and are eventually absolutely continuous.

Proof. Assume first that {u,,} (n = 0) has the representation (1.2) where
f€LY0, 1]. Then by (2.4), (2.5), and (2.6),

\:/[o‘n]z i [ A | < i f:Anm(t) | f() dt

m=0 m=0

= 1 3 duntt) 701

m=0
1
< f [f@®)dt < oo, forall n=0.
0

By (2.8) and (2.9) it is easily seen that for any 0 < x < 1,

if 0<t<x

i x<t<l as n— oo, (4.1)

S A~

A S
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Thus, for 0 < » < 1,

@) = Y Agm = fl Y Al f(t) dt — f:f(t)dt a8 1 o0}

<] 0 oappm<®
4.2)

and for x = (),
0
2, (0) = 0 = f f(t) dt.
0

Now, F(x) = _[z f(2) dt is an absolutely continuous function and a,(x) — F(x),
0 < x <1, as n— o0, whence a,(x) are eventually absolutely continuous.
Conversely, since the functions a,(x) are of uniformly bounded variations, it
follows by [4], Theorem 2.1, that {x,} (n == 0) has the representation (3.8).
Also, similar to (3.9), we obtain for each &2 > 0,

1 n
lim | t%do(t)=1lim Y A oM =p, . 4.3)
nw J g n-0 m—0

Once again, since a,(x) are of uniformly bounded variations, it follows by
Helly’s theorem that there is a subsequence {«, ()} and a function of bounded
variation f(x) such that «, (x) — B(x), 0 < x < 1, as i — co. Hence, by (4.3)
and Helly-Bray’s theorem,

1
g = fo 1% dg(t) k=01,2,.... (4.4)

Now o, (x) are eventually absolutely continuous and a, (x) — B(x),
0 < x < 1, whence B(x) is absolutely continuous; thus,

Blx) = f :f(t) dt, 0<x<1, [felY0,1]. (4.5)

Our result follows now by (4.4) and (4.5). This completes our proof.
The following result is proved similarly.

TuEOREM 4. The sequence {p,} (n == 1) possesses the representation (1.2),
for n = 1, where f € LM0, 1], if, and only if, the function o, *(x) (m = 1) are
of uniformly bounded variations and are eventually absolutely continuous.
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