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Abstract

Extending earlier work by Jawerth and Milman, we develop in de&f? and 4?) methods of
extrapolation. As an application we prove general forms of Yano's extrapolation theorem. Applications
to logarithmic Sobolev inequalities, integrability of maps of finite distortion and logarithmic Sobolev
spaces are given.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems in analysis can be formulated as the study of parametrized families
of estimates for suitable operators. For each specific family of estimates it is usually of
fundamental importance to determine the maximal range of the parameters for which those
estimates are valid, and the corresponding analysis usually requires a deep understanding
of the problem at hand. Interpolation methods allow us to create parametrized families of
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estimates from a given pair of initial estimates. Conversely, extrapolation methods allow us
to extrapolate “end point” results from a given family of estimates.

Following earlier work by Marcinkiewicz, Titchmarsh, Yano and others [tT] for
a historical perspective) a general theory of extrapolation was developed by Jawerth and
Milman (cf. [17,21). In [17] the Z(?) and A‘”) extrapolation methods were introduced
and applied to construct suitable “end point extrapolation spaces” as well as to prove
new extrapolation estimates. It was also shown, in a very general context, that the usual
rearrangement inequalities for the classical operators of analysis are in fact equivalent to
families of norm inequalities with a given rate of blow-up.

In [17] only the =™ and 4> methods were studied extensively. The purpose of this
paper is to provide a more extensive study of & and 4”) methods of extrapolation
for p > 0,2 as well as to give new applications of these methods to classical analysis.

It is of interest to point out that thE@ construction was independently considered by
Donaldson and Sullivan ii12]. Indeed, in their work12], Donaldson and Sullivan consider
spaces of the form

7 ~ - —i 1 £2
”@ZLZQﬁiy”“mmﬁ“}
where(? is a finite measure space, ang are fixed numbers in the interved, 1).
Equipped with

0 1/2 o0
; —i 2 . g
wm@:m(anmmm).f=Zﬁ,

i=1 i=1

LP(Q) becomes a Banach space[12] this construction plays a crucial role: it allows the
authors to construct the Sobolev spaz‘.@ (D), based orL.4 (D), whereD is a domain

in R, with the crucial property
LT, (D) c (D). (1)

The space £4 (D)” depends on the choices of the parameters: indeedtjoto(hold the
correct choice is to selegt < £/ (cf. [12, Lemma 3.8]. The background of this choice
of parameters is indeed an extrapolation result since the selection is achieved by a careful
examination of the deterioration of the norm of the embeddWé’s”(D) c C9(D) for
p=4+¢ i —> oco.

In [12] the precise identification of thE . (D) spaces was not important; the authors
just needed suitable spaces, where the cru0|al propErtyds valid, in order to develop
their theory. In this paper, on the other hand, a good deal of our effort centers in the explicit
computation of extrapolation spaces. In particular, as a consequence of our results, we show
that for suitable choices of the parameters, consistent with the validily afé canreplace
L%, (D) with the logarithmic Sobolev spadé}L*(log L),, whereb > 3. To have a more
epr|C|t family of spaces simplifies some of the analysi$lig]. For example, the elliptic

2 Some properties of () method are studied i[27].
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theory (cf.[12, Lemma 2.16] follows from Sneiberg’s extrapolation lemma for the real
method (cf[7,30]).3

A prototype of the Yano type extrapolation theorems that follow usingtfheandA”
methods (cf. SectioB.1) is given by the following

Theorem 1.1. (i) Let0 < s <1.Let| f |l zas = |§I f(;"’[tl/qf*(z)]fdt/t}l/s, andL?>® :=
(L*, L*®)9 00, 1/q = (1 —0)/s. Suppose thal is a sublinear operator such that

ITf e <c(@ =) “Nfllgas. O<s<g<p, a>0.
Then

T:L'(logL), + L"* — L* + LP*.

(i) Let L9 := (L", L®) 9.0, 1/q = (1 —0)/r, r = min(p, s). Suppose thal is an
operator such that

NTfllpgce <cqg®llfllpas, O<p<g<oo, s>0,a>0.
Then

T LPAL® > L' NL¥(IogL)_y, p<s
and

T LP®AL® > LP®NL®(logL)—a, p>s.

In this paper we consider two type of applications. On the one hand we will exhibit spaces
of current usage in analysis (e.g. “Lorentz—Zygmund spaces”, “Donaldson—Sullivan”
spaces, “Logarithmic Sobolev spaces”, etc.) as extrapolation spaces fbf’thend A"’
methods; while on the other we shall consider in detail specific classical operators (e.g. semi-
groups associated with the theory of logarithmic Sobolev inequalities) to develop concrete
applications of extrapolation theory to classical analysis.

In Section5.3 we apply extrapolation methods to study the modulus of continuity of
maps of finite distortion (cf16]). Let S = S(O, R) be the ball of radiu® centered at the
originin R" . Let f = (f1, f2,..., fu) : S — R" be amap in the Sobolev cla é’cl(S),
and letJ (x, ) = det Df (x) denote the Jacobian gf. We say that the mayp is of finite
distortion if there exists a real valued measurable funckigm) > 1 such that for alk € S

IDfO)I" SK@x)J(x, f).

Let WL"™ = be the closure of.” under the norm

. 1
lullwrn = sup s™" llullrgogr)_ a0 -
O<s<1/2

3 We shall discuss elsewhere the extension of Sneiberg’s theorem to the context of extrapolation theory.
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Foru € WL"™ we also let

— JA/n
@y (U, ) =1 / ”g”Ln(logL)—(x+l)/n .

Using extrapolation we give a slight extension of earlier resul{ &) and show the fol-
lowing (cf. Theorenb.8below)

Theorem 1.2. Let f be a map of finite distortion such thddf (x)| € WL"(S). Thenf is
continuous. Moreoveif |x — y|is small andx, y € S(0, R/2), then there exists a constant
¢ = c(n, R) such that

1
Infinix —yl| /"

It is instructive to consider a brief and informal comparison of interpolation and extrap-
olation methods. One version of the classical Lions—Peetre construction of interpolation
spaces (thef-method”) can be described as follows. We are given an initial compatible
pair of Banach spacgs(g, X1), and we consider those elementsXp + X that can be
represented by integrals (or sums)

If(x) = fOWl <cm, <Df(X),

> ds .
/= u(s)— in Xo + Xu,
0 N
in such a way that

e ds
|67 )" < o,
0 A\
The norm of the element in (Xo, X1)g, ., is given by
p
”f”(XO»Xl)G,p;]
. o ds o0 ds .
= inf {/0 (S 0 ”u(s)”XoﬂSXl)pT fz/é u(S)T n X0+Xl}

Note that we control the norm gf in terms of an average of the norms of the representing
functionsu(s) in the intersection of theriginal pair (Xp, X1). On the other hand, given a
rate of decayw(0) (typically w(f) = 6*(1 — 0)P), the extrapolation space&” w () Xy,
associated with a scale of spa¢&g}, whereXy C Xo+ X1 uniformly, consist of elements

f € Xo+ X; that can be represented by integrals (or sums)

1
f= / ugdo %)
0
with
1
/O () lluglly,)? 0 < oo. &)

Likewise the4?) spaces are a generalization of intersections. For example, suppose that
Q is o-finite measure space and letOrg < ¢ < r<oo, b > 0,0 < p<oo, and let4?
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be the extrapolation spact? ((1/q — 1/r)?~1/? L4-P) with quasi-norm

. _ 1/p
rr1 1\t d
171l = {/ (—) IIfII’Zq.pZ} .
ro \4 r q

The change of variablej{%— 1 — 5 and Fubini’s theorem give
%) oo
117~ [t [ e
0 0

1 00
~ / tP/"(1—1In z)"’!’[f*(r)]"? +/ P01+ In t)‘l[f*(t)]”i—t.
0 1
Hence,
AP (/g — 1/r)P~YPLaP)y = L7oP(logL)_1/, N L"P(l0g L)_p. 4

This result corresponds to our Theordrid below for the caseg = 1/ p (cf. also Theorem
4.5 for more general results). The corresponding computations foZthemethod are
much more involved since we need to construct suitable decompositions (cf. Th2djem
In [14] formula @) is proved under the assumptions tliats a finite measure space, and
r = p.Thescal¢L? P}, ., ., canbereplaced .4}, -, <, providedg — p inaspecific
way (cf.[14, p. 69] and our Theorem3.4and3.1). The X characterization of.(log L),
was first given in17], while the X(”) characterization of the logarithmic Lorentz spaces
LP(logL)p, 1 < p < o0, was given in14] using @) and duality arguments.

As illustrated by the Donaldson—Sullivan spaces mentioned above, representations of
form (2) occur rather naturally in a number of problems in analysis. For a different perspec-
tive on how these representations arise when studying specific operaterdydet given
self-adjoint positive operator ii? (provided with Gaussian measure); moreover assume
that the semigroup, = e~'4, t >0, generated by, is an hypercontractive semigroup on
L?,1 < p < oo. More precisely, this means that for some constaatO we have

P, : L? — L” isbounded for alt >0, 1< p <oo and ||P,<ce™ 5)
and
P LP — LD (1) —1=¢'(p — 1), is bounded uniformly for alt >0.  (6)

In the analysis of logarithmic Sobolev inequalities the following (fractional integral) oper-
ators

0.f = / "0 Lpyrao
0

play a crucial role. Now, from&) and @), it is not difficult to see that the study of these
operators falls naturally into the schemeXsextrapolation methods (for more details on
how to implement this observation see Sectod).
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Finally let us say a few words about how the calculatio@? and4”’ spaces can be
achieved. As we indicated above the computation'8t spaces fok -spacesXo, X1)0,45

g = p, can be achieved directly by Fubini. Likewise the computatio&‘ét for J-spaces

in the casey = p can also be achieved using a “Fubini type of argument’3jn Kowever,

the computation of these spaces for~ p requires considerable more work. Therefore

a great deal of our work in this paper goes into devising effective methods to compute
weighted averages of norms.

In comparing our methods with those [f7] we note that in this paper we usually
assume that the extrapolations occur “inside” the interpolation scales. While the theory
that we obtain is somewhat less general than the orf@7* this extra assumption is
automatically verified for many of the familiar scales of spaces we use in analysis. Thus,
for example, while iff17] to extrapolate neak?!, say, we use¢c(p)L"} scales fop > 1,
in this paper we considet! as an interpolation space betwekf® and L>°, for some
po < 1, and extrapolate using this information. In this fashion we are able to avoid the
failure, at the end points, of the equivalence between'taed K methods of interpolation.

In contrast, in[17], which deals with the casgs = 1 (resp.p = o0), K-divisibility, or

rather its equivalent formulations as strong forms of the fundamental lemma of interpolation
theory, is a crucial tool. We hope this simplification will make the reading of the paper
easier for those readers who are not familiar with the deeper parts of real interpolation
theory.

These choices, and the desire to keep the size of an already long paper under some control,
also lead us not to develop, in the context of & andA‘”) methods, the corresponding
theory of K /J inequalities (for a treatment in the cage= 1, p = oo; cf. [17]). We hope
to return to this subject elsewhere.

The paper is organized as follows. In Sections 2 and 3 we develop some basic facts about
the X and 4” methods of extrapolation focussing on effective tools for their compu-
tation. These results are illustrated with the explicit computations of extrapolation spaces
in Section4, where in particular we exhibit the Lorentz—Zygmund spaces as extrapolation
spaces. The last part of the paper Secbas devoted to applications. In Sectiéril the
computations of Sectiohare used to prove extended forms of “Yano type” extrapolation
theorems. The last three sections are devoted to applications of our methods in other areas of
analysis. Using extrapolation methods we prove some general forms of logarithmic Sobolev
inequalities (Sectiob.2) and improve on certain recent results concerning estimates for the
modulus of continuity of maps of finite distortion (Sectibr). Finally in Sections.4we
investigate the relation with Donaldson—Sullivan spaces and their tfEnA preliminary
version of the results was announcedi8].

To conclude this introduction we should mention a number of recent contributions to ex-
trapolation theory, and its applications, that could be of interest to the reader:
[8-10,13,15,19,23-25,28]

4The extra assumption that the extrapolations occur inside the interpolation scale is equivalent to the assumption
that the interpolation scales consideredlii] can be extended.

5The original proof of the result can be found[&. The formulation given iff11] is particularly useful in
extrapolation.
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2. £ method of extrapolation

In this section we develop the”) method of extrapolation originally introduced|i7],
but studied in detail only in the cage= 1.

2.1. Background

Let A = (Ao, A1) be (a compatible) pair of quasi-Banach spaces, i.e. we suppose that
Ap and A1 are quasi-Banach spaces continuously embedded in some quasi-Banach space
24.For0<0<1,0< p<oo, we Ieth(),I7 denote the real interpolation spaces of Lions
and Peetr¢5,6], provided with thek -method norm,

00 0 N dt 1/p
||f||g(,,p={/o [s7"K (5. f A)]pT} :

Let0<0p < 01<1be fixed and let® denote the intervablp, 01). The K andJ/ methods of
interpolation give equivalent quasi-norms ap ,, 6 € @. Moreover, if 0< 6o < 61 < 1,
the equivalence of th&€ andJ quasi-norms is uniform (c{5]).

Our characterization of extrapolation spaces as interpolation spaces requires spaces that
fall outside the classical Lions—Peetre spaces. In particular, our characterization requires the
replacement of power weights? by more general weights. Note that given a weight
one can define in the familiar way tt#, , andA,, , ; spaces associated with tReandJ
methods (for a more systematic study g3end the references therein). The corresponding
K andJ norms are then given (respectively) by

00 . d 1/p
1£15,, = {/ [wka £: ] —’}
w,p 0 t

and

o]

1/p
115, ., = inf iz [w(2")J (2", uy; A)JP} f=) ) w

V=—00 V=—00

We shall often assume that the weight&) satisfy the following condition: There exist
positive constantss, c2, such that

crw@)<w@) <cow(?') forall 2'<r<2"tve Z. 7
If (7) holds then we can “discretize” théw,,, norm (cf.[5, Lemma 3.1.3)], and obtain

00 1/p
115, ={ S WK, f; A)]f’} .

V=—00

Suppose thatl; satisfies a¢;-triangle inequality, i.e.,

If+glla, <xiClflla, +lgla), =01
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The Aoki—Rolewicz Lemma (cf[5, Lemma 3.10.1, p. 59] provides us with equivalent
quasi-norms which satisfy thetriangle inequality. In fact, let = max{io, x1}, and lety
be defined by

(2K)" =2, (8)
then

If+gll” <IAIY+Ngl”. 9)

Spaces satisfyin@j are calledy-Banach spaces. The largest possibfer the pairX =
(Ao, A1) will be denoted by ;. 6 Given 0< p<cc let p* be defined by

1 1
1 ———if p>y,
— =y P77 (10)

p* 0 if p<y.

We also use the notatiop*, where ¥Yp* + 1/p = 1if 1 < p<oo, and p* = oo if
0 < p<1. We always have™ < p*.

2.2. (P spaces

Let M (0) be a positive continuous function on the inter@ak= (0o, 01), such thatﬁ
is bounded. Th&” sum of the scalgM (0) Ay, }pc o is defined by

TP (MO)Ag,,) = 2D (M©0) Ay )

= feZaif=) 80.80) € Ag, and | fllyo i, ,) <O -
0O
where
1/p

10w, =43 D MOz, 17t f=Y 8O
' 0c® , 0O

Remark 2.1. We are using theotationof summation over uncountable sets. In this paper
this should be understood as follows. Suppose @k is a continuous function o® =

(0p, 01) such thatv(0) — 0 asl — 0p andN (0) — 0 asf — 01. We fix a discretization
sayl, = g+ 2" if n>n1 > 0,andd, = 01 — 2" if n<ng < 0, whereng andnj are
chosen sufficiently large so théf — 0p > 271 4 2"0. Then

Y N =) N,

0e® nel

wherel = I UI_,andly ={ne€ Z:n>=n1}, - ={n € Z :n<no}.

6 Evidently we always have; <1andy; = 1iff A;,i =0, 1, are normed spaces.
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It is also convenient to use the notation

> N@O:=> N o:=0+2",
0e(0g,u] nely
if N(O) — 0astl — 0, and
> NWO) =) Ny, B:=01—2",
0c(B,00) nel_
if N(O) — 0ast — 0.
Remark 2.2. In the same fashion thE”) construction can be applied to other compatible

scaleq Ag}yco Of quasi-Banach spaces, where by “compatible” we mean scales such that
there exists a constaat> 0 such that for alb € ® we have

Iflls, <cliflla,-

Analogously, we can define “one sided!”’ spaces:

TP (M(0)Aqg,,) = =

0,%

(M(0)Ag, )

=1feZaif= ) 5O 50 €Ay, and |flyor-w@i,, <
0e(0g,o]

where
l f ”Z‘(P)*(M(Q)A'H’p)
1/p

=inf {1 Y IMOIgOl;, 171 f= Y 8O
Oe(Bg,0] Oe(bp,o]

Likewise we let

TPTMO)Ag ) = Zif T (MO)Ag )

=\feZa:f= ) 80,50 €Ay, and [flzorpi,, <
OelB,01)

where
l f ”Z("H(M(())A.()v,,)
1/p

=inf 11 D IMOIsOlz, 17 = f= Y 8O
0l 01) Oelp.01)



G.E. Karadzhov, M. Milman / Journal of Approximation Theory 133 (2005) 38—99 47

Remark 2.3. For anylp < o < f§ < 01 we have

I (MO)Ag ) = I (M©O) Ay, ,) + Z )T (MO) Ay ).

More generally, we have

Remark 2.4. Suppose the scalely} satisfies

AgCAa+A[;,O(< 0<p.
Then

I (M©O)Ag) = X (M(O0)Ag) + Z) 3 (M(0)A).
Remark 2.5. When dealing with Banach pairs we can replace sums by integrals in the
definition of theX”) spaces. This corresponds to the familiar equivalence between the so-
called “continuous” and “discrete” definitions of thkand K methods of interpolation. For
future reference we discuss in more detail a special case of this equivalence. Suppose that
A = (Ag, Ap) is aBanach pair and moreover suppose that for some small pasitivdave
{Jo[M(0)]7P"2}/P" < oo, where ¥p* +1/p = 1if p > 1, andp* = oo if 0 < p<1.
Let us say thayf € f,,,o,g(M(J)Aawo,p) if and only if there exists a representation

€ do . >
f=f g(o)— with g(0) € Agig,, p
0 o
with
& do
. p__
/O[M(G) g5, ,,, 1" < oo

Let

”f”fp‘O‘S(M(O’)A‘a+00»P)

. & do\ /P £ d
= inf {([ [M(a)llg@; , ]”—0> : f=/ g(a)—g}-
0 a+bp.p g 0 o

Suppose thatt; ¢ Ag.” Suppose in addition that (o) is a positive, continuous function
such that for somey, ¢2 > 0,

M@ <M(o)<coM(27™") forall 27"<e<2" ne .

Then
/ . (M(0)Aggy ) = B (M(0) Agygy )
p,v.e

The proof of this fact is analogous to the usual proof of the discretization of-#ethod

(cf. [5]).

7Such pairs are usually called “ordered” pairs.
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2.3. Characterization of ") spaces

2.3.1. Banach case
In this section we show the following characterization of & spaces in terms of
andJ spaces (cf[17] for the casep = 1).

Theorem 2.1. Let A = (Ag, A1) be a Banach pair. Suppose thaik 0p < 01 < 1, let @
be the interval 0, 01), and furthermore lep > 0. Define the weightv* by

* 1/]7

L Iy T 10 (11)
w () | 2 | MO) ’ '

Then

SPMO)Ag,) = Awr p = Ays pis, p > 0.
Remark 2.6. If A is a Banach pair, & 0p < 01 <1, then (cf.[17] for the casep = 1)
EP MO Ag . )) = Auspiss p > 0.
Analogously we have

Remark 2.7. If A is a Banach pair, then
/ (M(G)AG+()0,p;J) = Av,p;la
p,0.e

where

1 e[ yo+lo 7 do
o) ./0 Mo)| o

Theorem2.1follows from Theorem®.2and2.3, and Remarl2.8. As it will be useful in
what follows, these auxiliary embedding theorems are proved in the more general setting
of quasi-Banach spaces.

We also note that Theore@hl also holds, with the same proof, for the “one sided”
extrapolation spaces”)—, X(P+,

1/p*

Theorem 2.2. Let A = (Ag, A1) be a quasi-Banach pair. Suppose tifat 6g < 01 <1,
let @ be the interval 0o, 01), let p™ be defined as i10), and letw be the weight defined

by

+y1/pt

1 07
.. Z|:_M(6):| e (12)
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Then
ED (M) Ag,p) C A p.
Analogously

ED MO Ag 1) C A s

Proof. Recall the conventions of Rema#l 0, = 6o+ 27" if n € Iy, 0, = 01 — 2"
ifnel_..LetM, = M0, and letf € Z(P)(MnAgn’p). Select a decompositiofi =
> cs & With g, € Ay, ,, and such that

» 1/p
1Al s a0y &g ™ {Z [M” ”g””/%.p] } ’

nel

Using the Aoki—Rolewicz Lemma (cf. the discussion @f ébove), we derive

- X - | 270 !
K (2, f: A)}’gczI:an—v(),z]((z‘,gn; A):I |: 7 :| .
nel n

Therefore, using Hélder’s inequalityif < p or the inclusion” c 7 if y> p, we obtain

1
w(2")’

1/p
K@ f:A)<c {Z (M2 K 2", g0 A’)]”}

nel

Thus

V=—00 nel

00 1/p
Ifl,, <ec { 3127 MK (2 g A)]/’}

1/p
<ec {Z [Mn||gn||;0mp]f’}

nel

< C ”f”Z(”)(M(@)Ao,p) . ]

Theorem 2.3. Let A = (Ao, A1) be a quasi-Banach pair. Suppose titet 0y < 01<1,
let @ be the interval0p, 01) and letw* be the weight defined {§1). Then

A’w*,p;l - Zévpe)@(M(Q)Aﬁ,p;J)-
Proof. Let f € Ay« p.s. Represenf =) u, with

105, <2 @)@ AN

v

8 In what follows we use the symbadl ~ B to indicate thatA and B are equivalent modulo constants.
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Letg, , = wr@)2h thenz¢ = 11if p > 1. If on the other hand O< p<1, then

MO
Sup,¢; ¢,y = 1, and therefore in thls case we can finth) such tha,, ,, , ~ 1. To show

that f € Zg)(M(G)Ke,p;/), we now exhibit a suitable representation fof We define a
partition of the unity as follows

Yoy =0y, if p>1
and
‘,bn,v = 5n,m(v) if p<1,

whered, ,, stands for the delta Kroenecker index. In either case we Eﬁé’ﬁﬁn,v =1
Letg, = > 72 uy, . thenf = X,c;¢,, and moreover

LY <e) IMODlglz, 17

nel

<e Y Y 2 M©O,)T 2w, ;)Y

nel v=—00

<e Y @ u DI Y IMO)27 0, 17,

y=—00 nel

P MO Ay,

Using the definition of¢,, , we get

o Vo ]?
”fnz“’)(M(B)A \c Z [w*(2")J (2", uy; A)]PZ [E}

—00 nel

Observe that fop > 1 we have

D S DT

nel nel

while if p<1,

o [e]]

nel

Therefore

Z (W' @)@ u AP el 1

0¥ piJ

I/ HE“”(MU))AH,, )
V=—0Q

as we wished to show.d

Remark 2.8. LetO < 0y < 01 < 1, p > 0, and letw be the weight defined by the formula
(12). Then

Ay pig = Aw,p.
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Proof. We first show the embeddin@u,p - Ew,p;J. Note thatw is monotone, and satisfies
clt_HO <w(t) < 021_91 ifo<tr<1,
and
—01 0o
c1t < w(t) < cot if r > 1

It follows that if / € A, , thenK (1, f) — 0 ast — 0, and XL — 0 asr — co.
Therefore we can apply the fundamental lemma of interpolation theory in the usual fashion
(cf. [B]) to establish thaf € Aw pid with norm estimates.

We now show that, conversely,w pl C Aw P For Banach palrsx p=1, itis well

known (cf.[3,6]) that the embeddlngw,p,J C Aw,p is equivalent to the boundedness of
the Calderon operator

o0 o0 d
Sf(t)=/o mm{ }f<>—=/0 min{L, u}f< ) @

on LP(w(t)P %) 9. More generally, ifA is a quasi-Banach paiandp > 0, an analogous
characterization holds using the following discrete version of the Calderén operator (with
y<min{p,y;}:

1/y

S)(fuh = | iming2, 2471 4,17

It then follows readily tha@w,pd @ Kw,p (cf. [5, Theorem 3.11.3]iff the Calderdn
operators, is bounded on the sequence spAtgw (21)]7).
To prove thaw is a Calderdon weight we write

1 Z |:oc_9oc9t9:|p+
w(t) e M (0)

Then we see that

v ow(), ax>1,
oc_olw(t) o< 1

1/p*

w(ot) < { (13)

Combining (3) with Minkowski’s inequality we get
) v/ p
}|S’/({fu})||1/p([w(2u)]zi) = {Z |Sy({fu})w(2“)|1’}
'/
<> min(t, 29 {3 [| ful w17}
< (Z min{1, 2"} max(2~"%, 2—V01}“/) {Z [ fulw(@]” }W

<c Al queigp) -
as desired. O

9such weights are called Calderén weight§3h
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Theorem2.1 now follows by combining Theorens2, 2.3and Remark.8.

2.3.2. Quasi-Banach case

We start summarizing the results of the previous section that hold for quasi-Banach
spaces.

Theorem 2.4. LetA = (Ap, A1) be a quasi-Banach pair. Suppose that 0y < 01 < 1,
let ® be the interval 0o, 01), and furthermore lep > 0.1f 0 < péy/i then

PO M©O)Ag ) = Ay p.

If p > Vo then we have the inclusions

Auep CZP MO)Ag ) C A p.

It turns out that if the growth o#/(0) is tempered in a suitable sense then the weights
andw* are equivalent. As a consequence we shall be able to show that

ZE)I;)@(M(Q)IK()J;) = gw,p = Aw*,p- (14)

We shall say that a positive continuous functi@iie), defined on the intervaD, 1), is
“tempered” in the sense ¢1.7] if there existe; > 0, &2 > 0 such that

N(o/2) = N(o) for o € (0,e1) and
N({(1+0)/2) ~ N(o) for 6 € (1 —&2,1). (15)

Since on any compact subintervil(c) ~ 1 the equivalence inl§) is fulfilled on the
whole interval(0, 1). Further, we say that a positive continuous functhogt), defined on
the interval(fp, 01) C (0, 1), is tempered ifc — N(o + 0p) ande — N (01 — o) are
tempered fow near zero (i.ec ~ 0.) Finally, N is strictly tempered if for some constants
O<c<d<1

c¢N(0)<N(c/2)<dN(s), 0< g < oo (16)

For example, the functioV (¢) := (1 + |loga|)? is strictly tempered itz > 0 andb
are arbitrary real numbers. On the other hand, the funé¥igia) := (log 1/0) %, b > 1is
tempered but not strictly tempered.

Suppose thaV (o) is strictly tempered. To prove that the weightsandw are equivalent
it is sufficient to verify that the following two sequences are equivalent for large positive

foi= > 27" N(ayn), 17)
n>ng
gy := sup 27" N(a,), (18)

n>no
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wheres, = 27", N(g,) = In other words we will show that* andw are

equivalent to the weight

__1
MOo+on) "

t 0}1

W) =S Gy

Theorem 2.5. If N (o) is strictly temperedthen the sequences and g, defined by(17)
and (18) are equivalent. In other words$f N (o) is strictly tempered thew™* and w are
equivalent

Proof. First we shall prove that ifg,} is given by (L8) then
gy =~ 2_‘,0'11<V)N(0'm(v))7 (19)

wherem(v) := [logv], log = log,. To establish 19) it is enough to prove the upper
estimate. Let

sp = [—logN(a,)], L,:=vo,+s,, k:=][logv].
Then

gy~ 2 il
Since 2 <v < 2kt1 we have

oktlon oo Sokn g
in particular,

24 sk > L =14 s¢.
Hence

hej 227 +siej > 1
and

h—j22 4+ s, 1<j <k —no.
On the other hand,

¢/ N(on—j) = ¢! N(2/6,) <N(3,) <d'N(0,—j) = d’N(2 5y).
Then

Jjlogc +logN(o,—j)< logN(a,) < jlogd +1ogN(a,—;),
and, usinda] + [b]1<[a + b] < [a] + [b] + 2, we get

Sp—j—2—jlogd <s,<s,—j+1—jloge.
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In particular, sincel < 1,

Sktj =Sk — 2,
and

Sp—j=sk— 1+ jloge > s -2l —a
for some positive constant. Then

hyj >k —4 Lj >l —2—a;.
Hence

infl, >l —a
or

gy < 27k,
This implies

gy < c27"% N(ayp),

proving (19).

Next we notice that it > logd ande # 0, then the functions
N(0) := ¢*N(0)
are also strictly tempered, therefore the previous argument applied to the sequence

gy 1= sup 27" N(a,),

n>ng
yields
gy~ 27790 N (G ).
Therefore for O< ¢ < log 1/4,
Z 6527 N(oy)0, ¢ < car;fv)Z_M’"“')N(am(v)) Z o,

n>m(v) n>m(v)

< CO';;fv) 27V9m0 N(a, m("))gf”(")

<cgy.
Similarly,
_82_‘76nN & A E 2_VU/;1(\')N —€
o, ((Tn)O'n < €O, (Urn(v)) Oy
n<m(v) n<m(v)

—&

< CO’fn ) 27V0m N (Tm)) O (v

<cgy.
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It follows that

fr < cgy,

and the desired result is proven]

Remark 2.9. If N istempered but not strictly tempered theandw may not be equivalent.
We give a counterexample. L&% (o) := (log1/0)~?, b > 1. ThenN is tempered, but not
strictly tempered. It is easy to see that in this case

fri="Y_ 277" No(oy)

n>ng

satisfies
fy ~ (logn)*.
On the other hand,

gy 1= Sup 27" No(0)

n>ngp

satisfies

gy ~ (logv)~°.

Thereforew andw are not equivalent. Moreover, we also have thdtand w are not
equivalent since (safp = 0) we havew*(2™") ~ (logv)?~Y/7", w(2™") ~ (logv)?=1/r"
forb > 1/p™.

For weights of typev™ we have the following result

Theorem 2.6. LetA = (Ao, Ay) be a quasi-Banach pair. Suppose tBat o < 01 < 1,
let @ be the interval0o, 01), B = (Ag,, ,, Ag,,p) @and letp = Vs Then

PO MO)Ag ) = A p.

Proof. By Theorem2.3 it suffices to show thafé’;)@(M(O)ﬁg,,,) C Ew*,p. By reiter-

ation we see thatl, , is a p-Banach space. Lef € X" (M(0)A, ), and select a
decompositionf = >_ fy with

DO folz, 1P ~ 11,

DM O)Ag )’

Sinceﬁw*,p is p-Banach andv* (1) <M (0)r~?, we get

105, <22l <D IMOIflg,, 1"~ If1]

P M O)Ag )
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Remark 2.10. Let 0 < 0o < 01 < 1, B = (Ag, . A, ,). If either 0 < p<y,, or
P=7; then

I (Agp) = Agyp + Ay p.
Proof. By Theorem2.4or Theoren?.6
2(p@(A9p)— w*,ps
where

—0o i
s |t if te(0,1
wm_{ﬂ’l it =1

Thus

1/p
17500 (4, ™ {/ (=K, f3 AP / K, £ A1 } ,

Therefore, by Holmstedt's formula,

PO T T |
1500 s X R 4,

Remark 2.11. We now gi\/e an e>ﬁ<ample showing that for> 75 the space?é’;)@([\'@’p)
can be strictly larger than, , + Ay, ,. Indeed, let

g =tV A —Int)y*n"*h,(t), O<rt <1,

whereh,, is the characteristic function of the interv@l,, \/0,,), 6, = 27", % < o< 21p +
1

Ip>1 qin =5 - 2. Then(LY, L®)p-n g, , = L9P (uniformly w.r.t.n > 2), and

llgnllfan.r <cn™*7. Hence

F@) = Zga() € Z8 (LY L)y, -
On the other hand, far~ 0 we have

f() ~t7YP@Q —Innt=2.
Hence

f ¢ LPandinfactf ¢ L”(logL)_y/, fora=1/2,p > 2.

Remark 2.12. Let B = (A’@pr,ﬁglyp). Ifo < p<y5<q <ocand0< 0p <01 <1
then

(p) e A
Z()e@(Af)»q) = Ago.q T Atrq-
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Proof. According to @6) below,

Ag.q = ((Bo, B1)og) , 0= (1= 0)00 + o01.
Therefore

go,q C Bo+ Bi.
Sincep <y, we readily see that

ZE)I;)@(‘K(M) c 590»(1 + ‘K@l,q-
Conversely, we notice that for ajle ©,

Apg C Ziihg(Ang)
with

4

1£ 50 7,00 < IF1z,, (20)

Sinceqg < oo there is no loss of generality if we assume tifat Ao N A1. Then from
K(t, f; A)< min{L, 1} | f1l apna, » WE iImmediately deduce that

1K (1, £ A)<h(r)

whereh(t) = 1170y 1)(t) + 17%y o, (). Therefore we can take limits ir2() using
dominated convergence[]]

2.4. Reiteration and” spaces

2.4.1. Formula for the quasi-norm in the suho,p + le,,,

As we already know from Theoren2sl, 2.3, 2.6, the X(”) space can be identified with
the sum

AIUO,[? + Awl,p’

where
+31/p"
1 Z 07
wo(t) Op<0< o M (0)
and
+41/pt
1 Z [ t? ]p
wi(t) B<0<0; M (0)

The pair of weight§wg, w1} satisfy the following properties:

wo(®) <cw1(t) if0 <t <1, wi@t)<cwo) if r > 1, (21)
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o0 dt 1/p
{/ [min(1, t)wj(t)]PT} <00, j=0,1 (22)
0
We now show that when computing the quasi-norm of the sum space

Awo,p + Awl’P’

the values ofwg(r) are important only whenis in the range O< ¢ < 1, while w1(¢) is
relevant only whem > 1. This is easy to see using a variant of Holmstedt's formula for the
Ay, p Spaces, where; are Calderén weights (compare with formula (3.9.8)6}).

Theorem 2.7. LetB; = ij,p and letK (¢, f) = K, f; A).
(i) Suppose the weightsip w1} satisfy(21), then

1/p
{ / [wo()K (¢, )17 / wiOK @, 1P } <cK( f: B). (23)

(i) Suppose the weightao, w1} satisfy(22), then
1/p R
{ / oK, 117" / w0 K (@, 17 } >cK(, f1 ). (24)

Proof. Although the proof 0f23), (24) is a standard modification of Holmstedt's proof (cf.
[5]) we shall give the details for the sake of completenessflet fo + f1, f; € B}, j =
0, 1. Then by(H;) we get:

Iz —/ oK (1, F)1P S <ell fol, + 2l
and
© d
JP = /1 un K (6, 1P <l oll, + 111l

and @3) follows. Suppose that the weightgio w1} satisfy (H2). Let f € Ag + A1 and
select a decompositiofi = fo + f1 such thatk (1, f) =~ || follag + Il flla,- Then

K(s, for <l follag<cK (@, f), K(s, f1) <sll filla, <esK (1, f).
By the quasi-triangle inequality,

[K (L f: B)I” <clll foll h, + Il f1ll ]
and

cll follg, < /[wo(S)K(S Wl /[wo(S)K(S fl)]p

+ /1 [wo(s)K (5. fo)]?
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From
1 dt 1 ds 1 dt
/0 oK 1, f1P " < fo [swoIP KL NI < /0 oK (1 17
and
s o0 o pdt
[ ook oS <e [T ik <l O,
! rooh s Joliwo()]P 4t
we obtain
el foll g < 1.
Analogously,
p 1 pds o0 pds
clfilly, < [tk P+ [ ke e
0 N 1 Ky
o0 d
+ f [wi)K (s, fo)1P L.
1 N
Since
o0 d o0 d
/1 [aOK (@, fol7 L < ¢ /1 a1 KA P
o0 dt
<e /1 a0k @, 17
and
1 dt 1 ds [ w1 &
K (t, P PK(, P A 2t gp
/0 K @ P < /O suel UKL DI <o St
we obtain

cll fallg < J.
The proof is complete. O
In our applications we shall need a variant of Theo&mConsider the weights; (1) =

0@+ Intp%, 0< by < 01 < 1, c¢j € R, j =0,1 These special weights satisfy
the following conditions:

LT ug(r) 770 dr T uq(r) 1P de
/o [ul(t)} PR /1 [uo(t)} 7 o0 0=popi=eo (29)
/ [min(1, t)uj(t)]p-f? <00, j=0,1, (26)
0
K@, fi H<clu;O1 Y fllg;, j=0.1, (27)

whereB; = Ay, p;-



60 G.E. Karadzhov, M. Milman / Journal of Approximation Theory 133 (2005) 38—99

Theorem 2.8. Let B; = Ay, p,. letK (¢, f) = K(t, f1 A).
(i) Suppose that the weighftsg, u1} satisfy(25), (27), then

1/po
! d o0 dr Y
{/0 [uo(H) K (z, f)]pOTt} + {/1 [ur(HOK (¢, f)]m?t}

<cK(1, f; B). (28)

(i) Suppose that the weighiigo, u1} satisfy(26), then

1 d 1/po 0 gy
{/0 [uo(f)K(t,f)]”OTI} +{/1 [Ml(I)K(T,f)]pth}

>cK(1, f; B). (29)

Proof. To prove £8) we argue as above. L¢t= fo+ f1, f; € Bj, j =0, 1. Then using
(25),(27) we find

' 1 Po
c / oK (6, AP < foll2 + A2l / [”OU)} &
0 ! 0 t

ur(t)|

and

* d 00 rr g
¢ fl a K (6, 1< + 1ol /1 [”1(”} =

ug(t) t

The proof of formula 29) is exactly the same as the proof of formuda)Yand we omit the
details. The proof is complete.[d

2.4.2. Normalization and uniform formulae for tiefunctional _
In previous sections the uniform equivalence of normsipf, and Ay ,.;,0 € © =

(0o, 01), 0 < Op < 01 < 1, plays afundamental role in the calculation&é? . In particular
it allows us to use a Fubini type of argument for the computatio}jﬁg))f (M(B)Ag,p).

We can computé?g) (M(H)Ag’q) for someg # p if the functionM is tempered. Using
reiteration the problem is reduced to the cise= 0, 0; = 1. Then it is very useful to
normalize the norms of the interpolation spaces 4&Ti

<AJ,1,> = cgﬁpgg)p, O<o<1l O0O<p<oo,
where

1/p’

co.p = lo(1—0a)p] ||f||<gw) =copllfilz,,

with the conventioro/>® = 1.
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We have the norm one embeddings (&7, p. 19]10):
<A,,_J,,> - <AO—,,>, r=p. (30)

Example 2.1(cf. Milman[22]). Note that with this normalization the? spaces can be
obtained by the real method

(LY, L®)1/pr p) = LP (31)

with norm equivalence independent of

The following sharp version of Holmstedt's reiteration formula [t, formula (3.15),
p. 33) will be useful in what follows!!

Lemma2.1. Let A = (Ag, A1) be a quasi-Banach pailet0 < 0p < 01 < 1, 0 <
go<g<o0, Bj = <A'9j,q>,j = 0,1, a = 01 — 6p. Then with constants of equivalence
independent oflp, 01, g,

K(t, fi B) = cpyq i /O

o0 o ds Ve
791 . q S
+tC()1.q (S K(Sv fv A)) -
t1/a K
+ 170K (M, f; A). (32)

tl/x

1/q
(K (s, f; A)?%S }
S

The following two variants of Lemma.1are also needed in the sequel.
10For example, to prove the cage > 0, r = oo, which we use in the proof of Theore.9 be-

low, we write /7 = [g°[s 'K (s, HI1P9S, 11 = fIs™0K(s, HIP 1 = [ClsOK (s, /)14 Then,
(@@= OMPOYPpt/P 1P = (1= 0)0p(iy + Ip).

Moreover sinceX (¢, 1)/t decreases,
(1—-0)0pl=0K(t, P17,

and sinceX (¢, f) increases,
A= 0)0pIa =1L —OK (@, [)P17P.

Thus for allz > 0 we have
A= 00pl+A—0)0ply > K1, f)P1~",

so that for allr > O,
[(@—0MPoYPptP P >k, e,

and the required inequality follows.
11The proof follows the original Holmstedt argument.
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Lemma2.2. Let A = (Ag, A1) be a quasi-Banach pailet0 < 0 < 1,00 = 1 — 0,
By = (Aqu>, By = A1. Then with constants of equivalence independer,af,

K@, f; B)~ ¢y, {/O

Lemma 2.3. LetA = (Ag, A1) beaquasi-Banach paitetO < o < 1, By = <ZM>, Bo =
Ap. Then with constants of equivalence independent,af,

tl/x

1/q
7K. f: A))"ds_s} + 1KY fA). (33)

00 1/q
K(t, f; B) = cyqt { f (sT*K (s, f; K))f'd—s} + K@Y*, f; A). (34)
11/a S

Proofs of Lemmas2.2and 2.3 We only give the proof of Lemma.3 since the proof of
Lemmaz2.2follows the same argumentutatis mutandis_et

ds Y
T

I :=cq 4t {/OO(S%K(S, f; K))q
11/n

We now estimate each of the terms on the right-hand sid84)f Consider an arbitrary
decomposition off = fo+ f1, fj € Aj, j =0,1. Then

o0

- ds 1/q
cl < coqt { (s"*K (s, fo; A))q_}
N

t1/o
00 = ds 1/q

+eoqt {/ (sT*K (s, fr; A))q—} )
11/ S

Itis plain thatK (s, fo; Z() <l follay, Whence

ds

00 1/q
I <t i t T —
cl <tllfillz,,) + cxq {/tms S} Il foll 40
< Nl follag + il A1l 4, -

Taking infimum over all decompositions we get

cI<K(, f;B). (35)
To estimatek (+Y/%, £; A) we use the trivial estimate (d5])

K, f: H<If 1z,
combined with the triangle inequality. We get

K@Y, £ Ay KV for B) + K(Y, fu: A)
< I follag + 2l f1ll 4, -

Taking infimum yields

cK (Y, f: A)<K(, f; B). (36)
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Combining @5) and 36) we obtain the required lower estimate &z, f; é). To prove
the upper estimate we use Holmstedt's argument. S¢lea A;, j = 0,1, such that

f = fo+ frandK(, f; A) ~ || follag + 11l fill a,. Then
K (s, fo: A) <l follag <cK (Y%, f; A), (37)
K (s, f1; A) <5l filla, <cst Y K @Y%, f; A).

Therefore,
1/q

g T,
t”fl”([;'w) = ICyyq 0 s K (s, f1, A) T
i ds | §
< C;x’qf {C/ S(la)q_} t*l/%K(tl/O(vf; A)
0 s

0 . o ds Ve
+Co,qt {Cftl/xs_“q[l(q(s, 3 A)+ K9G, fo A)]?} .
Combining with @7) we get

tlfull g, ) Sed + K@Y, f5 A)),
concluding the proof. [J

The next corollary will be useful in the applications.

Corollary 2.1. If 0 < 6 < < 1,then

(Ao, AD)g,p) C Ao+ ((A0, AD)yp) . (38)
In particular, if péyg then

585 (((Ao. Ap) € Ao+ ((Ao. Anyp).
Proof. Using 34) we derive

(4o, (40, A1)y p))
whence

(Ao, Ava.p) < ((40, (A0, AD)y.p))

a/n,p = Cﬂsp(l - U/ﬂ)_l/p(A& Al)a’,py

J/,“,> C Ao+ ((Ao, ADp.p).
We now show that for the normalized real interpolation scales the second index is not

important in the computation (ifgg’)l) (M(a) <KW>) (cf. [17] for the casg = 1).

Theorem 2.9. LetA = (Ag, A1) bea guasi-Banach pair. Suppose tiéto) is tempered.
Then

2 (M@ (4s)) = 28 (M@ (4s.4))
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Proof. By symmetry it is enough to consider the case ¢. Under this assumption the
embeddingZEgy)l) (M(o-) <Xg,q>) C ZES’)D (M(o) <KG,,>) follows directly from @0). It
remains to prove

) (M(o) <XG,,>) czw (M(a) <AM>) . (39)
It is enough to consider the extreme case: co andg > 0. We will show below that

<Iz{o~,oo> C <Ag/z,q> -+ <f-1)20—,q> ., o~0, (40)

<Aa,w> C (‘220’—1,(1> + (g(1+a)/2,q> , o~1 (41)

SinceM is tempered, these inclusions combined with Ren2aBkield 12

bk (M(G) <Ao,w>> c zly (M(U) (gG/Z,q>> +20 (M(G) <Kza,q>)

+ I0F (M@ (A2-14)) + Z0F (M@ (Aaior/2q))

SN (M(a) <A},q)) .

Therefore the theorem is proved modu@)and @1).
To prove @0) suppose that ~ 0, and letdy = ¢/2, 01 = 20, andt = 1 in (32); then

1 ds Ya
~ —0/2 C A=
||f||(ga/2.q>+(1§2(r,q> Ca/2,q {,/(; [S K(Sv fv A)]q P }

o, . dsYa
reang | [P RO DI, iy @2
We estimate each of the three terms on the right-hand sid&2pfl{ is clear that

I ageas < 1Nz, - (43)

Moreover,

1/q 1/q
! —a/2 71g ds ! —c 7 1q.0q/298
Ca/2,q A [s K(s, f; A7 = Cg/2,4 A [s7°K (s, f1 A)]1s7 s

s
< copaq 1N, (qo/27H4

= A=0/2Y 1z, -

12 By abuse of notation we us®, g to indicateXg, .
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For the second term we have

%0 R Yq %0 R A
C20.q {/ [s"K (s, f; A)]q?} = C20,4 {/ [s°K (s, f; A)]qs_"qu—g}
1 1

1/q

1/q

< c20q 1f115,,, (09)"
= [2(1 - 20) 17z, )

Inserting these estimates 2) we find
||f||</;0/2’q>+<gzg)q> <c IIfII(Am>-

To prove @1) we proceed similarly. Let ~ 1,00 =26 — 1,01 = (1+0)/2,andr = 1
in (32). Then,

|If||(~

A20—l,q)+<g(l+a)/2.q

L ds v
) cas-1g { /0 [s~2 K s, f; A)]qT}

o0 1 2 N ds 1/q
+¢(1t0)/2,9 { / [s~AFD2K (s, f; A)]q?}
1

A1 gt ay -
Each of these terms can be estimated as above. For example, the second term yields

 —(to)2 g ds |
C(1+0)/2.q {/1 [s777 K(s,f;A)]q?}

* - ds 1Y
= C(140)/2.q) {/1 [s77K(s, f; A)]4S4(0/2—1/2)T}
<(@+a) /M 1705, )

So that all in all we have

||f||(~

A1/2,q>+<g(l+o‘)/2,q) gc ||f||(A'Goo> ’

and we have established). The theorem follows. (]
The same proof gives the following result
Theorem 2.10. Let M (0) be tempered o0, 1). Then
b0 (M(e) <29,r>) =z (M(H) <20,q>)
2 (M0 (A0,) = 2525 (M@ (n)).
2.4.3. Characterization aftggﬁl)(M(Q)Zg,q)

To handle the case & 0y < 01 < 1, we use reiteration and pay attention to the
dependence on the parameters.
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Theorem 2.11(Caser > p). Let0 < 0p < 01 < 1. Letog € (0,1),0 = (1 — 0)0g + 001
then uniformly ong, we have

A>(9,r Clo(1- O-)]l/p(gﬁo,p’ ggl,p)a,r, (44)
and

Aoy D Lol — )M (Agy s Agyp)or- (45)
In particular,

Aﬁ,p - ((Aeo,pa Ael,p)d,p)~ (46)

The following analogs will be also useful in the sequel.

Remark 2.13. Let0 < 0g < 01 < 1,0 € (0,1),0 = (1 — 06)0p + 001,0 < po, p1 <
00,1/p = (1 - 0)/po + ¢/ p1. Then, uniformly with respect te,

Ao,p = <(500,p01 Aal,pl)a,p> . (47)

Remark 2.14. Let 0 < 0p < 1,0 € (0,1),0 = (1 — 0)0p + o. Then, uniformly with
respect tas,

Q=07 Ay, = ((Rag . AD)s.p). (48)
Example 2.2. (i) Let L? be the Lebesgue space on arbitrasfinite measure space. Then

{(Lre, LMy, ) =LP, 1/p =1 —0)/po+0/p1, 0< po, p1 < o0. (49)

(i) Let L2-? be the Lorentz space equipped with the quasi-norm

o] d 1/P
||f||Lw={£ / [r”‘ff*(t)]P—t} :
q Jo 14

Then
(L7, L®)g,p) = LT, (50)
where Vg = (1—o0a)/r, 0 <r < o0, p=p(ao), |1/r — 1/p|<m.
(iii) The same proof also gives
(L7, L®)gp)Cc LP, 1/g=@Q—0)/r, 0<r<p. (51)

Proof of Theorem2.11 Let B; = Ao,,pv o = 01 — 0p. By Holmstedt’s formula (with
constants of equivalence dependingignp):

K. f: B) ~ {/
0

00 1/p
+t{ (s—f’lK(s,f;A))Pds—s} ) (52)

t1/o

Z1/oc

1/p
"MK G, f; K))ﬂds—s}
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Then, using Minkowski's inequality far > p and a change of variables, we get

e - dt
/ K" (¢, f; B)—
0 t

00 tl/oc
~ / —or /
0 0

+ / z“—")’{ (7K (s, f1 A)P— }
0 1/ l
00 r/p
2/ add {/ (st ~0or g (st A)f’ds} ?
0

/p
+/ t(l o‘)r {/ (stl/l)() HlpK(stl/O( f A)pds }r dtt
0
1 /
g {/ (/‘OO ar(stl/a) HOI’K(Stl/fX f A)rdt>P ' ds}
0 0 N
/
+ /OO (f t(l a')r(stl/a) OHK(stl/fx f A)r dt)p ' dS
1 0 s
1 r/p
— {/ saocpﬁ} + {/oo —(1- U)upds} /OOM—GVK(M’JC; g)rd_u
0 S 1 S 0 u
1 \'/P 1 r/p .
=|Gm) ) v

<clo@ =17 Ifllz, -

Thus @4) is proven.
To prove the embeddingth), we write

» = as )" an
(s7OK (s, f1 AP — —
N t
ds

s > dt
/ t7"K"(t, f; B)—~ 1+ J,
0 1
where
oo
= fo 17" g (r)]r/” g(t) = f s K (s, f3 A))P
and
oo o0
J = / o o i = / K. £ AL
0 t t s
If f € (Bo, B1)s.» We can integrate by parts:

1 o0
I = _/ g7~ g (1)~ %" dt.
aop Jo
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From

g () =170P7IKP (1, f1 A)

and
—0 e
1>———"—1t""PKP(, f; A),
g(1) 1= 00)p (t, f1 A)
we get
=1 r
I>co IIfII/;o_r~
Analogously,

> _ -1 o
R T
Thus @5) is proven. [J
An analogous result is valid for < p:

Theorem 2.12(Caser < p). Let0 < 0p < 01 < 1,0 € (0,1),0 = (1 — 0)0p + db1.
Then with constants that are bounded w.r.¢powe have the following embeddings

Ay, Clo@— )T (Agy p. Apy,plor-
Agr D [0 = )P (Agy p, Agyplor-
As a corollary of Theorem2.11and2.12we get

Corollary 2.2. Let0 < 0p < 01 < 1,6 € (0,1),0 = (1 — 0)0g + g01. Then for
|1/r(c) —1/p|< m we haveuniformly with respect te:

Ag o) = ((200,[77 A()l,p)ﬂ,r(0')>' (53)

Remark 2.15. If r # p andr is independen, then we do not have equality iBy). To
see this let us consider the case- co. Let f be such thak (z, A~ 1Y, wheref =
(1—0)0o+001. Thenl| f| ;, ~ 1andwe can calcula®(z, f; B) ~ 1°[a(1— o)~ Vr.

It follows that| f1|; _ ~ [o(1— )]~Y/7.

Now we are ready to prove an analog of Theote@for the case 6< 6g < 01 < 1. The
following 12 corollary of Theorem®.9and2.11is only a partial analog of Theoref9.

Corollary 2.3. Let M (0) be tempered on the intervéllg, 61) 0 < 0p < 01 < 1, and let
r > p.Then

P (MO0 = 001 — O Y Ay ) € 2P | MO)Ag,).

13Note that according to Rema8s5 and Propositior8.1 below, the embedding can not be reversed.
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Theorem 2.13.Let A = (Ag, A1) be a quasi-Banach paitet0 < 0y < 01 < 1, and let
flr/{ be tempered on the intervéllp, 01). Suppose thatl/»(0) — 1/p| < m,
en

(») A _ y®» A
Z(()Oa(}l) (M(Q)Af),r(f))) - Z(()Oa(}l) (M(H)Af),p)

Analogous results are valid for one-sided extrapolation spaces

Proof. Let6 = (1—0)00+ o0 andM (o) := M(0),7(0) := r(0),andB; := Ay, ,. j =
0, 1. Then

(p) re (p) — -
Z(goﬁl)UW(G)A@J(G)) = Z<g‘1)(M(0)A9,;(G))

= ZES,)D (1‘71(0) <§a,p>) (by Corollary2.2and Theoren2.9)

=20 (M©O)Ag,) by @6). O

Remark 2.16. In this example we show that in Theoreédrl3we cannot replace(s) by
afixedr, r > p.Infact,forO< p < r<oo,a > 0,e > 0,0p > 0,e +0p < 1, po =
(1—0p)p, L? :=LP(0, 1), we have

S @ L, L)y ) # S (0L, L) g,

Proof. Letn>n1,0 < 0 < e =2",1/g, = 1/p—2"/po,,p > a,1l/r < o <
1/p+a—p,a<1/p—e/po. Defineg2 ™", 1) =t Yin(1—Inr)~27"F 0 <t < 1. We
havellg(2™", )llzar = 27"P(ar =)~V if o > 1/r. Recallthal L?0, L%)-n g, , = LI"
(uniformly w.r.t.n >nj), therefore if we let

f =3 s@" =i Pa-Innl,
we see that
fes @ L, L) g gy ).
On the other hand, according to Theorém below
I (@ (LP, L) g0 40,,p) = LP(I0G L)

Moreover, sincef (¢) is equivalent to a decreasing function on<0r < 19 <1, and, since
o<1/p+a—f, we see that

1
gy dt
10 g >c/ (1 - Inpyeb-ord _ o
a O t
Our claim follows. [J
2.5. Extrapolation theorems fat(”) method

The spaceg” (M (0)Ap) are extrapolation spaces in the following sense.
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Theorem 2.14(X extrapolation theorein Suppose thatAy}pco and {Bp}yco are com-
patible scales of quasi-Banach spaces and'lgf ) ¢ 25 be a continuous linear operator
such that its restrictiorf" : Ay — By is bounded with| T || 4, g, <1forall 6 € @. Then
T defines a bounded linear operator

T:2P(M(©O0)Ag) — ZP (M(0)By).

with ” T ”Z(p)(M(U)A(.;)—)Z(P)(M(())Bg) g 1

Theorem?2.14 requires that the operatdr be ab initio defined on some larger space
than the extrapolation spag&”’. However if this assumption does not hold we can, under
suitable conditions, extend the operator. This is the content of the next result

Theorem 2.15. Let T be a bounded linear operatdf : 20,,, — By, with ”T”Ag B
P

<1,0<0p <0 <01 <1,0< p < oo. ThenT can be extended as a bounded linear
operator

A (p)
T:App— 2(90,91)(M(0)B0).

Remark 2.17. In addition, if the spacézg; 91)(M(0)B0) has the lattice property:

IfI<lgl=lfII<llgll,

then the previous extrapolation theorem holds for sublinear operators, i.e. we only need
to assume that the operatdrsatisfies|T(f)| < >_|T(f»)|, wheneverf = Y f, with
fn € AoN A1

Proof of Theorem 2.15 We remind the reader that* is a Calderén weight. Therefore
for p < co, ApN Az isdenseim,« ,. We may thus assume without loss of generality that
f € Ap N A1. Then we can find a decompositigh= Zﬁi_oo fv. Wheref, € AgN Aq,

is such that/ (2", f,; A)<cK (2", f; A), v € Z. Consider the sequenfd = 2 pi<n Srs

and the partition of the unit),, ,} we have used in the proof of Theorén3. In particular,

we have) , ., ¥, , = 1. Then,

TN =Y T =) T| D Vush

[v|<N nel [v[<N

Therefore,
P

Ny 1?2 -
I sy <cZI Mall 3 Ynnfillz,,
ne

. V<N

<e Y Y 27 M T2, i, ;DI

nel |v|<N
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<e Y IK@.f AP (M2 0y, 10

[v|<N nel
<e ) @K@ A W/ P
[v|<N nel

As in the proof of Theoren2.3, the sum over the set of indicdsis bounded by some
constant, therefore

TN <c Y @K@, £ AP,

=P (M©O)B
GOle( () (}) |V\<N

A similar estimate also holds for the differerieef V1) —7'( £ V2). Consequenthyf (fV) —
gin theZEgg 01)(M(9)B9) quasi-norm. On the other hanfy — £ in Ag,p for some fixed

0, whencel (V) — T(f)in By, and therefor@ () — T(f) aIsoinZEg; o, (M (0)By).
Thusg = T(f) and the theorem is proved[]

The following corollary will be useful in applications.

Corollary 2.4. Let0 < g < 1,0 <o <o < 1,0 < p<yz.LetT : Agyys, = Booo
be a bounded linear operator wiﬂhT||/;0 o B <M (o) for all o. Let w;;, O<o<
o+a.p 7,00

n < a, be the corresponding weight functiart, i.e.

«y 1/p*
1 tOo+a|” /p
Z ,t > 0. (54)
0<o<

wiD) M(o)
ThenT can be extended as a bounded linear operator
T : Ays.p — Bo+((Bo, B)y.p)- (55)

Proof. Direct consequence of Theoréri5and Corollary2.1. [

3. A’» methods of extrapolation

In this section we turn to the construction of the”’ methods of extrapolation. As in the
case of thex(” methods, we shall consider continuous and discrete definitions.

Let0 < p<oo, 0< b < 01<1, © = (0o, 01), and suppose thafy [M (0)17d0}/P <
oo, whereM (0) is positive and continuous on the intervdl Then we let

AP (MO)Ag ) = AP (M(O)A )

=1re ﬂ Agp: ||f||A<p>(M(9)A0,p) =%
0c®
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where

1/p
1 a0 arcy g ) = { /@ (MO £ /;O_p]"de} .

It follows that for 0< 6y < 01 < 1 (in general the spacé'”’ could be trivial),
AgN Ay C AP(M(0)Ap, ).

Replacing integrals by series we can give a “discrete” definitiod @ methods. Let
o= 00+ 27", f = 01— 2" be sufficiently close t@y andf; respectively. Suppose that
[T peo IMO)P}? < 0o, Let

56 MO Agp) =1 f €[V Ao,p 1F s o), ) < oo} ,

nel
where
1/p

o Y
1 50y, = 1 22 IMOIF1, ]
0e®

In a similar manner we define one-sided spaces. Indeed suppose[Zh@et(eo ]

1
[M(G)]P} v < o0o. Then we let

St MO0 =1 F € () Aoyt 1 g0y, <

n>=ny
where

1/p

R - 5 p
I 0w,y =1 2 MOISfI5,,]
e (00,21

1
Analogously, suppose th%gee[ﬁ’gl) [M(G)]P} ! < 00. Then we let

(p)+ e _ e . .
O, MO Ag ) =11 € () Agp: 1 0 oy, ) <O -

n<ng
where
1/p

150t o, =1 2. [MOISfIz, 17
Oe(B.01)

As was the case for thE/”) method, we now show that only the behavionstd) at the
end points is important.
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Remark 3.1. For anylp < o < f§ < 01 we have

AP (M(O)Ag ) = AL (M(O)Ag ) O ALY (M(O)Aq, ). (56)

Proof. Itis plain that

()
A() 01

(M(©0)Ag,p) = A (M(O)Ag ) N ALY (MO)Ag ) N AT (M(O)Ag ).
Hence it is sufficient to prove that
AR (M(O)Ag ) N ALY (M©O)Ag ) C ATHM(0)Ap ). (57)
SinceM (0) is continuous we see that
A(p)(M(H)A )= A(p)(A »)
and the space on the right-hand side can be computed explicitly by R&ndo&low:
ATY(Ag ) = Aw,p N Awypy Wolt) = 7L [Ine )72, (58)
Therefore,
A(P) (MO)Ap ) C AP, (A ) = Aw, ., N Aw,,

and

A (p)

DLMORg ) C AL (g ) = A, 0 Aw,.

B.B+e
Hence

AP (MO)Ag ) N ALY (M©O)Agy) C Aw,, 0 Aw, .
Thus 67) and henceq6) are proven. [

Analogous result is valid for the discrete method.

Remark 3.2.

05 (MO0 p) = 33y ) (M(O)Ap,p) NG, (MOAp,p).

Proof. We proceed as in the proof of Rema&M§, but now instead of48) we use
5(”)(A9 ) =AspNAg, O

Remark 3.3. We can apply the1” construction to any scalgdg}gce Of compatible

guasi-Banach spaces, i.e., such that there exist quasi-Banach dpaard> 4 such that

Ay C Ag C 24, and the quasi-norms of the embeddings are uniformly bounded with
respect td) € O. In this fashion it follows that1” (M (0)Ag) D A4.
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Remark 3.4. Let {Ay} be a scale of quasi-Banach spaces satisfying
Ag D Ay N A, a<0<p.
Then

(p) (p)— (p)+
g (M(O)Ag) =4 (M(0)Ag) N 555 (M(0)Ag).

Analogously to RemarR.5we have the following result about equivalency of continuous
and discrete definitions. Namely, if the p@dry, A1) is ordered and the weigM (o) satisfies
the same property as in Rematl, then

AL (M@)o M Ay ) = 800 (M(0) A ).
3.1. Characterization ofl”’ spaces

Using Fubini and the definition of thE-method of interpolation, it is readily seen that
AP (MO)Ag, ) = Aw.p, (59)

where the weight functioW is defined by the formula
1/p
W(t) = {/ [tf’M(e)]Pde} . p <o, (60)
o
W(t) = supt‘(’M(H), p = o0.
0

Note also that for a constant scale we have
AP (M)A = A.
Analogously for the discrete constructions we have
S (M(0)Ag ) = Ay, (61)

where the weight functiol is defined by the formula
1/p
V(t) = {Z[f"M(e)]P} . (62)
2)

Of course, ifp # ¢, Fubini is not available for the computation df” (M (0)Aj.,),
but we can get around this obstacle if the weighttd)) are tempered and the scales under
consideration are normalized. Our next result extends a reqdifjrior the case = co.

Theorem 3.1. Let M (0) be tempered on the intervéd, 1). Then

AL (M(@) <AO,,>) = A7) (M(H) <Ag,q)) .
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Proof. Without loss of generality assume tlyat- r. In view of (30) it is sufficient to prove
the embedding

A0 (M0 (Ap o)) < 48 (MO (Ay,)) -

We have
p

1 00 1/r
p NN M0 f “Orgrt, fd ) 01—0)r1¥" | do
”f”A;;g@(M(m(A(,,,)) /0 [ ( )( ) t (t, Hrde/t) [0(1-0)r]

1 1 1/r
+/ |:M(€)) (f k@, f)dt/t)
0 0

=1+11.

p
[0(1—0)r]Y } do

To estimatel we make the change of variablés= 2¢

1/2 i oo o dl 1/}’ p
I = 2/ MQ2E)[(L1 — 28)2r1MT (/ XK@, £ A)’T) ] dé
0 1

y2[ . - © o di\""]"
<2 f M@EOIA-28)2Er1Y" [SUPF;K(”f ;A)} (/ fg?) ] de
0 ! !

T 1 r
=2 fo MEoIA-292" 111115, | dé. (63)

SinceM is tempered and continuous we can repla@%) by M (&) in (63). In this fashion
we see that

1
I<c /O (M) 11 £15, 17d0.

The terml I can be estimated using a similar analysis. First we gplie L1 + Lo, where

p

12 1 r
L1 =/ M) (/ t‘”’K’(t,f)dt/t) 01— 0¥ | do,
0 0

1 1 1/r r
Lo :/ |:M(9) (/ K@, f)dt/t) [9(1—0)r]1/r} do.
1/2 0

The estimate of_; is the same as fof. To estimatelL, we use the change of variables
0 = 2& — 1. Thus we obtain

1
1< [ @171, 1o
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Combining these estimates we find

”f”Agf@(M(O)(K(;,,)) <c ”f”Ag‘;9<M(0)<K(;m))
as we wished to show.[]

For future applications we now state and prove a discrete version of Thebig(ef.
Theorem2.9above).

Theorem 3.2. Let0 < p, g, r<oo, ® = (0, 1), and letM (0) be tempered on the interval
(0,1). Then

50 <M(6) </K@,r>) =0 (M(@) </¥9,q>) .

Proof. As in the proof of Theoren2.9it is enough to consider the embeddings at the end
points. More precisely, it is sufficient to prove the following embeddings:

Agjz.00NA2p0 CaY As, ifG~0 (64)
and

A2o-100 N Adtoy2.00 C A=) As, ifo~1 (65)
In turn (64) and ©5) will follow from

z‘{a/z,oo N Aza,oo C (Aa/z,oo, AZJ,oo)l/S,r
and

AZG—l,OO N A(l+0)/2,oo @ (AZG—l,ws A(l+c7)/2,oo)2/3,r-

Indeed, letBy = Ay/2,00, B1 = A2s.00, then by Holmsted's formula we get

K. fi By>ct PR (%, f1 A),

whence
o] R S 2 -
/ t7"RK"(t, f; B)ydt]t > cf tT2RK (13, £ A)dt/t
0 0
S -
= ca/ t77K"(t, f; A)dt/t.
0
Therefore,

(AO'/2,003 A20‘,oo)l/3,r - Jl/rAa,r~

Analogously, ifCo = Zzg_l,oo, CL= K(Hg)/z,oo, then

20—1

K(t, f; 5)>ct_% 1=o K(t%?lﬁ, I3 A).
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It follows that
(A26-1.00, A(l+0)/2,oo)2/3,r C -V Ay,

The same proof gives[]
Theorem 3.3. Let M (0) be tempered on the intervé, 1), and letO < 0g < 01 < 1.Then
40, (M(H) <59,,>) =40, (M(e) </§0,q>) :
AR 1 (M©) <A’9,,>) =4P (M(@) <Kegq>) .
In the case O< 0y < 01 < 1 we have

Theorem 3.4. LetA = (Ao, A1) be a pair of quasi-Banach spacesd letM be tempered
on the intervalfp, 01),0< g < 01 < 1, |1/p —1/r(0)|<c/|In(0 — Op)(01 — 0)|. Then

AP (MO Ag, ) = AL (MO A, ).
Analogous results are of course valid for one-sided spaces or the discrete method

The analog of Corollarg.3is

Corollary 3.1. Let M (0) be tempered on the interv@l < 0y < 01 < 1, and letr > p.
Then

A (MO0 — 00)(01 — O P Ay ) € AD (M (0)Aq ).
The following example shows that in general Theoi&dis not true ifr # p is fixed.

Example 3.1.Let L? = LP(0,1),0 < p < r<oo,a > 0,0 <e <01 <1, po =
(1—01)p. Then

AES’)S)(O_a—l/p(Lpo’Loo)el_o_’p) £ AES,)s)(O_a—l/[J(LPO’ Loo)ﬁl—a,r)'

Proof. Leta > 0,1/r < a —a < 1/p. Define f(r) = TP —-InnH%0 <t < 1
According to Theorem.7 below

AEg’)g)(O_ufl/p(LPO, LOO)(Il—a,p) = L”(logL)_,

and

p ! (—a+a)p dt
”fHL/’(lOgL),ﬂ = 0 (1—Int) T = 00.

On the other hand(L?°, L)y, _,, = L%",1/q = 1/p + o/po (uniformly w.r.t. to
g € (0, ¢)). Therefore

1 | dt 0
i~ [ o _ [~ s s
0 1
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Consequently
£
||f||” %/ O—(M*afl/V)Pd_g < 0.
Aig’)g)(a”*l/P(Ll’O,Lw)gl,a,) 0 o

We also have (cf. Corollar$.1) [

Remark 3.5. Let L? = L?(0,1),0 < p < r<oo,a > 0,0 < ¢ < 01 <1, po =
(1—01)p. Then
AL (@Y grHP(Lro L)g o ) # AR (0P (L, L), ).

Proof. Let 1/r < « < 1/p,1/p —a < a<1/p — 1/r. Define f(r) = t~ /71 —
Int)™*, 0 <t < 1. According to Theorerd.7

AES,)s)(Oﬂ_l/p(Lpo’ LOO)Bl_O_’p) = LP(logL)_,

and
1 dt
1A 1ZpdogLy . = / (L—InpTrF9P— < oo,
a 0 t

On the other hand(L?°, L)y, _,, = L%",1/q = 1/p + o/po (uniformly w.r.t. to
g€ (0,¢)) and

1 dt 00
”f”}iq) ~ / gr0'|nl/po(1 _ |nt)—otr7 — f ero’(l—s)/pos—ocrds ~ 1
0 1
Hence

&
I £1IP ae/ e @tYr=Prggie = co. O
0

A (@ YPGUr=Yp(LPO, L)) )
Now we characterize thé”) spaces in the case = 1.
Remark 3.6. Let 0<0p < 01 <1,W;(r) = t=% (14 |In¢[)~Y/?, j = 0, 1. Then
AP (Ag.,) = Awe.p N Awyp-
Proof. Use 60). O
Here is another variant:
Remark 3.7. Let 0 < 0g < 01 < 1. Then for O< ¢ < o0,
A8 (Agg) = Aggy N Apyy-
Proof. SinceAg,, = ((Bo, B1)s,q), 0 = (1—0)0g + a1, Bj = ng,q, we have

A5 (Ag.g) D Aggy N Apyg-
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Conversely, note that for afl € (0, 01),
114, SIFI 400,

We complete the proof by means of lettifig— 0;, j = 0 orj = 1 (if ¢ < oo we use
Fatou’s lemma). O

An analogous result, with similar proof, is valid for the discrete method.
Remark 3.8. Let0 < 0g < 01 < 1. Then for 0< g < oo,
55;0)(149,[]) = AHOJ] N A91,q'

As we have seen, th¢”) space is an intersection of two “end” spaces,
AP (M0)Ag, ) = Awe.p N Awyps (66)
where the weight$Vp, and W, are given by

o 1/p 01
Wo(t) = {/ [t_eM(B)]”dB} . Wat) = {f [t_eM(B)]”dB}
B

o

1/p

These weights satisfy the following properties
Wi(t) <cWo(t) if r > 1,
Wo(r) <cWi(t) if0 <t <1

It follows that
1/p

)t o opdt - dt
180000, ~ | [ OK @S DS+ [ 000K @1 D1

Therefore in the computation WC”AWO SN AW, the weightW1 () plays a role only for in
s 1.P
the range O< t < 1 and the weighWy(z) plays a role only for > 1.

3.2. Extrapolation theorems

We now write down a prototype extrapolation theorem for #4#¢' method (analogous
results are valid for the discrete methods).

Theorem 3.5(4 extrapolation theorein Suppose th&tAy} and{By} are scales of spaces
such thatdy C Ayg C 24, Ap C By C Xp uniformly with respect t@ € @. LetT be an
operator(not necessarily linegrsuch that?” : Ay — By is bounded with quasi-northfor
all 0 € @. Then for all functionsM (0) such that{ [, [M (0)17d0}Y/? < oo, we have

T : AP (M@O)Ag) — AP (M (0)By)

with quasi-normi.

In the applications we need some variants of the previous results.
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Corollary 3.2. Let0 < g < 1,0 < ¢ < & < 1,0 < p<y, and letT : Ay, , —

Bs.00, be a bounded linear operator Witjhl"nf;v . <M (o) for all ¢. Let wf; be
0to.p

given by

1 tloto AR
w;;(t): > [M(G)] , t>0. (67)

— Bs.o

O<o<n

ThenT can be extended as a bounded linear operator
T AG) NI Ausp) > 4G (Vo) (Bo+ (Byp)) ) - (68)
Proof. Use Corollary2.4. O

In our applications to the theory of log Sobolev inequalities we shall need still another
type of extrapolation theorem involving theand 2~ methods.

Theorem 3.6(4 — X extrapolation). Let{Ay} and{By} be scales of Banach spaces such
that 44 Cc Ay C 24, and By C Xy uniformly with respect td) € (0, ¢). Suppose
that {7'(0)}pe(0,¢) is a family of bounded linear operatqr§'(0) : Ay — By and let
IT1la)—B5, = M(0), 0 € (0, ¢). Suppose tha¥/ (0) satisfiesfg M(0)d0/0 < oo, and let

T be the operator defined aty by T = [; T(0)d0/0.Then(i)T : 44 — Xpisabounded
operator (ii) Suppose thaV (0) is a positive function satisfyinigy, [N (0)1~7" d0/0}Y/7" <

00, {JgINOMO)]P 1P < co. Then if A, is dense 45 (MO)N ()07 Ag), it
follows thatT has a norm-one bounded extension

T:AES’)S)(M(B)N(H)H*””AH)—>/O (N(0)By).
p,v.e

Proof. Follows immediately from the definitions.OJ
3.3. Duality
Now we give a duality result

Proposition 3.1. Let A be a Banach pair and let<p < oo. If Ag N A7 is dense in
Aj, j=0,1andA* = (A{, A}) is the dual pair then

* -1/p*
2 _ A2 A*
{/{)OE(M(G)AH@O,,;;J)} = A(o,g) < M (o) Ao+00,p*>'

Proof. According to RemarR.7, the left-hand side is the spa{;@v,p;J}* = A% .. where

h!p* I
(cf.[6]) h(z) = v(ll/t)‘ It remains to apply formulas).
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4. Computations
4.1. P spaces

Let M(0) = (0 — Op) (01 — O)—1, aj >0, j =0,1with 0< 0p < 0 < 01<1 (and
a;j>0if p<y,). Our first goal will be to characterize th#”) extrapolation spaces for the
scale{M (0)(Ao, A1)y, }0co- We will then apply the general results to explicitly compute
the corresponding”’ extrapolation spaces for pairs bP spaces.

To apply the results of previous sections (e.g. Theor2@)2.3, etc.) we need to compute
the weightgwg, w1} defined by,

- 4 1/q
t
[wo)™t=1 > WS ,0<i<1,
Op<O<a L J
- T4 1/q
_1 t
[wiol =1 Y o) 1> 1,
p<0<0, L i

wherel* ¢ = pt org = co ando = 0g + 27", f = 0, — 2", whereng < 0, and
n1 > 0.

We shall treat in detail only the cage< oco. The necessary modifications for the case
g = oo are left to the reader.

It is readily seen (by monotonicity) that

o
o / 1990 — 06)™4 140 < [wo()]
0

0

o — 2—n1—1

ISY}
Il

o
gczf %0 — 09)114q0, 0<t <1,
0

0
and

01
c1 //3 t%(01 — )17 dO < [w1(1)] 9
01 .
<02/ ¢V (01— H)alqilde, t>1, pf=p+ 2no—1,
B
By a change of variables we have to calculate the integrals:
[40]
/ t00a04 5000105 0 <t <1
0

and

o1
/ ta=0agma-1gs ¢ o 1
0

14 see (0).
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Setl = ¢|In¢|,thent — ocoast — 0ort — oo. We have to find the asymptotic properties
of the integral

C
1, a) = / e g9 14,
0
We have
I(J,a) ~ ",
Therefore, for near 0,
[wo(t)] ™ ~ %09 In¢| =904,

it follows that

wot) ~ (L—Inp)%t% 0<r <1 (69)
Similarly,
wi(t) ~ (1+1In t)alt_gl, 1<t <oo. (70)

The previous discussion leads to

Theorem 4.1(2") spacé. LetO < g < 0 < 01 < 1,0 < p<oo,q; > 0,i =0, 1. Let
wi(t) =@+ |Ine)%e=%, j=0,1. Then

P ((0 = 00)"(01 — 0) (Ao, ADg.p) = Aug,p + Aun,p-

Remark 4.1(2%”) space0 < p<y;). If0 < p<y; thenp™ = p* = oo and the same
proof shows that Theores 1remains valid fou; >0, j =0, 1.

Analogous results are valid for the one-sided extrapolation spEé&s and~(?*. For
example,

Theorem 4.2(2P)~ spac@. Let0 < 0p < 0<0,0 < p<oo,a > 0, wo(r) = (1 +
IIn¢))%¢=%. Then

(p)— - A A
T (0~ 00)" (Ao, AD)gp) = Augp + A p.

Proof. We only need to compute the weight
1/q
wol =1 > "0 - 001 ,l<t < oo.

Op<0<

Letg < oco. Sincex = 0p + 27"t and0, — 0p = 27" we need to estimate:

It := Y 1790, — 00", 1> 1.

n=ny
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We have
1) =1% %" 42" gmaan
n=ny
— tqf)ozfqanl Z tqZ’"lZ’k quak
k=0
— s4009—qany q27"1 Z 1427127 * =1 o—qak
k=0
= 197279 (1),
where
g(t) == Z tq2_”1(2_k—1)2—qak_

k=0

Sinceg(r) ~ 1 forr > 1 we getw(r) ~ t~*if t > 1. The result follows. [

Theorem 4.3(27) spacd. LetO < 0g < 0 < 01 < 1,0 < po<p<oo,a > 0,b > 0,
1/r; = (1—0;)/po,i = 0,1. Let Q be ao-finite measure space and let?0, L*°) =
(LPo(Q), L®(Q)). Then

2P0 — 00) (01 — )P (LP°, L™y, ,) = L"™P(log L), + L7 (log L),

where the logarithmic Lorentz—Zygmund spaéé$ (logL),,0 < p,r<oo,a € R, are
defined by the quasi-norfuf. [4])

o0 dr Y
I fllzrraogr), = {/(; 1+ |nl|)aptp/r[f*(f)]p7} .

Analogously
Theorem 4.4(2")~ spac@. Let0 < 0y < 0 < 0,0 < po<p<oo,a > 0, 1/rg =
(1 —0o)/po, 1/r1 = (1 —a)/po. Then

T, (0 = 00) (L™, L®)g ) = L' (log L), + L™7.

Proof of Theorems4.3and 4.4 It is sufficient to prove that for &< <1, w(r) = (1 +
Ine)*=0, 1/r = (1~ 0)/po, p> po,

(LP0, L)y, , = L"P(logL),. (71)
Moreover, note that the embedding

(L0, L*®)w,p C L"P(logL)q (72)
is valid if 0 = 0. Using the well-known formula (cf5])

1/po

tP0
K@, f; L7, L™) ~ {/ [f*(s)]podS] , po>0 (73)
0
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and the fact thaf* decreases, we find

00 0 dt 1/p
c||f||<Lpo,Loe>w,p>{ /O - ”(1+Ilntl)“"[f*(t“)t]”T} .

Consequently
(LP°, L)y, p C L"P(l0gL)a, 1/r = (1= 0)/po. (74)
LetK (¢, f) = K(¢t, f; LP°, L*°). Then by {3),

/ 0P+ | I K 1, f)]f?
0

00 1 p/po dr
gf tA=0P 1 4 | Ineer (/ [f*(stpo)]pods> —
0 0

Applying Minkowski’s inequality (recall thap > pp) and making the change of variables
stP0 = g we get

/ 0P+ [ In e PLK (1, f)]/’?
0

' - do\ Po/P
¢ / < f o?" (14 |In(a/5))*’[ f*(a)]PF) -1y
0 0

Now we use the elementary inequalities

p/po

1+|Ine—Ins|<@+|Inag])(L—Ins)
1+|Ine—Ins|>A+|Inep@A—Ins)™, 0<s <1,
to conclude that

p
C” f” (L[)O’Loo)w »

00 do 1 r/po
< / [f*(@)]Pe?/"(1+ |In a|)”P7 [/ s 11 —1In s)'“lpds:| )
0 0

© do
<c [ 1 @re @ oy L.
0 g
Therefore
(L, Loo)w,p o Lr’p(|09 L)a, 1/r =(1- 6)/!’09
which, combined with{4), proves the desired result]

Remark 4.2(2" space0 < p = po<1). If 0 < p = po<1then we can chooset =
p* = oo and the same proof shows that Theo#@remains valid fow >0, b >0.
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4.2. AP) spaces

Let M(0) = (0—0p)*~YP (01— 0)1=YP a; >0, =0,1,0 < p<oo, with0< g <
0 < 01 < 1. Inthis sectionwe compute the extrapolation spatey M (0) (Ao, A1)¢, » }oco-
We then apply the general results to explicitly compute the correspordihgxtrapolation

spaces for pairs af” spaces.
According to 66) if p < oo (the casep = oo can be treated analogously)
AP0~ 00)°~ Y7 (01 = 0P Ay ) = Awo.p O Awyps

where

o
[Wo()]? = /0 (0 — 0g)*P~1(01 — H)alpfltfepdg,
o

01
[W]_([)]P — / (0 _ Qo)aopfl(gl o 0)“”711‘7917(19_
B

Moreover, by the discussion that follows Rem&tBwe only need to compute the weight
Wo(¢) fort > 1 and the weighW1(¢) for0 < ¢ < 1.
The arguments we gave during the course of the proof of Thedréshow that
Wo(t) ~ t_00(1+ Inp)= if 1 <t < oo,
Wi) ~t @ —Inp)™™ if 0 <t <1

Thus we have

Theorem 4.5(4”) spacg. Let0<0p < 0 < 01<1,0 < p<oo,a; > 0,i = 0,1, W;(r)
=@+ |Ins)~%:7 %, j =0,1 Then
AP (0 — 00y~ YP (01— )P Ay ) = Awe,p N Awyp-

Remark 4.3(4 spacd. If p = oo the same proof shows that Theordn® remains
valid fora; >0, j =0, 1.

Analogous results are valid for one-sided extrapolation spaces. For example,

Theorem 4.6(5”)~ spac@. Let0<0p < 0<01<1,0 < p<oo,a > 0, Wo(r) = (1L +
IIn¢))~4t=%_ Then

06 (0= 00 Ap,p) = Awe.p 0 Ay -

As a corollary we get the following results for logarithmic Lorentz spaces.
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Theorem 4.7(4?) spacg. LetO < 0y < 0 < 01<1,0 < po<p<oo,a; > 0, 1/r; =
(1—10;)/po,i =0,1. Then

AP (O — 00) P (01 — )P (LPo, L)) )

= L7 (109 L) gy N L7 (10g L) .
Alsq,
08~ ((0 = 00)" (L. L®)g,p) = L' (l0og L) 4 N L'

Remark 4.4 (A spacd. If p = oo the same proof shows that Theoren? remains
valid fora; >0, j =0, 1.

5. Applications

5.1. Extrapolation theorems of Yano type

Theorem 5.1. Let A, B be pairs of quasi-Banach spacést 0 < a;,b;,s; < oo (j =
0,1),0<0p <0 < 01 <1, and letT be a linear operator satisfying

ITflg,, <cl0—0;1"* sz, -
0 0
Then
T : Awo,so + Awl,sl - évo,so + évl,sl’
wherew;(t) = =% (L + |Ine)%, v; () =t~ % 14 [Int)? (j =0, 1).
Proof. The assumptions, combined with Theor2rh5 imply

T Apso — 250 (0 — 00) "By o)

0o.01
and
T: Aflssl — Zgol,)(;l_((ol - 0)7171}}0,‘?1)’
where
790 _ ao
7@ —-Inn)% 0<rt <1,
Jo@®) = (01 r>1
"y b
t7(1—Inp)™ 0<t <1,
go(t) = t—Gl t > 1
t—0o O0<r <1,
N =

1@ +Iinnn > 1,

0o O<t <1,

) =
81(0) @+ Inphr > 1
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Thus

T:Afso+Afs, = Beoso+ Baysy-
By Theorem2.8,

‘Kfo’so + ’wal = Awo,so + Awm‘l
and

égo»‘o + églﬁl = évoyso + EvLSl-

The desired result follows. O

Corollary 5.1. Letrg < g <r1 < 00,0 < sj,a;,b; < o0, (j =0,1), and letT be a
sublinear operator satisfying

ITfllpas <clg— le_“ﬁbf' Il pass -
Then
T :L"%(ogL)g + L™ (log L)y, — L™*(logL)p, + L™*1(log L)y, .

If s; = s<1,j = 0,1, we can prove the following result which can be considered a
generalization of Yano'’s classical extrapolation theof28]. The abstract version of the
result is a consequence of Theore¥and4.2

Theorem5.2.Leta > 0,0 <o < <1, 0<0p <1 0 < s<yz and Ietﬁ,é be
quasi-Banach pairs. Suppose thafs a linear operator satisfying

ITfNz,  <ca I3

Then

a(1-0g)+0g.s

T : gwa,s + Ag’s — Bo+ ég,s,
wherew, (1) = =% @1+ [Inz)?, 0 = n(1 — 0o) + bo.
Corollary 5.2. LetT be a sublinear operator satisfying

ITfll a0 <c(g—8) "N fllpas, 0<s <qg<p<oo, s<la>D0.
Then

T:L(logL), +LP* — L* + LV,

whereL?*® := (L*, L®)s.00, 1/qg = (1 —0)/s.

Proof. Apply Theorem5.2to A= (LPo, L*°), wherepg = (1 — 0p)s,0 < 0y < 1 and
B = (L%, L*°). We use

LT% = (L%, L) 5(1-09)+00,5» 1/ = L —0)/s = (1= a(1— Oo) — o)/ po.
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In particular,
L% = (L0, L)y a-00)+00.s» 1/p = L —=n)/s = (1 —=n(L - 0o) — 00)/ po.

To conclude we apply Theorem2 and use formulaql). [

The following result is a generalization of Theorem fL&]. To simplify the statement
we shall consideL? spaces on finite measure spaces.

Corollary 5.3. LetT be a sublinear operator satisfying

ITfllpre <cl@ =D fllpea. 1<q<p<oo, rzla>b>0.
Then

T:L(ogL), — L"(logL),_p.

Proof. Let

LT = (L7 L®)s 19,1, 1/q = 1= 0/po, 1 — 0o = po.
ThenL" = (L"P°, L) 51¢,.r4- APPlying Theoremg.15 4.4we get

T:L(ogL), — XV (6" (L7, L®) 51 00.rq)-

It remains to identify the space on the right-hand side. ¥ b, we have
TO (@ UL, L)1 05,0g) C 27T (6T, L) 6 400.rg)

and by Theorem?.13 4.4this is the same as
X0 (@ UL, L)1 g,) = LT (10 L)g—p.

If « = b we have
SO, L®) g g = 2P L c ZDTL C L

The result follows. O

Another variant of these results can be proved using Coradi&{see[9,22] for similar
results for Banach pairs).

Theorem 5.3. Let A, B be quasi-Banach pairdeta > 0,0 <o <a <1, 0< by < 1,
0 < s<7yg,and letT be alinear operator satisfying

ITfll5,  <co Iz

Then

a(1-0g)+0g.s

supdl+InT K, Tf; BY<cllfl;
t>0 o

wherev(t) = =% @ +In* 1/, ¢t > 0.
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Proof. Using Corollary3.2we get
T: Ag’)z)(’/]agw,’;,s) - A((fi) (”Ia (BO + <énv>)) .
The weightw; can be estimated by

wr) A t~(—Inp)® ¢ <ea/n,
n t=Oo=1A=b0)y—a 4 5 o=a/n,

Therefore

w, (1) <cv()n ™.
Consequently

Aus CAG) " Auy ).
Moreover, we have

Bo+ <1§,1,s> = By, s,

where

0 fO0O<r<l,
h”(t)z{t—" if r> 1.

As in the proof of Theorer3.1, we see that

ASS (1" Bys) = ASS (1" Bhyoo). O

, 0

89

The resultfollows since the quasi-normin the sp&@?(;ﬂ By, 0) isgiven by sup. o(1+

Int 1)K (t, f: B).

Corollary 5.4. Let0O < p < g < p1 <00, a > 0,ands = p if p<1, ors = 1if
p>1lLetL?® :=(L?, L), 1/g = (1 —0)/p, and letT be a sublinear operator

such that

ITfllLaoe <cl@—p)~ N fllLas -
Then

T:LP*(log" 1/L)y — (L?, L™®)4 o, where g(t) = (L+InT )74,

and whereL?-*(log™ 1/L), has the quasi-norm
o0 d 1/S
{/ WP @+ Int 1/u)ﬂf*(u)]A—”} )
0 u

Another application of Theore®.3 gives
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Theorem 5.4. Let A, B be quasi-Banach pairdeta > 0,0 <o <a < 01 < 1,0 <
s<7g, and letT be a linear operator satisfying

o —a o
1Tz, Sco IIfIIAerm_ .
Then

supL+In* /0~ K T By <ell £l 5,

t>0
whereh(r) = =1 (1 + Int 1)4.
Proof. Indeed, use the relations:

(Bo, B1)1-6,00 = (B1, B0)s,00s (A0, A1)0y—6,s = (A1, AD)1—0140,s
and the formul& (¢, f; Bo, B1) = tK (L, f; By, Bo). O

Corollary 5.5. Let0 < s < po < g < p < o0, 0 < s<1, a > 0,L?>® =
(L*, LP)1_g.00, 1/qg = (1L —0)/p + /5. LetT be a sublinear operator such that

ITf Nl Laoe <cl@—p) " N fllLas -
Then

T :LPS(log" L), — (LP, L®); 0, where g(t) =t (1 +Int1/1)7¢,
and whereL?-*(log™ L), has the quasi-norm

du }1/S

u

{/ S A4t W f* )l
0

Proof. Follows from the previous theorem, writing?* = (L?°, L*®)g, (1_4) ; Where
1/p=01/po. U

Analogous results with similar proofs are valid for th&” spaces.

Theorem 5.5. Let A, B be quasi-Banach pairset0 < 0o < 0 < 01 < 1,a;,bj,s; > 0,
(oraj,bj>0ifs; = 00), (j = 0, 1). Suppose thal is an operator satisfying

ITfI5, <clo— 0,1~ 1 fl; . (i =0,1.
S j 5
Then
T: Avo,so N Avl,sl — Bug,so N Buwy,s1»

wherew; (1) = =% (L + |Int)~%, vj(t) =% L+ |Ine))~b (j =0, 1).
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Proof. Let Mo(0) = (0 — Op)™, M1(0) = (0 — 00)™, No(0) = (01 — )1, N1(0) =
(01 — 0)?1. From the assumptions it follows that

T : 3% (Mo(0) Ag,s) — 845°. (M1(6) By ),
and

T : 8y (No(0)Ag ) — 355 (N1(0) By ,)-
Applying Theoren4.6, we readily obtain

T : Agj,Sj - éfj,Sjv (.] = Os 1)1
whence

T 2 Agoso M Agrsi = Boso N By

where
—0p —agp
t7 @A +1Int) t>1,
folt) = =0 r<1
—0, —b
=@+ In)y=" > 1,
got) = =0 t<1
—0p
t t>1,
1) =
J1® ,—01(1_ Int)=™ <1,
= =0 r>1,
S = 0 —Inpy £ <1

Consider the weights; (1) = %@+ [Int), 0< Oy < 07 < 1, cieR(j=01).
We need the formula

Ifll; ni  ~Io+ 1, (75)

uQ,so 1,51

where

Iy’ = /1 “luomK . 1 K)]SO%, L= /0 LK. £ K)]Sl%.
Indeed from

K@, fi A<clus®] ™Mo, 1 <1,

K(t, f1 A <cluo®] ™, 1 > 1,

it follows that

00 L dt 1 - dt
/ [ur (K (2, f; A)]”Tédfl, / [uo()K (1, f; B)]3°T<CISO,
1 0

and ([75) follows.
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We therefore see that
éfoyxo N éfwl = éwo,So n éwLSl
and
Ago,SO N Agl,n = AUO,SO N ‘KULSl-
The theorem is proved.[]
Corollary 5.6. LetT be an operator satisfying
ITfNlpasi <clg — rjl_“f+bf I fllgasi s (G=0,D),
whererg < ¢ < r1<00,aj,b; >0, (ora;,b; >0if s; = 00), (j =0, 1). Then
T :L"™%(ogL)_p, N L"**1(logL)_p, — L"O(l0gL)—4y N L™ (10g L) g, .

Inthe case; = oo, j = 0, 1, we can prove a variant, which generalizes Yano’s theorem.
Again we start with an abstract version.

Theorem 5.6. Let A, B be quasi-Banach pair&nd letT be an operator satisfying

||Tf||1§liu‘oo écg*ﬂ”f”(fili“y O<o<y<l, s>0.

Then

T: Al_q,m NALco — él—n,oo N éwa,ooﬁ
wherew, (1) =t 3(1+ |In¢]) 2.
Proof. We have to apply Theore® 1

”Tf”A(OO)(O-a élfa,oo) <C ”f”A(OO)(/ZAl—a,oc)

and Remarld.4.

Corollary 5.7. LetO < p < g < 00,5 > 0,a > O0andletL?* := (L", L™)y , 1/q =
(1—0)/r, r =min(p,s). LetT be an operator satisfying

ITf a0 <cq I fllzas -
Then

T:LPNL® - LPNL®(ogL) 4 if p<s
and

T:LP®NL® — LP*®NL>®(logL)—, if p > s.
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Proof. We apply Theorend.6to A=B=(L", L*>) and use Exampl2.2
(L7, L®)16s) C LT, 1/g = 0/r,r<s.

If p<sthenr = p and O< ¢ < 1. In this case we use the relations
L =(L",L®)0.00, L*®=(L",L®)1 00

Onthe other hand ip > s thenr = sand0< ¢ < 5 := s/p < 1. Then we use the relation
LP® = (L*, L®)1_p 0.

Finally, we use also formul& (). O
5.2. Logarithmic Sobolev inequalities

We consider operators ab?(R") provided with a Gaussian measure. l4ebe a self-
adjoint positive operator such th& = ¢4, >0 is a hypercontractive semigroup on
L?,1 < p < oo. More precisely, there exists> 0 such that

P, : L? — L? isbounded foralt >0,1 < p < oo and| P, ||, <ce™, (76)
and
P LP — LD g(1) —1=¢'(p — 1), is bounded uniformly for alt >0.  (77)

For example, ifB = —A + |x|? is the Hermite operator iR” then we consider the operator
A= UBU", whereUf := ¢*’/2 f is the unitary mappingt.2(R") — L2(R", e=*’dx),
(cf. [1,26]), ande~"4 is hypercontractive by Nelson’s theorem (¢&,26]).

In [1,2], the following theorem is proved for the Hermite operatoRin

Theorem 5.7. Letl < p < 00,a € R, then
A% : LP(logL), — LP(logL)4+y, Nz =a,

is a bounded operator

We give an extrapolation proof of this theorem in an abstract setting. Our proof in fact is
valid for any hypercontractive semigroup. First we prove

Lemma5.1l. Letl < p < 00,a <0,a+a > 0, then
A% LP(logL), — LP(logL)y1y, Nz =0,

is a bounded operator

Proof. We start with the formula

A f = 1 /oo 1*7LP, fdr.
I'(z) Jo
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For anye > 0 consider the operator

of = /Ootz‘lP,fdt.
Since
Of =P, /m(r +&)7tp fdt,
0

it follows that foré > 0
Q:LP — LPTO
Thus it is sufficient to consider the operator
&
0.f = / 0°~1Py fdo. (78)
0
Let 1 < p < oo be fixed, and chooséy > 0 small enough so tha%% < p. Let
po=(1—0p)pandlet¥qg =1/p+ 0/po, where O< 0 < . We have
Py:L9— L1 g0 =1+e(q - D.
If we write 1/¢(0) = 1/p — 06(6)/ po then,qg(0) —q = 0(2p — 1+ O (0)) asf — 0, and
the choice ofly, po, implies thato(0) = po(2—1/p)/p — 1 > 0. Moreoverg(0) ~ 1 for

0 < 0 < ¢ providede < 0pis small enough. We can also assure the propgrty 00(0) <
01 <1forall0< 0 < &. Write

LY = (Lo, Loo)eo,ggq, Lq(e) = (LPO, Loo)90+95(9),q(9).
Applying TheorenB.6with M(0) = 0%, o > 0 andN(0) = 07 %, a + o > 0, we get
(OF AES‘)S)(()—a—l/p(Lpo’ LOO)Ho—@,q) - ZES,)S;(G_G_W(LPO’ LOO)90+95(9)J](9))’
Applying Theorem®.13and3.4it follows that
Ozt AR O PP L)) ) — ZE O THL, L) gy 40,)-

It remains to apply Theorems4 and4.7to conclude the proof. [J

Proof of Theorem 5.7. It remains to remove the restrictions< 0, a + o > 0 imposed in
Lemmabs.1 To this end we follow1,2], where it is proved that

A% : LP(logL), — LP(logL)y,Rz=0,1< p < o00,a € R. (79)

Now we can interpolate the analytic family~ between 79) and Lemméb.1 as in[20].
Theorenb.7is proved. [
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5.3. Mappings of finite distortion

In this section we consider the continuity of mappings of finite distortion 16f).

Let f = (f1,..., fn) be a mapping in the Sobolev spam,%’cl(Q, R™), whereQ is a
domain inR", n>2. By definition[16], f is a map of finite distortion if there exists a
measurable functiok (x) > 1 such that

IDfFO)I"SK(x)J(x, ), ae. (80)

Here|Df (x)| is the Euclidean norm of the differential gfandJ (x, f) = det Df (x) >0.
Let B = B(0, R) be a ball of radiusk and centered at the origin. We consider the functions
on B with a norm

1
lullwer = sup ™™ {|ull Lrdog L) 1yn- (81)
O<s<1/2

By definition, W L" is the closure of.” with respect to this norm. Then,e WL" if and
only if

o, s) = s""ullLrdogL)_py, — O ass— 0. 82)

Theorem 5.8. Let f be a mapping of finite distortion on the bal, and let|Df (x)| €
WL". Thenyf is continuousand moreover

Lf ) = fI <Cn, Ry (IDfI, (83)

1
In|in|x — y]|
if |x — y|is small andx, y € B(0, R/2).

Remark 5.1. If f has finite distortion on the balt and
o0
/ UDfI* O A+ [Ine) 1A+ In(@ + [In¢]) "tdr < oo
0

then|Df (x)| € WL" and henc¢ is continuous. In particular, Theorem 1.4[©6] follows.
Our method also gives a result similar to Theorem 1.B.67.

We are now ready for the proof of Theordn@.

Proof. Following [16], we first show that the coordinate functions, sfy are weakly
monotone. To see this we note thaf.” c L"~¢ forall0 < ¢ < 1. Then, by definition (cf.
[16]), we have to show that if := (f1 — M)" — (m — f1)* is a limit of C§° functions in
the open balB in the norm ofW1"—¢ for some constanis < M, thenv = 0. Now since
v=0onthesefx € B: m< fi(x) <M} anddv = djfy on its complemenkE, it suffices
to prove thatDg(x) = 0, x € E, whereg = (v, fo, ..., fn). Applying Lemma 5.1 of16],

we can write

[ ipseor-rap<can ra [ 1prr-es.
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wheredu := dx/K (x). In order to extrapolate this inequality we write

L' = (LY L™®)y,_ weos O0<a<1/2.

o
nn—a)’
Then fora. > 0 we have

. (_)\C”Df”A(”) (O—O(/H(Ll’LOO)H B

I1Dgll 4 e
A(O_l/z)(a“/” /n(L ’Lw)"l—,,m‘ig)- - s

-

Let L, be the Lebesgue spaté(E) with respect to the measure Theorems3.4and4.7
yield

1Dl L1009 L)y <X IDf 210G L)1)/ (84)

The condition|Df| € WL" means that the right-hand side B4} goes to zero as — 0.
Applying Fatou’s lemma to the left-hand side i84f we conclude thaiDg = 0 on E.
Thus we have proved that:= f; is weakly monotone. Now we can use the oscillation
Lemma 7.2 0f16]. Let xo, yo be fixed Lebesgue points ofin the ballB(0, R/2) and let
a:= (xo+ y0)/2,r := |xo — yo|/2. Then for almostall, » <t < R/2,

n—ao
(IM(-XO) M()’O)|> <Ct—n+l/ |Vu|n7(7d‘x,
t S(a,r)

uniformly for 0 < ¢ < 1/2, whereS(a, t) is the boundary oB3(a, t), the ball of radius
and centered at. Consequently,

|M(.x0) —M(YO)|n Ug(G r, R)<C||VM”Ln 7(B)’

whereg(o,r, R) := er/ztafldt. Sinceg(a, r, R) > C(R), uniformly with respect te <

R/4,0 < o < 1/2, we conclude that

1/n

R/2
lu(xg) — u(yo)l (/ ta_ldt> <C(n, B Vullpr-o(py-

Therefore, using thd method of extrapolation as above, we getdos 0,

12 1/n
Ju(x0) — u(yo)| ( /O [1- <2r/R)“]a“—1da> <C, R IVullntogr) -

For r andoc small, the integral above behaves Iille_eM and the best choice far is

o= asr — 0. Thus 83) follows and the theorem is proved[]

In\lnr\

5.4. Logarithmic Sobolev spaces

In this section we show that the Sobolev spaces used by Donaldson and Sul[¥ah in
can be replaced by logarithmic Sobolev spaces. As we know, logarithmic Sobolev spaces
are built up over: spaces.
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For concreteness sake, we shall consider only the situation releyagi tbut the results
are valid in much more generality. L&tbe a convex bounded domainR¥ and letE be a
Banach space of functions, locally integrableariThen the homogeneous Sobolev space,
W1E, is defined as a completion 6f°(Q) in the norm||V f|| g. Analogously to Lemma
3.8[12], we have

Theorem 5.9.

WG (e Y L) € L¥(Q), 1t +1/n =1
Proof. Indeed, as in the proof of Lemma JB?], we derive

fwi<e [ IVFmlx =y ay, e (85)
Let f €e WLE, With E = Zﬁé)l)( —1/n" [ n+9) then we can write

Vi=) 8. g €L"”, (86)
with

IVFlE~ Y oY ligellpnse. (87)
Inserting 86) back in 85) and using Holder’s inequality we get

rli<e Y [ leeole = y1d.

IF@I<e D Ngallpmolllx = y1Y " Il oo
Finally, sinceQ? is bounded, we have

—1/n*
b

1—
llx — I n”L(nJr(r)* <co x € Q,

and therefore

IFI<eY o7 liggll e

The desired result now follows fron87). A
Donaldson and Sullivafi2] consider the spacds’, defined by

{f Zﬁ Zp—znﬁnw,(g) }

wheree, p are fixed numbers i, 1). Equipped with the norm

1/2 00
If1l;, = inf <Z p IIf,IIL,,H,(Q) f=Yfigs
i=1
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L? becomes a Banach space.[12] this construction plays a crucial role: it allows the
authors to construct the Sobolev spakg5L?, based o4, whereQ is a domain irR*,
with the crucial property that (cf12, Lemma 3.8J:

WL c L®(Q), p <e¥4 (88)

To show that this result is a consequence of Thed@ewe first writep = ¢ and prove
the relation

2(2) ( —d/2L4+O') (89)

Indeed, using monotonicity of the scdl&*, we can replace the discrete definition given
above by a continuous one:

o —inf 1 o do 1/2. _ 1 do
100 = fo folZass .f—fo e

Hence 89) follows.
On the other hand, Holder’s inequality implies the embedding

Z(q) (a_hL”+‘7) C Z( (a_“L”+‘T), b>a>0q>1
Thus

LY c iy @ L), d > 2.
Finally, applying Theorens.9we get

WA € L®(Q)
if d >3/2, henceifp < 32 <34 O

In [12] the precise identification of tha/1L* spaces was not important, the authors just
needed suitable spaces, where (besides quasiconformal invariance) the crucial pg8perty (
was valid, to develop their theory. It follows that instead/wt L* we can use any of the

spaces/vlzgg))l_)(o—bL““““), b > 3/4,q > 1. In particular we can use the space

WL} (6P L*7) = WLA(log L)y, b > 3/4,

that is, a logarithmic Sobolev space. Such an explicit characterization simplifies some of
the analysis if12]. For example the elliptic theory (cf12, Lemma 2.16)]follows from
Sneiberg’s extrapolation Lemma for the real method[{&BO0]).
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