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Abstract

Extending earlier work by Jawerth and Milman, we develop in detail�(p) and�(p) methods of
extrapolation.Asanapplicationweprovegeneral formsofYano’s extrapolation theorem.Applications
to logarithmic Sobolev inequalities, integrability of maps of finite distortion and logarithmic Sobolev
spaces are given.
© 2005 Elsevier Inc. All rights reserved.

MSC:primary 46E30; 46E35; 46B70

Keywords:Extrapolation; Interpolation; Lorentz–Zygmund spaces; Logarithmic Sobolev spaces; Logarithmic
Sobolev inequalities; Maps of finite distortion

1. Introduction

Many problems in analysis can be formulated as the study of parametrized families
of estimates for suitable operators. For each specific family of estimates it is usually of
fundamental importance to determine the maximal range of the parameters for which those
estimates are valid, and the corresponding analysis usually requires a deep understanding
of the problem at hand. Interpolation methods allow us to create parametrized families of
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estimates from a given pair of initial estimates. Conversely, extrapolation methods allow us
to extrapolate “end point’’ results from a given family of estimates.
Following earlier work by Marcinkiewicz, Titchmarsh, Yano and others (cf.[17] for

a historical perspective) a general theory of extrapolation was developed by Jawerth and
Milman (cf. [17,21]). In [17] the�(p) and�(p) extrapolation methods were introduced
and applied to construct suitable “end point extrapolation spaces’’ as well as to prove
new extrapolation estimates. It was also shown, in a very general context, that the usual
rearrangement inequalities for the classical operators of analysis are in fact equivalent to
families of norm inequalities with a given rate of blow-up.
In [17] only the�(1) and�(∞) methods were studied extensively. The purpose of this

paper is to provide a more extensive study of the�(p) and�(p) methods of extrapolation
for p > 0,2 as well as to give new applications of these methods to classical analysis.
It is of interest to point out that the�(2) construction was independently considered by

Donaldson andSullivan in[12]. Indeed, in their work[12], Donaldson andSullivan consider
spaces of the form

L̂p(�) =
{
f =

∞∑
i=1

fi :
∞∑
i=1

�−i ‖fi‖2
Lp+εi (�)

<∞
}
,

where� is a finite measure space, andε,� are fixed numbers in the interval(0,1).
Equipped with

‖f ‖
L̂p(�)

= inf



( ∞∑
i=1

�−i ‖fi‖2
Lp+εi (�)

)1/2

: f =
∞∑
i=1

fi


 ,

L̂p(�) becomes a Banach space. In[12] this construction plays a crucial role: it allows the
authors to construct the Sobolev spacesL̂4

1,c (D), based on̂L4 (D), whereD is a domain

in R4, with the crucial property

L̂4
1,c (D) ⊂ C0

c (D). (1)

The space “̂L4 (D)’’ depends on the choices of the parameters: indeed for (1) to hold the
correct choice is to select� < ε3/4 (cf. [12, Lemma 3.8]). The background of this choice
of parameters is indeed an extrapolation result since the selection is achieved by a careful
examination of the deterioration of the norm of the embeddingsW

1,p
0 (D) ⊂ C0(D) for

p = 4+ εi, i →∞.
In [12] the precise identification of thêL4

1,c (D) spaces was not important; the authors
just needed suitable spaces, where the crucial property (1) was valid, in order to develop
their theory. In this paper, on the other hand, a good deal of our effort centers in the explicit
computation of extrapolation spaces. In particular, as a consequence of our results, we show
that for suitable choices of the parameters, consistent with the validity of (1), we can replace
L̂4
1,c (D) with the logarithmic Sobolev spaceW1

0L
4(logL)b, whereb > 3

4. To have a more
explicit family of spaces simplifies some of the analysis in[12]. For example, the elliptic

2 Some properties of�(p) method are studied in[27].
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theory (cf.[12, Lemma 2.16]) follows from Sneiberg’s extrapolation lemma for the real
method (cf.[7,30]). 3

A prototype of the Yano type extrapolation theorems that follow using the�(p) and�(p)

methods (cf. Section5.1) is given by the following

Theorem 1.1. (i) Let0< s�1.Let‖f ‖Lq,s =
{
s
q

∫∞
0 [t1/qf ∗(t)]sdt/t

}1/s
, andLq,∞ :=

(Ls, L∞)�,∞, 1/q = (1− �)/s. Suppose thatT is a sublinear operator such that

‖Tf ‖Lq,∞ �c(q − s)−a ‖f ‖Lq,s , 0< s < q < p, a > 0.

Then

T : Ls(logL)a + Lp,s → Ls + Lp,s .

(ii) LetLq,∞ := (Lr, L∞)�,∞, 1/q = (1− �)/r, r = min(p, s). Suppose thatT is an
operator such that

‖Tf ‖Lq,∞ �cqa ‖f ‖Lq,s , 0< p�q <∞, s > 0, a > 0.

Then

T : Lp ∩ L∞ → Lr ∩ L∞(logL)−a, p�s

and

T : Lp,∞ ∩ L∞ → Lp,∞ ∩ L∞(logL)−a, p > s.

In this paper we consider two type of applications. On the one handwewill exhibit spaces
of current usage in analysis (e.g. “Lorentz–Zygmund spaces’’, “Donaldson–Sullivan’’
spaces, “Logarithmic Sobolev spaces’’, etc.) as extrapolation spaces for the�(p) and�(p)

methods;while on theotherweshall consider in detail specific classical operators (e.g. semi-
groups associated with the theory of logarithmic Sobolev inequalities) to develop concrete
applications of extrapolation theory to classical analysis.
In Section5.3 we apply extrapolation methods to study the modulus of continuity of

maps of finite distortion (cf.[16]). Let S = S(0, R) be the ball of radiusR centered at the
origin inRn . Let f = (f1, f2, . . . , fn) : S → Rn be a map in the Sobolev classW1,1

loc (S),
and letJ (x, f ) = detDf (x) denote the Jacobian off . We say that the mapf is of finite
distortion if there exists a real valued measurable functionK(x)�1 such that for allx ∈ S

|Df (x)|n �K(x)J (x, f ).

LetWLn = be the closure ofLn under the norm

‖u‖WLn := sup
0<s<1/2

s1/n ‖u‖Ln(logL)−(s+1)/n .

3We shall discuss elsewhere the extension of Sneiberg’s theorem to the context of extrapolation theory.
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Foru ∈ WLn we also let

�n(u, s) := s1/n ‖g‖Ln(logL)−(s+1)/n .

Using extrapolation we give a slight extension of earlier results in[16] and show the fol-
lowing (cf. Theorem5.8below)

Theorem 1.2. Letf be a map of finite distortion such that|Df (x)| ∈ WLn(S). Thenf is
continuous. Moreover, if |x − y| is small andx, y ∈ S(0, R/2), then there exists a constant
c = c(n, R) such that

|f (x)− f (y)| �c�n

(
Df (x),

1

ln |ln |x − y||
)
.

It is instructive to consider a brief and informal comparison of interpolation and extrap-
olation methods. One version of the classical Lions–Peetre construction of interpolation
spaces (the “J -method’’) can be described as follows. We are given an initial compatible
pair of Banach spaces(X0, X1), and we consider those elements inX0 + X1 that can be
represented by integrals (or sums)

f =
∫ ∞

0
u(s)

ds

s
in X0 +X1,

in such a way that∫ ∞

0
(s−� ‖u(s)‖X0∩ sX1

)p
ds

s
<∞.

The norm of the elementf in (X0, X1)�,p;J is given by

‖f ‖p(X0,X1)�,p;J

= inf

{∫ ∞

0
(s−� ‖u(s)‖X0∩ sX1

)p
ds

s
: f =

∫ ∞

0
u(s)

ds

s
in X0 +X1

}
.

Note that we control the norm off in terms of an average of the norms of the representing
functionsu(s) in the intersection of theoriginal pair (X0, X1). On the other hand, given a
rate of decayw(�) (typically w(�) = ��(1− �)�), the extrapolation spaces�(p)w(�)X�,
associated with a scale of spaces{X�}, whereX� ⊂ X0+X1 uniformly, consist of elements
f ∈ X0 +X1 that can be represented by integrals (or sums)

f =
∫ 1

0
u� d� (2)

with ∫ 1

0
(w(�) ‖u�‖X�

)p d� <∞. (3)

Likewise the�(p) spaces are a generalization of intersections. For example, suppose that
� is 	-finite measure space and let 0< r0 < q < r�∞, b > 0, 0< p�∞, and let�(p)
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be the extrapolation space�(p)((1/q − 1/r)b−1/pLq,p) with quasi-norm

‖f ‖ =
{∫ r

r0

(
1

q
− 1

r

)bp−1
‖f ‖pLq,p

dq

q2

}1/p

.

The change of variables1
q
− 1

r
= 	 and Fubini’s theorem give

‖f ‖p ≈
∫ ∞

0
[f ∗(t)]ptp/r

∫ 	0

0
ep	 ln t	bp−1 d	

≈
∫ 1

0
tp/r (1− ln t)−bp[f ∗(t)]p dt

t
+
∫ ∞

1
tp/r0(1+ ln t)−1[f ∗(t)]p dt

t
.

Hence,

�(p)((1/q − 1/r)b−1/pLq,p) = Lr0,p(logL)−1/p ∩ Lr,p(logL)−b. (4)

This result corresponds to our Theorem4.7below for the casea0 = 1/p (cf. also Theorem
4.5 for more general results). The corresponding computations for the�(p) method are
much more involved since we need to construct suitable decompositions (cf. Theorem2.1).
In [14] formula (4) is proved under the assumptions that� is a finite measure space, and
r = p. The scale{Lq,p}r0<q<p can be replaced by{Lq}r0<q<p providedq → p in a specific
way (cf. [14, p. 69], and our Theorems3.4and3.1). The� characterization ofL(logL)b
was first given in[17], while the�(p) characterization of the logarithmic Lorentz spaces
Lp(logL)b, 1< p <∞, was given in[14] using (4) and duality arguments.
As illustrated by the Donaldson–Sullivan spaces mentioned above, representations of

form (2) occur rather naturally in a number of problems in analysis. For a different perspec-
tive on how these representations arise when studying specific operators, letA be a given
self-adjoint positive operator inL2 (provided with Gaussian measure); moreover assume
that the semigroupPt = e−tA, t�0, generated byA, is an hypercontractive semigroup on
Lp,1< p <∞. More precisely, this means that for some constantc > 0 we have

Pt : Lp → Lp is bounded for allt�0, 1< p <∞ and ‖Pt‖p�ce−ct (5)

and

Pt : Lp → Lq(t), q(t)− 1= et (p − 1), is bounded uniformly for allt�0. (6)

In the analysis of logarithmic Sobolev inequalities the following (fractional integral) oper-
ators

Qzf =
∫ 


0
�z−1P�f d�

play a crucial role. Now, from (5) and (6), it is not difficult to see that the study of these
operators falls naturally into the scheme of�-extrapolation methods (for more details on
how to implement this observation see Section5.2).
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Finally let us say a few words about how the calculation of�(p) and�(p) spaces can be
achieved. As we indicated above the computation of�(p) spaces forK-spaces(X0, X1)�,q ,
q = p, can be achieved directly by Fubini. Likewise the computation of�(p) for J -spaces
in the caseq = p can also be achieved using a “Fubini type of argument’’ in (3). However,
the computation of these spaces forq �= p requires considerable more work. Therefore
a great deal of our work in this paper goes into devising effective methods to compute
weighted averages of norms.
In comparing our methods with those of[17] we note that in this paper we usually

assume that the extrapolations occur “inside’’ the interpolation scales. While the theory
that we obtain is somewhat less general than the one in[17] 4 this extra assumption is
automatically verified for many of the familiar scales of spaces we use in analysis. Thus,
for example, while in[17] to extrapolate nearL1, say, we used{c(p)Lp} scales forp > 1,
in this paper we considerL1 as an interpolation space betweenLp0 andL∞, for some
p0 < 1, and extrapolate using this information. In this fashion we are able to avoid the
failure, at the end points, of the equivalence between theJ andK methods of interpolation.
In contrast, in[17], which deals with the casesp = 1 (resp.p = ∞), K-divisibility, or
rather its equivalent formulations as strong forms of the fundamental lemmaof interpolation
theory,5 is a crucial tool. We hope this simplification will make the reading of the paper
easier for those readers who are not familiar with the deeper parts of real interpolation
theory.
These choices, and the desire to keep the size of an already long paper under some control,

also lead us not to develop, in the context of the�(p) and�(p) methods, the corresponding
theory ofK/J inequalities (for a treatment in the casep = 1, p = ∞; cf. [17]). We hope
to return to this subject elsewhere.
The paper is organized as follows. In Sections 2 and 3 we develop some basic facts about

the�(p) and�(p) methods of extrapolation focussing on effective tools for their compu-
tation. These results are illustrated with the explicit computations of extrapolation spaces
in Section4, where in particular we exhibit the Lorentz–Zygmund spaces as extrapolation
spaces. The last part of the paper Section5 is devoted to applications. In Section5.1 the
computations of Section4 are used to prove extended forms of “Yano type’’ extrapolation
theorems. The last three sections are devoted to applications of ourmethods in other areas of
analysis. Using extrapolationmethodswe prove some general forms of logarithmic Sobolev
inequalities (Section5.2) and improve on certain recent results concerning estimates for the
modulus of continuity of maps of finite distortion (Section5.3). Finally in Section5.4we
investigate the relationwithDonaldson–Sullivan spaces and their theory[12]. A preliminary
version of the results was announced in[18].
To conclude this introduction we should mention a number of recent contributions to ex-

trapolation theory, and its applications, that could be of interest to the reader:
[8–10,13,15,19,23–25,28].

4 The extra assumption that the extrapolations occur inside the interpolation scale is equivalent to the assumption
that the interpolation scales considered in[17] can be extended.

5 The original proof of the result can be found in[6]. The formulation given in[11] is particularly useful in
extrapolation.
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2. �(p) method of extrapolation

In this section we develop the�(p) method of extrapolation originally introduced in[17],
but studied in detail only in the casep = 1.

2.1. Background

Let �A = (A0, A1) be (a compatible) pair of quasi-Banach spaces, i.e. we suppose that
A0 andA1 are quasi-Banach spaces continuously embedded in some quasi-Banach space
�A. For 0< � < 1,0 < p�∞, we let �A�,p denote the real interpolation spaces of Lions
and Peetre[5,6], provided with theK-method norm,

‖f ‖ �A�,p
=
{∫ ∞

0
[s−�K(s, f ; �A)]p dt

t

}1/p

.

Let 0��0 < �1�1 be fixed, and let� denote the interval(�0, �1).TheK andJ methods of
interpolation give equivalent quasi-norms on�A�,p, � ∈�.Moreover, if 0< �0 < �1 < 1,
the equivalence of theK andJ quasi-norms is uniform (cf.[5]).
Our characterization of extrapolation spaces as interpolation spaces requires spaces that

fall outside the classical Lions–Peetre spaces. In particular, our characterization requires the
replacement of power weightst−� by more general weightsw. Note that given a weightw
one can define in the familiar way the�Aw,p and �Aw,p,J spaces associated with theK andJ
methods (for amore systematic study see[3] and the references therein). The corresponding
K andJ norms are then given (respectively) by

‖f ‖ �Aw,p
=
{∫ ∞

0

[
w(t)K(t, f ; �A)

]p dt

t

}1/p

and

‖f ‖ �Aw,p;J = inf



{ ∞∑

�=−∞
[w(2�)J (2�, u�; �A)]p

}1/p

: f =
∞∑

�=−∞
u�


 .

We shall often assume that the weightsw(t) satisfy the following condition: There exist
positive constantsc1, c2, such that

c1w(2
�)�w(t)�c2w(2

�) for all 2�� t�2�+1, � ∈ Z. (7)

If (7) holds then we can “discretize’’ the�Aw,p norm (cf.[5, Lemma 3.1.3]), and obtain

‖f ‖ �Aw,p
=
{ ∞∑

�=−∞
[w(2�)K(2�, f ; �A)]p

}1/p

.

Suppose thatAi satisfies a
i-triangle inequality, i.e.,

‖f + g‖Ai
�
i (‖f ‖Ai

+ ‖g‖Ai
), i = 0,1.
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The Aoki–Rolewicz Lemma (cf.[5, Lemma 3.10.1, p. 59]), provides us with equivalent
quasi-norms which satisfy the�-triangle inequality. In fact, let
 = max{
0,
1}, and let�
be defined by

(2
)� = 2, (8)

then

‖f + g‖� � ‖f ‖� + ‖g‖� . (9)

Spaces satisfying (9) are called�-Banach spaces. The largest possible� for the pair �A =
(A0, A1) will be denoted by� �A. 6 Given 0< p�∞ let p+ be defined by

1

p+
=



1

�
− 1

p
if p > �,

0 if p��.
(10)

We also use the notationp∗, where 1/p∗ + 1/p = 1 if 1 < p�∞, andp∗ = ∞ if
0< p�1.We always havep+�p∗.

2.2. �(p) spaces

LetM(�) be a positive continuous function on the interval� = (�0, �1), such that 1
M(�)

is bounded. The�(p) sum of the scale{M(�) �A�,p}�∈� is defined by

�(p)(M(�) �A�,p) = �(p)

� (M(�) �A�,p)

=

f ∈ �A : f =

∑
�∈�

g(�), g(�) ∈ �A�,p and ‖f ‖�(p)(M(�) �A�,p)
<∞


 ,

where

‖f ‖�(p)(M(�) �A�,p)
= inf





∑
�∈�

[M(�)‖g(�)‖ �A�,p
]p



1/p

: f =
∑
�∈�

g(�)


 .

Remark 2.1. We are using thenotationof summation over uncountable sets. In this paper
this should be understood as follows. Suppose thatN(�) is a continuous function on� =
(�0, �1) such thatN(�)→ 0 as� → �0 andN(�)→ 0 as� → �1. We fix a discretization
say�n = �0 + 2−n if n�n1 > 0, and�n = �1 − 2n if n�n0 < 0, wheren0 andn1 are
chosen sufficiently large so that�1− �0 > 2−n1 + 2n0. Then∑

�∈�

N(�) :=
∑
n∈I

N(�n),

whereI = I+ ∪ I−, andI+ = {n ∈ Z : n�n1}, I− = {n ∈ Z : n�n0}.
6 Evidently we always have� �A�1 and� �A = 1 iff Ai, i = 0,1, are normed spaces.
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It is also convenient to use the notation∑
�∈(�0,�]

N(�) :=
∑
n∈I+

N(�n), � := �0 + 2−n1,

if N(�)→ 0 as� → �0, and∑
�∈[�,�1)

N(�) :=
∑
n∈I−

N(�n), � := �1− 2n0,

if N(�)→ 0 as� → �1.

Remark 2.2. In the same fashion the�(p) construction can be applied to other compatible
scales{A�}�∈� of quasi-Banach spaces, where by “compatible’’ we mean scales such that
there exists a constantc > 0 such that for all� ∈ � we have

‖f ‖�A
�c ‖f ‖A�

.

Analogously, we can define “one sided’’�(p) spaces:

�(p)−(M(�) �A�,p) = �(p)−
�0,�

(M(�) �A�,p)

=

f ∈ �A : f =

∑
�∈(�0,�]

g(�), g(�) ∈ �A�,p and ‖f ‖�(p)−(M(�) �A�,p)
<∞


 ,

where

‖f ‖�(p)−(M(�) �A�,p)

= inf






∑
�∈(�0,�]

[M(�)‖g(�)‖ �A�,p
]p



1/p

: f =
∑

�∈(�0,�]
g(�)


 .

Likewise we let

�(p)+(M(�) �A�,p) = �(p)+
�,�1

(M(�) �A�,p)

=

f ∈ �A : f =

∑
�∈[�,�1)

g(�), g(�) ∈ �A�,p and ‖f ‖�(p)+(M(�) �A�,p)
<∞


 ,

where

‖f ‖�(p)+(M(�) �A�,p)

= inf






∑
�∈[�,�1)

[M(�)‖g(�)‖ �A�,p
]p



1/p

: f =
∑

�∈[�,�1)
g(�)


 .
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Remark 2.3. For any�0 < � < � < �1 we have

�(p)

�0,�1
(M(�) �A�,p) = �(p)−

�0,�
(M(�) �A�,p)+ �(p)+

�,�1
(M(�) �A�,p).

More generally, we have

Remark 2.4. Suppose the scale{A�} satisfies
A� ⊂ A� + A�, � < � < �.

Then

�(p)

�0,�1
(M(�)A�) = �(p)−

�0,�
(M(�)A�)+ �(p)+

�,�1
(M(�)A�).

Remark 2.5. When dealing with Banach pairs we can replace sums by integrals in the
definition of the�(p) spaces. This corresponds to the familiar equivalence between the so-
called “continuous’’ and “discrete’’ definitions of theJ andK methods of interpolation. For
future reference we discuss in more detail a special case of this equivalence. Suppose that
�A = (A0, A1) is a Banach pair andmoreover suppose that for some small positiveεwehave
{∫ ε

0 [M(	)]−p∗ d	
	 }1/p

∗
<∞, where 1/p∗ + 1/p = 1 if p > 1, andp∗ = ∞ if 0 < p�1.

Let us say thatf ∈ ∫
p,0,ε(M(	) �A	+�0,p) if and only if there exists a representation

f =
∫ ε

0
g(	)

d	
	

with g(	) ∈ �A	+�0,p,

with ∫ ε

0
[M(	) ‖g(	)‖ �A	+�0,p

]p d	
	

<∞.

Let

‖f ‖∫
p,0,ε(M(	) �A	+�0,p

)

= inf

{(∫ ε

0
[M(	) ‖g(	)‖ �A	+�0,p

]p d	
	

)1/p

: f =
∫ ε

0
g(	)

d	
	

}
.

Suppose thatA1 ⊂ A0. 7 Suppose in addition thatM(	) is a positive, continuous function
such that for somec1, c2 > 0,

c1M(2−n)�M(	)�c2M(2−n) for all 2−n�	�2−n+1, n ∈ I+.

Then ∫
p,0,ε

(M(	) �A	+�0,p) = �(p)−
(0,ε) (M(	) �A	+�0,p).

The proof of this fact is analogous to the usual proof of the discretization of theJ -method
(cf. [5]).

7 Such pairs are usually called “ordered’’ pairs.
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2.3. Characterization of�(p) spaces

2.3.1. Banach case
In this section we show the following characterization of the�(p) spaces in terms ofK

andJ spaces (cf.[17] for the casep = 1).

Theorem 2.1. Let �A = (A0, A1) be a Banach pair. Suppose that0 < �0 < �1 < 1, let�
be the interval(�0, �1), and furthermore letp > 0.Define the weightw∗ by

1

w∗(t)
=


∑
�∈�

[
t�

M(�)

]p∗


1/p∗

, t > 0. (11)

Then

�(p)

� (M(�) �A�,p) = �Aw∗,p = �Aw∗,p;J , p > 0.

Remark 2.6. If �A is a Banach pair, 0��0 < �1�1, then (cf.[17] for the casep = 1)

�(p)

� (M(�) �A�,p;J ) = �Aw∗,p;J , p > 0.

Analogously we have

Remark 2.7. If �A is a Banach pair, then∫
p,0,ε

(M(	) �A	+�0,p;J ) = �Av,p;J ,

where

1

v(t)
=


∫ ε

0

[
t	+�0

M(	)

]p∗
d	
	




1/p∗

.

Theorem2.1follows from Theorems2.2and2.3, and Remark2.8. As it will be useful in
what follows, these auxiliary embedding theorems are proved in the more general setting
of quasi-Banach spaces.
We also note that Theorem2.1 also holds, with the same proof, for the “one sided’’

extrapolation spaces�(p)−,�(p)+.

Theorem 2.2. Let �A = (A0, A1) be a quasi-Banach pair. Suppose that0��0 < �1�1,
let� be the interval(�0, �1), let p+ be defined as in(10), and letw be the weight defined
by

1

w(t)
=


∑
�∈�

[
t�

M(�)

]p+


1/p+

, t > 0. (12)
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Then

�(p)

� (M(�)A�,p) ⊂ �Aw,p.

Analogously,

�(p)

� (M(�)A�,p;J ) ⊂ �Aw,p;J .

Proof. Recall the conventions of Remark2.1: �n = �0 + 2−n if n ∈ I+, �n = �1 − 2n

if n ∈ I−. LetMn = M(�n) and letf ∈ �(p)(Mn
�A�n,p). Select a decompositionf =∑

n∈I gn, with gn ∈ �A�n,p, and such that8

‖f ‖�(p)(M(�) �A�,p)
≈
{∑
n∈I

[
Mn ‖gn‖ �A�n,p

]p}1/p

.

Using the Aoki–Rolewicz Lemma (cf. the discussion of (9) above), we derive

K(2�, f ; �A)��c
∑
n∈I

[
Mn2

−��nK(2�, gn; �A)
]� [2��n

Mn

]�

.

Therefore, using Hölder’s inequality if� < p or the inclusionlp ⊂ l� if ��p, we obtain

K(2�, f ; �A)�c

{∑
n∈I

[
Mn2

−��nK(2�, gn; �A)
]p}1/p

1

w(2�)
.

Thus

‖f ‖ �Aw,p
� c

{ ∞∑
�=−∞

∑
n∈I

[2−��nMnK(2�, gn; �A)]p
}1/p

� c

{∑
n∈I

[Mn‖gn‖ �A�n,p
]p
}1/p

� c ‖f ‖�(p)(M(�) �A�,p)
. �

Theorem 2.3. Let �A = (A0, A1) be a quasi-Banach pair. Suppose that0��0 < �1�1,
let� be the interval(�0, �1) and letw∗ be the weight defined by(11). Then

�Aw∗,p;J ⊂ �(p)

�∈�(M(�)A�,p;J ).

Proof. Let f ∈ Aw∗,p,J . Representf =∑
� u� with

‖f ‖p�Aw∗,p;J
�
∑
�

[w∗(2�)J (2�, u�; �A)]p.

8 In what follows we use the symbolA ≈ B to indicate thatA andB are equivalent modulo constants.
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Let �n,� = w∗(2�)2��n

M(�n)
, then

∑
�p∗
n,� = 1 if p > 1. If on the other hand 0< p�1, then

supn∈I �n,� = 1, and therefore in this case we can findm(�) such that�m(�),� ≈ 1. To show

thatf ∈ �(p)

� (M(�) �A�,p;J ), we now exhibit a suitable representation off . We define a
partition of the unity as follows

�n,� = �p∗
n,� if p > 1

and

�n,� = �n,m(�) if p�1,

where�n,m stands for the delta Kroenecker index. In either case we have�n∈I�n,� = 1.
Let gn =∑∞

�=−∞ u��n,�, thenf = �n∈I gn, and moreover

‖f ‖p
�(p)

� (M(�) �A�,p;J )
� c

∑
n∈I

[M(�n)‖gn‖ �A�n,p;J
]p

� c
∑
n∈I

∞∑
�=−∞

[2−��nM(�n)J (2�, u��n,�; �A)]p

� c

∞∑
�=−∞

[J (2�, u�; �A)]p
∑
n∈I

[M(�n)2−��n�n,�]p.

Using the definition of�n,� we get

‖f ‖p
�(p)

� (M(�) �A�,p;J )
�c

∞∑
�=−∞

[w∗(2�)J (2�, u�; �A)]p
∑
n∈I

[
�n,�

�n,�

]p
.

Observe that forp > 1 we have{∑
n∈I

[
�n,�

�n,�

]p}1/p

=
{∑
n∈I

[�n,�]p
∗
}1/p

= 1,

while if p�1,{∑
n∈I

[
�n,�

�n,�

]p}1/p

≈ 1.

Therefore

‖f ‖p
�(p)

� (M(�) �A�,p;J )
�c

∞∑
�=−∞

[w∗(2�)J (2�, u�; �A)]p�c‖f ‖p�Aw∗,p;J
,

as we wished to show.�

Remark 2.8. Let 0< �0 < �1 < 1, p > 0, and letw be the weight defined by the formula
(12). Then

�Aw,p;J = �Aw,p.
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Proof. Wefirst show theembedding�Aw,p ⊂ �Aw,p;J .Note thatw ismonotone, and satisfies

c1t
−�0 < w(t) < c2t

−�1 if 0 < t < 1,

and

c1t
−�1 < w(t) < c2t

−�0 if t > 1.

It follows that if f ∈ �Aw,p thenK(t, f ) → 0 as t → 0, and K(t,f )
t

→ 0 as t → ∞.

Therefore we can apply the fundamental lemma of interpolation theory in the usual fashion
(cf. [5]) to establish thatf ∈ �Aw,p;J with norm estimates.
We now show that, conversely,�Aw,p;J ⊂ �Aw,p. For Banach pairs�A, p�1, it is well

known (cf.[3,6]) that the embedding�Aw,p;J ⊂ �Aw,p is equivalent to the boundedness of
the Calderón operator

Sf (t) =
∫ ∞

0
min

{
1,

t

s

}
f (s)

ds

s
=
∫ ∞

0
min{1, u}f

(
t

u

)
du

u
,

onLp(w(t)p dt
t
) 9 . More generally, if�A is a quasi-Banach pair, andp > 0, an analogous

characterization holds using the following discrete version of the Calderón operator (with
�� min{p, � �A}):

S�({f�}) =
{∑

[min{1,2�−�}|f�|]�
}1/�

.

It then follows readily that�Aw,p;J ⊂ �Aw,p (cf. [5, Theorem 3.11.3]) iff the Calderón
operatorS� is bounded on the sequence spacelp([w(2�)]p).
To prove thatw is a Calderón weight we write

1

w(t)
=


∑
�∈�

[
�−���t�

M(�)

]p+


1/p+

.

Then we see that

w(�t)�
{

�−�0w(t), ��1,
�−�1w(t) � < 1.

(13)

Combining (13) with Minkowski’s inequality we get∥∥S�({f�})
∥∥�
lp([w(2�)]p) =

{∑
|S�({f�})w(2�)|p

}�/p

�
∑

min{1,2�}�
{∑[∣∣f�

∣∣w(2�+�)
]p}�/p

�
(∑

min{1,2�}� max{2−��0,2−��1}�
) {∑[|f�|w(2�)

]p}�/p

�c
∥∥{f�}

∥∥�
lp([w(2�)]p) ,

as desired. �
9 Such weights are called Calderón weights in[3].
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Theorem2.1now follows by combining Theorems2.2, 2.3and Remark2.8.

2.3.2. Quasi-Banach case
We start summarizing the results of the previous section that hold for quasi-Banach

spaces.

Theorem 2.4. Let �A = (A0, A1) be a quasi-Banach pair. Suppose that0 < �0 < �1 < 1,
let� be the interval(�0, �1), and furthermore letp > 0. If 0< p�� �A then

�(p)

�∈�(M(�) �A�,p) = �Aw∗,p.

If p > � �A, then we have the inclusions

�Aw∗,p ⊂ �(p)

�∈�(M(�) �A�,p) ⊂ �Aw,p.

It turns out that if the growth ofM(�) is tempered in a suitable sense then the weightsw

andw∗ are equivalent. As a consequence we shall be able to show that

�(p)

�∈�(M(�) �A�,p) = �Aw,p = �Aw∗,p. (14)

We shall say that a positive continuous functionN(	), defined on the interval(0,1), is
“tempered’’ in the sense of[17] if there existε1 > 0, ε2 > 0 such that

N(	/2) ≈ N(	) for 	 ∈ (0, ε1) and

N((1+ 	)/2) ≈ N(	) for 	 ∈ (1− ε2,1). (15)

Since on any compact subintervalN(	) ≈ 1 the equivalence in (15) is fulfilled on the
whole interval(0,1). Further, we say that a positive continuous functionN(�), defined on
the interval(�0, �1) ⊂ (0,1), is tempered if	 → N(	 + �0) and	 → N(�1 − 	) are
tempered for	 near zero (i.e.	 ∼ 0.) Finally,N is strictly tempered if for some constants
0< c < d < 1

cN(	)�N(	/2)�dN(	), 0< 	 < 	0. (16)

For example, the functionN(	) := 	a(1+ | log	|)b is strictly tempered ifa > 0 andb
are arbitrary real numbers. On the other hand, the functionN0(	) := (log 1/	)−b, b > 1 is
tempered but not strictly tempered.
Suppose thatN(	) is strictly tempered. To prove that theweightsw∗ andw are equivalent

it is sufficient to verify that the following two sequences are equivalent for large positive�:

f� :=
∑
n>n0

2−�	nN(	n), (17)

g� := sup
n>n0

2−�	nN(	n), (18)
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where	n = 2−n,N(	n) := 1
M(�0+	n)

. In other words we will show thatw∗ andw are
equivalent to the weight

w̃(t) := sup
n∈I

t�n

M(�n)
.

Theorem 2.5. If N(	) is strictly tempered, then the sequencesf� andg� defined by(17)
and (18) are equivalent. In other words, if N(	) is strictly tempered thenw∗ andw are
equivalent.

Proof. First we shall prove that if{gv} is given by (18) then

g� ≈ 2−�	m(�)N(	m(�)), (19)

wherem(�) := [log�], log = log2 . To establish (19) it is enough to prove the upper
estimate. Let

sn := [− logN(	n)], ln := �	n + sn, k := [log�].
Then

g� ≈ 2− inf ln .

Since 2k�� < 2k+1 we have

2k+1−n + sn > ln�2k−n + sn;
in particular,

2+ sk > lk�1+ sk.

Hence

lk+j �2−j + sk+j , j > 1,

and

lk−j �2j + sk−j , 1�j < k − n0.

On the other hand,

cjN(	n−j ) = cjN(2j	n)�N(	n)�djN(	n−j ) = djN(2j	n).

Then

j logc + logN(	n−j )� logN(	n)�j logd + logN(	n−j ),

and, using[a] + [b]�[a + b] < [a] + [b] + 2, we get

sn−j − 2− j logd�sn�sn−j + 1− j logc.
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In particular, sinced < 1,

sk+j �sk − 2,

and

sk−j �sk − 1+ j logc > sk − 2j − a1

for some positive constanta1. Then

lk+j > lk − 4, lk−j > lk − 2− a1.

Hence

inf ln > lk − a

or

g� < c2−lk .

This implies

g� < c2−�	kN(	k),

proving (19).

Next we notice that ifε > logd andε �= 0, then the functions

Ñ(	) := 	εN(	)

are also strictly tempered, therefore the previous argument applied to the sequence

g̃� := sup
n>n0

2−�	nÑ(	n),

yields

g̃� ≈ 2−�	m(�) Ñ(	m(�)).

Therefore for 0< ε < log 1/d,∑
n>m(�)

	εn2
−�	nN(	n)	−εn < c	−εm(�)2

−�	m(�)N(	m(�))
∑

n>m(�)

	εn

< c	−εm(�)2
−�	m(�)N(	m(�))	εm(�)

< cg�.

Similarly,∑
n<m(�)

	−εn 2−�	nN(	n)	εn < c	εm(�)2
−�	m(�)N(	m(�))

∑
n<m(�)

	−εn

< c	εm(�)2
−�	m(�)N(	m(�))	

−ε
m(�)

< cg�.
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It follows that

f� < cg�,

and the desired result is proven.�

Remark 2.9. If N is temperedbut not strictly tempered thenw andw̃maynot beequivalent.
We give a counterexample. LetN0(	) := (log 1/	)−b, b > 1. ThenN is tempered, but not
strictly tempered. It is easy to see that in this case

f� :=
∑
n>n0

2−�	nN0(	n)

satisfies

f� ≈ (log�)1−b.

On the other hand,

g� := sup
n>n0

2−�	nN0(	n)

satisfies

g� ≈ (log�)−b.

Thereforew̃ andw are not equivalent. Moreover, we also have thatw∗ andw are not
equivalent since (say�0 = 0) we havew∗(2−�) ≈ (log�)b−1/p∗ , w(2−�) ≈ (log�)b−1/p+

for b > 1/p+.

For weights of typew∗ we have the following result

Theorem 2.6. Let �A = (A0, A1) be a quasi-Banach pair. Suppose that0< �0 < �1 < 1,
let� be the interval(�0, �1), �B = ( �A�0,p,

�A�1,p) and letp = � �B . Then

�(p)

�∈�(M(�) �A�,p) = �Aw∗,p.

Proof. By Theorem2.3 it suffices to show that�(p)

�∈�(M(�) �A�,p) ⊂ �Aw∗,p. By reiter-

ation we see that�Aw∗,p is a p-Banach space. Letf ∈ �(p)

�∈�(M(�) �A�,p), and select a
decompositionf =∑

f� with∑
[M(�)‖f�‖ �A�,p

]p ≈ ‖f ‖p
�(p)

�∈�(M(�) �A�,p)
.

Since �Aw∗,p is p-Banach andw∗(t)�M(�)t−�, we get

‖f ‖p�Aw∗,p
�
∑

‖f�‖p�Aw∗,p
�
∑
[M(�)‖f�‖ �A�,p

]p ≈ ‖f ‖p
�(p)

�∈�(M(�) �A�,p)
. �
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Remark 2.10. Let 0 < �0 < �1 < 1, �B = ( �A�0,p,
�A�1,p). If either 0 < p�� �A, or

p = � �B , then

�(p)

�∈�(
�A�,p) = �A�0,p + �A�1,p.

Proof. By Theorem2.4or Theorem2.6

�(p)

�∈�(
�A�,p) = �Aw∗,p,

where

w∗(t) =
{
t−�0 if t ∈ (0,1)
t−�1 if t > 1

.

Thus

‖f ‖�(p)

�∈�(
�A�,p)

≈
{∫ 1

0
[t−�0K(t, f ; �A)]p dt

t
+
∫ ∞

1
[t−�1K(t, f ; �A)]p dt

t

}1/p

.

Therefore, by Holmstedt’s formula,

‖f ‖�(p)

�∈�(
�A�,p)

≈ ‖f ‖ �A�0,p
+ �A�1,p

. �

Remark 2.11.We now give an example showing that forp > � �B the space�(p)

�∈�(
�A�,p)

can be strictly larger than�A�0,p + �A�1,p. Indeed, let

gn(t) = t−1/qn(1− ln t)−�n−�hn(t), 0< t < 1,

wherehn is the characteristic function of the interval(	n,
√

	n),	n = 2−n, 1
p
< �� 1

2p +
1
2, p > 1, 1

qn
= 1

p
− 1

2n . Then(L
1, L∞)2−n+�0,p = Lqn,p (uniformly w.r.t.n > 2), and

‖gn‖Lqn,p �cn−�p. Hence

f (t) := �gn(t) ∈ �(p)

(0,ε)(L
1, L∞)2−n+�0,p.

On the other hand, fort ∼ 0 we have

f (t) ≈ t−1/p(1− ln t)1−2�.

Hence

f /∈ Lp and in factf /∈ Lp(logL)−1/p for � = 1/2, p > 2.

Remark 2.12. Let �B = ( �A�0,p,
�A�1,p). If 0 < p�� �B �q < ∞ and 0< �0 < �1 < 1

then

�(p)

�∈�(
�A�,q) = �A�0,q + �A�1,q .
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Proof. According to (46) below,

�A�,q = 〈(B0, B1)	,q〉 , � = (1− 	)�0 + 	�1.

Therefore

�A�,q ⊂ B0 + B1.

Sincep�� �B, we readily see that

�(p)

�∈�(
�A�,q) ⊂ �A�0,q + �A�1,q .

Conversely, we notice that for all� ∈ �,

�A�,q ⊂ �(p)

�∈�(
�A�,q)

with

‖f ‖�(p)

�∈�(
�A�,q )

� ‖f ‖ �A�,q
. (20)

Sinceq < ∞ there is no loss of generality if we assume thatf ∈ A0 ∩ A1. Then from
K(t, f ; �A)� min{1, t} ‖f ‖A0∩A1

, we immediately deduce that

t−�K(t, f ; �A)�h(t)

whereh(t) = t1−�1�(0,1)(t) + t−�0�(1,∞)(t). Therefore we can take limits in (20) using
dominated convergence.�

2.4. Reiteration and�(p) spaces

2.4.1. Formula for the quasi-norm in the sum�Aw0,p + �Aw1,p

As we already know from Theorems2.1, 2.3, 2.6, the�(p) space can be identified with
the sum

�Aw0,p + �Aw1,p,

where

1

w0(t)
=



∑
�0<���

[
t�

M(�)

]p+


1/p+

and

1

w1(t)
=



∑
���<�1

[
t�

M(�)

]p+


1/p+

.

The pair of weights{w0, w1} satisfy the following properties:

w0(t)�cw1(t) if 0 < t < 1; w1(t)�cw0(t) if t > 1, (21)



58 G.E. Karadzhov, M. Milman / Journal of Approximation Theory 133 (2005) 38–99

{∫ ∞

0
[min(1, t)wj (t)]p dt

t

}1/p

<∞, j = 0,1. (22)

We now show that when computing the quasi-norm of the sum space

�Aw0,p + �Aw1,p,

the values ofw0(t) are important only whent is in the range 0< t < 1, while w1(t) is
relevant only whent > 1. This is easy to see using a variant of Holmstedt’s formula for the
�Awj ,p spaces, wherewj are Calderón weights (compare with formula (3.9.8) in[6]).

Theorem 2.7. LetBj = �Awj ,p and letK(t, f ) = K(t, f ; �A).
(i) Suppose the weights{w0,w1} satisfy(21), then{∫ 1

0
[w0(t)K(t, f )]p dt

t
+
∫ ∞

1
[w1(t)K(t, f )]p dt

t

}1/p

�cK(1, f ; �B). (23)

(ii) Suppose the weights{w0,w1} satisfy(22), then{∫ 1

0
[w0(t)K(t, f )]p dt

t
+
∫ ∞

1
[w1(t)K(t, f )]p dt

t

}1/p

�cK(1, f ; �B). (24)

Proof. Although the proof of (23), (24) is a standardmodification of Holmstedt’s proof (cf.
[5]) we shall give the details for the sake of completeness. Letf = f0+ f1, fj ∈ Bj , j =
0,1. Then by(H1) we get:

Ip :=
∫ 1

0
[w0(t)K(t, f )]p dt

t
�c[‖f0‖pB0

+ ‖f1‖pB1
]

and

Jp :=
∫ ∞

1
[w1(t)K(t, f )]p dt

t
�c[‖f0‖pB0

+ ‖f1‖pB1
],

and (23) follows. Suppose that the weights{w0,w1} satisfy(H2). Let f ∈ A0 + A1 and
select a decompositionf = f0 + f1 such thatK(1, f ) ≈ ‖f0‖A0 + ‖f1‖A1. Then

K(s, f0)�‖f0‖A0 �cK(1, f ), K(s, f1)�s‖f1‖A1 �csK(1, f ).

By the quasi-triangle inequality,

[K(1, f ; �B)]p�c[‖f0‖pB0
+ ‖f1‖pB1

]
and

c‖f0‖pB0
�

∫ 1

0
[w0(s)K(s, f )]p ds

s
+
∫ 1

0
[w0(s)K(s, f1)]p ds

s

+
∫ ∞

1
[w0(s)K(s, f0)]p ds

s
.
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From ∫ 1

0
[w0(t)K(t, f1)]p dt

t
�c

∫ 1

0
[sw0(s)]p ds

s
[K(1, f )]p�c

∫ 1

0
[w0(t)K(t, f )]p dt

t

and ∫ ∞

1
[w0(t)K(t, f0)]p dt

t
�c

∫ ∞

1
[w0(s)]p ds

s
[K(1, f )]p�c

∫∞
1 [w0(t)]p dt

t∫ 1
0 [tw0(t)]p dt

t

Ip,

we obtain

c‖f0‖B0 �I.

Analogously,

c‖f1‖pB1
�

∫ 1

0
[w1(s)K(s, f1)]p ds

s
+
∫ ∞

1
[w1(s)K(s, f )]p ds

s

+
∫ ∞

1
[w1(s)K(s, f0)]p ds

s
.

Since∫ ∞

1
[w1(t)K(t, f0)]p dt

t
� c

∫ ∞

1
[w1(s)]p ds

s
[K(1, f )]p

� c

∫ ∞

1
[w1(t)K(t, f )]p dt

t

and ∫ 1

0
[w1(t)K(t, f1)]p dt

t
�c

∫ 1

0
[sw1(s)]p ds

s
[K(1, f )]p�c

∫ 1
0 [tw1(t)]p dt

t∫∞
1 [w1(t)]p dt

t

J p,

we obtain

c‖f1‖B1 �J.

The proof is complete. �

In our applications we shall need a variant of Theorem2.7. Consider the weightsuj (t) =
t−�j (1+ | ln t |)cj , 0 < �0 < �1 < 1, cj ∈ R, j = 0,1. These special weights satisfy
the following conditions:∫ 1

0

[
u0(t)

u1(t)

]p0 dt
t

<∞,

∫ ∞

1

[
u1(t)

u0(t)

]p1 dt
t

<∞, 0< p0, p1 <∞, (25)

∫ ∞

0
[min(1, t)uj (t)]pj dt

t
<∞, j = 0,1, (26)

K(t, f ; �A)�c[uj (t)]−1‖f ‖Bj
, j = 0,1, (27)

whereBj = �Auj ,pj .
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Theorem 2.8. LetBj = �Auj ,pj , letK(t, f ) = K(t, f ; �A).
(i) Suppose that the weights{u0, u1} satisfy(25), (27), then{∫ 1

0
[u0(t)K(t, f )]p0 dt

t

}1/p0

+
{∫ ∞

1
[u1(t)K(t, f )]p1 dt

t

}1/p1

�cK(1, f ; �B). (28)

(ii) Suppose that the weights{u0, u1} satisfy(26), then{∫ 1

0
[u0(t)K(t, f )]p0 dt

t

}1/p0

+
{∫ ∞

1
[u1(t)K(t, f )]p1 dt

t

}1/p1

�cK(1, f ; �B). (29)

Proof. To prove (28) we argue as above. Letf = f0+ f1, fj ∈ Bj , j = 0,1. Then using
(25),(27) we find

c

∫ 1

0
[u0(t)K(t, f )]p0 dt

t
�‖f0‖p0B0

+ ‖f1‖p0B1

∫ 1

0

[
u0(t)

u1(t)

]p0 dt
t

and

c

∫ ∞

1
[u1(t)K(t, f )]p1 dt

t
�‖f1‖p1B1

+ ‖f0‖p0B0

∫ ∞

1

[
u1(t)

u0(t)

]p1 dt
t
.

The proof of formula (29) is exactly the same as the proof of formula (24) and we omit the
details. The proof is complete.�

2.4.2. Normalization and uniform formulae for theK-functional
In previous sections the uniform equivalence of norms of�A�,p and �A�,p;J , � ∈ � =

(�0, �1),0< �0 < �1 < 1,playsa fundamental role in the calculationsof�(p). In particular
it allows us to use a Fubini type of argument for the computation of�(p)

� (M(�) �A�,p).

We can compute�(p)

� (M(�) �A�,q) for someq �= p if the functionM is tempered. Using
reiteration the problem is reduced to the case�0 = 0, �1 = 1. Then it is very useful to
normalize the norms of the interpolation spaces as in[17]:

〈 �A	,p

〉
:= c	,p �A	,p, 0< 	 < 1, 0< p�∞,

where

c	,p = [	(1− 	)p]1/p, ‖f ‖〈 �A	,p

〉 = c	,p ‖f ‖ �A	,p
,

with the convention∞1/∞ = 1.
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We have the norm one embeddings (see[5,17, p. 19]10 ):〈 �A	,p

〉
⊂
〈 �A	,r

〉
, r�p. (30)

Example 2.1(cf. Milman[22] ). Note that with this normalization theLp spaces can be
obtained by the real method

〈(L1, L∞)1/p∗,p〉 = Lp (31)

with norm equivalence independent ofp.

The following sharp version of Holmstedt’s reiteration formula (cf.[17, formula (3.15),
p. 33]) will be useful in what follows.11

Lemma 2.1. Let �A = (A0, A1) be a quasi-Banach pair, let 0 < �0 < �1 < 1, 0 <

q0�q�∞, Bj =
〈 �A�j ,q

〉
, j = 0,1, � = �1 − �0. Then, with constants of equivalence

independent of�0, �1, q,

K(t, f ; �B) ≈ c�0,q

{∫ t1/�

0
(s−�0K(s, f ; �A))q ds

s

}1/q

+tc�1,q
{∫ ∞

t1/�
(s−�1K(s, f ; �A))q ds

s

}1/q

+ t−�0/�K(t1/�, f ; �A). (32)

The following two variants of Lemma2.1are also needed in the sequel.

10For example, to prove the casep > 0, r = ∞, which we use in the proof of Theorem2.9 be-
low, we write Ip = ∫∞

0 [s−�K(s, f )]p ds
s , I1 = ∫ t

0[s−�K(s, f )]p ds
s , I2 = ∫∞

t [s−�K(s, f )]p ds
s . Then,

[(1− �)1/p�1/pp1/pI ]p = (1− �)�p(I1 + I2).

Moreover sinceK(t, f )/t decreases,

(1− �)�pI1��K(t, f )pt−�p,

and sinceK(t, f ) increases,

(1− �)�pI2� (1− �)K(t, f )pt−�p.

Thus for allt > 0 we have

(1− �)�pI1 + (1− �)�pI2�K(t, f )pt−�p,

so that for allt > 0,

[(1− �)1/p�1/pp1/pI ]p � [K(t, f )t−�]p,

and the required inequality follows.
11The proof follows the original Holmstedt argument.
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Lemma 2.2. Let �A = (A0, A1) be a quasi-Banach pair, let 0 < � < 1, � = 1 − �,

B0 =
〈 �A�,q

〉
, B1 = A1. Then, with constants of equivalence independent of�, q,

K(t, f ; �B) ≈ c�,q

{∫ t1/�

0
(s−�K(s, f ; �A))q ds

s

}1/q

+ t−�/�K(t1/�, f ; �A). (33)

Lemma 2.3. Let �A = (A0, A1)beaquasi-Banachpair, let0< � < 1, B1 =
〈 �A�,q

〉
, B0 =

A0. Then, with constants of equivalence independent of�, q,

K(t, f ; �B) ≈ c�,q t

{∫ ∞

t1/�
(s−�K(s, f ; �A))q ds

s

}1/q

+K(t1/�, f ; �A). (34)

Proofs of Lemmas2.2 and 2.3. We only give the proof of Lemma2.3since the proof of
Lemma2.2follows the same argumentmutatis mutandis. Let

I := c�,q t

{∫ ∞

t1/�
(s−�K(s, f ; �A))q ds

s

}1/q

.

We now estimate each of the terms on the right-hand side of (34). Consider an arbitrary
decomposition off = f0 + f1, fj ∈ Aj , j = 0,1. Then

cI � c�,q t

{∫ ∞

t1/�
(s−�K(s, f0; �A))q ds

s

}1/q

+c�,q t
{∫ ∞

t1/�
(s−�K(s, f1; �A))q ds

s

}1/q

.

It is plain thatK(s, f0; �A)�‖f0‖A0, whence

cI < t‖f1‖〈 �A�,q 〉 + c�,q t

{∫ ∞

t1/�
s−�q ds

s

}1/q

‖f0‖A0

� ‖f0‖A0 + t‖f1‖〈 �A�,q 〉.

Taking infimum over all decompositions we get

cI �K(t, f ; �B). (35)

To estimateK(t1/�, f ; �A) we use the trivial estimate (cf.[5])

K(t, f ; �A)� t�‖f ‖〈 �A�,q 〉

combined with the triangle inequality. We get

cK(t1/�, f ; �A) � K(t1/�, f0; �A)+K(t1/�, f1; �A)
� ‖f0‖A0 + t‖f1‖〈 �A�,q 〉.

Taking infimum yields

cK(t1/�, f ; �A)�K(t, f ; �B). (36)
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Combining (35) and (36) we obtain the required lower estimate forK(t, f ; �B). To prove
the upper estimate we use Holmstedt’s argument. Selectfj ∈ Aj , j = 0,1, such that
f = f0 + f1 andK(t, f ; �A) ≈ ‖f0‖A0 + t‖f1‖A1. Then

K(s, f0; �A)�‖f0‖A0 �cK(t1/�, f ; �A), (37)

K(s, f1; �A)�s‖f1‖A1 �cst−1/�K(t1/�, f ; �A).
Therefore,

t‖f1‖〈 �A�,q 〉 = tc�,q

{∫ ∞

0
s−�qK(s, f1; �A)q ds

s

}1/q

� c�,q t

{
c

∫ t1/�

0
s(1−�)q ds

s

}1/q

t−1/�K(t1/�, f ; �A)

+c�,q t
{
c

∫ ∞

t1/�
s−�q [Kq(s, f ; �A)+Kq(s, f0; �A)]ds

s

}1/q

.

Combining with (37) we get

t‖f1‖〈 �A�,q 〉�c(I +K(t1/�, f ; �A)),
concluding the proof. �

The next corollary will be useful in the applications.

Corollary 2.1. If 0< 	 < � < 1, then〈
(A0, A1)	,p

〉 ⊂ A0 +
〈
(A0, A1)�,p

〉
, (38)

In particular, if p�� �A then

�(p)−
(0,�)

(〈
(A0, A1)	,p

〉) ⊂ A0 +
〈
(A0, A1)�,p

〉
.

Proof. Using (34) we derive(
A0,

〈
(A0, A1)�,p

〉)
	/�,p = c�,p(1− 	/�)−1/p(A0, A1)	,p,

whence〈
(A0, A1)	,p

〉 ⊂ 〈(
A0,

〈
(A0, A1)�,p

〉)
	/�,p

〉
⊂ A0 +

〈
(A0, A1)�,p

〉
.

We now show that for the normalized real interpolation scales the second index is not

important in the computation of�(p)

(0,1)

(
M(	)

〈 �A	,r

〉)
(cf. [17] for the casep = 1).

Theorem 2.9. Let �A = (A0, A1) be a quasi-Banach pair. Suppose thatM(	) is tempered.
Then

�(p)

(0,1)

(
M(	)

〈 �A	,r

〉)
= �(p)

(0,1)

(
M(	)

〈 �A	,q

〉)
.
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Proof. By symmetry it is enough to consider the caser > q. Under this assumption the

embedding�(p)

(0,1)

(
M(	)

〈 �A	,q

〉)
⊂ �(p)

(0,1)

(
M(	)

〈 �A	,r

〉)
follows directly from (30). It

remains to prove

�(p)
(
M(	)

〈 �A	,r

〉)
⊂ �(p)

(
M(	)

〈 �A	,q

〉)
. (39)

It is enough to consider the extreme case:r = ∞ andq > 0.We will show below that〈 �A	,∞
〉
⊂
〈 �A	/2,q

〉
+
〈 �A2	,q

〉
, 	 ∼ 0, (40)

〈 �A	,∞
〉
⊂
〈 �A2	−1,q

〉
+
〈 �A(1+	)/2,q

〉
, 	 ∼ 1. (41)

SinceM is tempered, these inclusions combined with Remark2.3yield12

�(p)

(0,1)

(
M(	)

〈 �A	,∞
〉)
⊂ �(p)−

	∼0
(
M(	)

〈 �A	/2,q

〉)
+ �(p)−

	∼0
(
M(	)

〈 �A2	,q

〉)

+ �(p)+
	∼1

(
M(	)

〈 �A2	−1,q
〉)
+ �(p)+

	∼1
(
M(	)

〈 �A(1+	)/2,q

〉)

= �(p)

(0,1)

(
M(	)

〈 �A	,q

〉)
.

Therefore the theorem is proved modulo (40) and (41).
To prove (40) suppose that	 ∼ 0, and let�0 = 	/2, �1 = 2	, andt = 1 in (32); then

‖f ‖〈 �A	/2,q

〉
+
〈 �A2	,q

〉 ≈ c	/2,q

{∫ 1

0
[s−	/2K(s, f ; �A)]q ds

s

}1/q

+c2	,q
{∫ ∞

1
[s−2	K(s, f ; �A)]q ds

s

}1/q

+ ‖f ‖A0+A1
. (42)

We estimate each of the three terms on the right-hand side of (42). It is clear that

‖f ‖A0+A1
� ‖f ‖〈 �A	,∞

〉 . (43)

Moreover,

c	/2,q

{∫ 1

0
[s−	/2K(s, f ; �A)]q ds

s

}1/q

= c	/2,q

{∫ 1

0
[s−	K(s, f ; �A)]qs	q/2ds

s

}1/q

� c	/2,q ‖f ‖ �A	,∞ (q	/2)−1/q

= (1− 	/2)1/q ‖f ‖〈 �A	,∞
〉 .

12By abuse of notation we use�	∼0 to indicate�0<	<ε.
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For the second term we have

c2	,q

{∫ ∞

1
[s−2	K(s, f ; �A)]q ds

s

}1/q

= c2	,q

{∫ ∞

1
[s−	K(s, f ; �A)]qs−	q ds

s

}1/q

� c2	,q ‖f ‖ �A	,∞ (	q)−1/q

= [2(1− 2	)]1/q ‖f ‖〈 �A	,∞
〉 .

Inserting these estimates in (42) we find

‖f ‖〈 �A	/2,q

〉
+
〈 �A2	,q

〉 �c ‖f ‖〈 �A	,∞
〉 .

To prove (41) we proceed similarly. Let	 ∼ 1, �0 = 2	− 1, �1 = (1+ 	)/2, andt = 1
in (32). Then,

‖f ‖〈 �A2	−1,q
〉
+
〈 �A(1+	)/2,q

〉 ≈ c2	−1,q

{∫ 1

0
[s−2	+1K(s, f ; �A)]q ds

s

}1/q

+c(1+	)/2,q

{∫ ∞

1
[s−(1+	)/2K(s, f ; �A)]q ds

s

}1/q

+‖f ‖A0+A1
.

Each of these terms can be estimated as above. For example, the second term yields

c(1+	)/2,q

{∫ ∞

1
[s−(1+	)/2K(s, f ; �A)]q ds

s

}1/q

= c(1+	)/2,q)

{∫ ∞

1
[s−	K(s, f ; �A)]qsq(	/2−1/2) ds

s

}1/q

�((1+ 	)/2)1/q ‖f ‖〈 �A	,∞
〉

So that all in all we have

‖f ‖〈 �A1/2,q

〉
+
〈 �A(1+	)/2,q

〉 �c ‖f ‖〈 �A	,∞
〉 ,

and we have established (41). The theorem follows. �

The same proof gives the following result

Theorem 2.10.LetM(�) be tempered on(0,1). Then

�(p)−
(0,�)

(
M(�)

〈 �A�,r

〉)
= �(p)−

(0,�)

(
M(�)

〈 �A�,q

〉)
�(p)+
(�,1)

(
M(�)

〈 �A�,r

〉)
= �(p)+

(�,1)

(
M(�)

〈 �A�,q

〉)
.

2.4.3. Characterization of�(p)

(�0,�1)
(M(�) �A�,q)

To handle the case 0< �0 < �1 < 1, we use reiteration and pay attention to the
dependence on the parameters.
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Theorem 2.11(Caser�p). Let0 < �0 < �1 < 1. Let	 ∈ (0,1), � = (1− 	)�0 + 	�1
then, uniformly on	, we have

�A�,r ⊂ [	(1− 	)]1/p( �A�0,p,
�A�1,p)	,r , (44)

and

�A�,r ⊃ [	(1− 	)]1/r ( �A�0,p,
�A�1,p)	,r . (45)

In particular,

�A�,p = 〈( �A�0,p,
�A�1,p)	,p〉. (46)

The following analogs will be also useful in the sequel.

Remark 2.13. Let 0 < �0 < �1 < 1, 	 ∈ (0,1), � = (1− 	)�0 + 	�1,0 < p0, p1 <

∞,1/p = (1− 	)/p0 + 	/p1. Then, uniformly with respect to	,

�A�,p =
〈
( �A�0,p0,

�A�1,p1)	,p

〉
. (47)

Remark 2.14. Let 0 < �0 < 1,	 ∈ (0,1), � = (1− 	)�0 + 	. Then, uniformly with
respect to	,

(1− �)1/p �A�,p =
〈
( �A�0,p, A1)	,p

〉
. (48)

Example 2.2. (i) Let Lp be the Lebesgue space on arbitrary	-finite measure space. Then〈
(Lp0, Lp1)	,p

〉 = Lp, 1/p = (1− 	)/p0 + 	/p1, 0< p0, p1 <∞. (49)

(ii) Let Lq,p be the Lorentz space equipped with the quasi-norm

‖f ‖Lq,p =
{
p

q

∫ ∞

0
[t1/qf ∗(t)]p dt

t

}1/p

.

Then 〈
(Lr, L∞)	,p

〉 = Lq,p, (50)

where 1/q = (1− 	)/r, 0< r <∞, p = p(	), |1/r − 1/p|� c
| log	(1−	)| .

(iii) The same proof also gives〈
(Lr, L∞)	,p

〉 ⊂ Lq,p, 1/q = (1− 	)/r, 0< r�p. (51)

Proof of Theorem 2.11. Let Bj = �A�j ,p, � = �1 − �0. By Holmstedt’s formula (with
constants of equivalence depending on�j , p):

K(t, f ; �B) ≈
{∫ t1/�

0
(s−�0K(s, f ; �A))p ds

s

}1/p

+t
{∫ ∞

t1/�
(s−�1K(s, f ; �A))p ds

s

}1/p

. (52)



G.E. Karadzhov, M. Milman / Journal of Approximation Theory 133 (2005) 38–99 67

Then, using Minkowski’s inequality forr > p and a change of variables, we get∫ ∞

0
t−	rKr(t, f ; �B)dt

t

≈
∫ ∞

0
t−	r

{∫ t1/�

0
(s−�0K(s, f ; �A))p ds

s

}r/p
dt

t

+
∫ ∞

0
t (1−	)r

{∫ ∞

t1/�
(s−�1K(s, f ; �A))p ds

s

}r/p
dt

t

=
∫ ∞

0
t−	r

{∫ 1

0
(st1/�)−�0pK(st1/�, f ; �A)p ds

s

}r/p
dt

t

+
∫ ∞

0
t (1−	)r

{∫ ∞

1
(st1/�)−�1pK(st1/�, f ; �A)p ds

s

}r/p
dt

t

�
{∫ 1

0

(∫ ∞

0
t−	r (st1/�)−�0rK(st1/�, f ; �A)r dt

t

)p/r
ds

s

}r/p

+
{∫ ∞

1

(∫ ∞

0
t (1−	)r (st1/�)−�1rK(st1/�, f ; �A)r dt

t

)p/r
ds

s

}r/p

= �


{∫ 1

0
s	�p ds

s

}r/p

+
{∫ ∞

1
s−(1−	)�p ds

s

}r/p∫ ∞

0
u−�rK(u, f ; �A)r du

u

= �

[(
1

�	p

)r/p

+
(

1

�(1− 	)p

)r/p
]
‖f ‖r�A�,r

�c[	(1− 	)]−r/p ‖f ‖ �A�,r
.

Thus (44) is proven.
To prove the embedding (45), we write∫ ∞

0
t−	rKr(t, f ; �B)dt

t
≈ I + J,

where

I =
∫ ∞

0
t−�	r [g(t)]r/p dt

t
, g(t) =

∫ t

0
(s−�0K(s, f ; �A))p ds

s

and

J =
∫ ∞

0
t�(1−	)r [h(t)]r/p dt

t
, h(t) =

∫ ∞

t

(s−�1K(s, f ; �A))p ds
s
.

If f ∈ (B0, B1)	,r we can integrate by parts:

I = 1

�	p

∫ ∞

0
[g(t)]r/p−1g′(t)t−�	rdt.
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From

g′(t) = t−�0p−1Kp(t, f ; �A)
and

g(t)� 1

(1− �0)p
t−�0pKp(t, f ; �A),

we get

I �c	−1‖f ‖r�A�,r
.

Analogously,

J �c(1− 	)−1‖f ‖r�A�,r
.

Thus (45) is proven. �

An analogous result is valid forr < p:

Theorem 2.12(Caser < p). Let 0 < �0 < �1 < 1,	 ∈ (0,1), � = (1− 	)�0 + 	�1.
Then, with constants that are bounded w.r. to	, we have the following embeddings

�A�,r ⊂ [	(1− 	)]1/r ( �A�0,p,
�A�1,p)	,r ,

�A�,r ⊃ [	(1− 	)]1/p( �A�0,p,
�A�1,p)	,r .

As a corollary of Theorems2.11and2.12we get

Corollary 2.2. Let 0 < �0 < �1 < 1,	 ∈ (0,1), � = (1 − 	)�0 + 	�1. Then for
|1/r(	)− 1/p|� c

| log	(1−	)| we have, uniformly with respect to	:

�A�,r(	) =
〈
( �A�0,p,

�A�1,p)	,r(	)

〉
. (53)

Remark 2.15. If r �= p andr is independent	, then we do not have equality in (53). To
see this let us consider the caser = ∞. Let f be such thatK(t, f ; �A) ≈ t�, where� =
(1−	)�0+	�1. Then‖f ‖ �A�,∞ ≈ 1 and we can calculateK(t, f ; �B) ≈ t	[	(1−	)]−1/p.
It follows that‖f ‖ �B	,∞ ≈ [	(1− 	)]−1/p.

Now we are ready to prove an analog of Theorem2.9for the case 0< �0 < �1 < 1. The
following 13 corollary of Theorems2.9and2.11is only a partial analog of Theorem2.9.

Corollary 2.3. LetM(�) be tempered on the interval(�0, �1) 0 < �0 < �1 < 1, and let
r > p. Then

�(p)

(�0,�1)
(M(�)[(�− �0)(�1− �)]1/r−1/p �A�,r ) ⊂ �(p)

(�0,�1)
(M(�) �A�,p).

13Note that according to Remark3.5and Proposition3.1below, the embedding can not be reversed.
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Theorem 2.13.Let �A = (A0, A1) be a quasi-Banach pair, let 0 < �0 < �1 < 1, and let
M be tempered on the interval(�0, �1). Suppose that|1/r(�) − 1/p|� c

| log(�−�0)(�1−�)| ,
then

�(p)

(�0,�1)
(M(�) �A�,r(�)) = �(p)

(�0,�1)
(M(�) �A�,p).

Analogous results are valid for one-sided extrapolation spaces.

Proof. Let� = (1−	)�0+	�1 andM̄(	) := M(�), r̄(	) := r(�), andBj := �A�j ,p, j =
0,1. Then

�(p)

(�0,�1)
(M(�) �A�,r(�)) = �(p)

(0,1)(M̄(	) �A�,r̄(	))

= �(p)

(0,1)

(
M̄(	)

〈 �B	,p

〉)
(by Corollary2.2and Theorem2.9)

= �(p)

(�0,�1)
(M(�) �A�,p) (by (46)). �

Remark 2.16. In this example we show that in Theorem2.13we cannot replacer(	) by
a fixedr, r > p. In fact, for 0< p < r�∞, a > 0, ε > 0, �0 > 0, ε + �0 < 1, p0 =
(1− �0)p, Lp := Lp(0,1), we have

�(p)−
(0,
) (	

−a(Lp0, L∞)	+�0,p) �= �(p)−
(0,
) (	

−a(Lp0, L∞)	+�0,r ).

Proof. Let n�n1,0 < 	 < ε = 2−n1, 1/qn = 1/p − 2−n/p0, ,� > a,1/r < � <

1/p+ a−�, � < 1/p− ε/p0. Defineg(2−n, t) = t−1/qn(1− ln t)−�2−n�,0< t < 1.We
have‖g(2−n, .)‖Lq,r = 2−n�(�r−1)−1/r if � > 1/r.Recall that(Lp0, L∞)2−n+�0,r = Lq,r

(uniformly w.r.t.n�n1), therefore if we let

f (t) :=
∑

g(2−n, t) ≈ t−1/p(1− ln t)−�−�,

we see that

f ∈ �(p)−
(0,
) (2

na(Lp0, L∞)2−n+�0,r ).

On the other hand, according to Theorem4.4below

�(p)−
0,
 (2na(Lp0, L∞)2−n+�0,p) = Lp(logL)a.

Moreover, sincef (t) is equivalent to a decreasing function on 0< t < t0�1, and, since
� < 1/p + a − �, we see that

‖f ‖pLp(logL)a
�c

∫ 1

0
(1− ln t)(a−�−�)p dt

t
= ∞.

Our claim follows. �

2.5. Extrapolation theorems for�(p) method

The spaces�(p)(M(�)A�) are extrapolation spaces in the following sense.
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Theorem 2.14(� extrapolation theorem). Suppose that{A�}�∈� and {B�}�∈� are com-
patible scales of quasi-Banach spaces and letT (�A) ⊂ �B be a continuous linear operator
such that its restrictionT : A� → B� is bounded with‖T ‖A�→B�

�1 for all � ∈ �. Then
T defines a bounded linear operator

T : �(p)(M(�)A�)→ �(p)(M(�)B�),

with ‖T ‖�(p)(M(�)A�)→�(p)(M(�)B�)
�1.

Theorem2.14 requires that the operatorT be ab initio defined on some larger space
than the extrapolation space�(p). However if this assumption does not hold we can, under
suitable conditions, extend the operator. This is the content of the next result

Theorem 2.15.Let T be a bounded linear operatorT : �A�,p → B�, with ‖T ‖ �A�,p→B�

�1,0 < �0 < � < �1 < 1, 0< p < ∞. ThenT can be extended as a bounded linear
operator

T : �Aw∗,p → �(p)

(�0,�1)
(M(�)B�).

Remark 2.17. In addition, if the space�(p)

(�0,�1)
(M(�)B�) has the lattice property:

|f |� |g| ⇒ ‖f ‖�‖g‖,
then the previous extrapolation theorem holds for sublinear operators, i.e. we only need
to assume that the operatorT satisfies|T (f )|� ∑ |T (fn)|, wheneverf = ∑

fn with
fn ∈ A0 ∩ A1.

Proof of Theorem 2.15. We remind the reader thatw∗ is a Calderón weight. Therefore
for p <∞, A0∩A1 is dense in�Aw∗,p. We may thus assume without loss of generality that
f ∈ A0 ∩ A1. Then we can find a decompositionf =∑∞

�=−∞ f�, wheref� ∈ A0 ∩ A1,

is such thatJ (2�, f�; �A)�cK(2�, f ; �A), � ∈ Z. Consider the sequencef N =∑
|�|<N f�,

and the partition of the unity{�n,�}we have used in the proof of Theorem2.3. In particular,
we have

∑
n∈I �n,� = 1. Then,

T (f N) =
∑
|�|<N

T (f�) =
∑
n∈I

T


 ∑
|�|<N

�n,�f�


 .

Therefore,

‖T (f N)‖p
�(p)

(�0,�1)
(M(�)B�)

� c
∑
n∈I


Mn‖

∑
|�|<N

�n,�f�‖ �A�n,p;J



p

� c
∑
n∈I

∑
|�|<N

[2−��nMnJ (2
�, f��n,�; �A)]p
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� c
∑
|�|<N

[K(2�, f ; �A)]p
∑
n∈I

[Mn2
−��n�n,�]p

� c
∑
|�|<N

[w∗(2�)K(2�, f ; �A)]p
∑
n∈I

[�n,�/�n,�]p.

As in the proof of Theorem2.3, the sum over the set of indicesI is bounded by some
constant, therefore

‖T (f N)‖p
�(p)

�0,�1
(M(�)B�)

�c
∑
|�|<N

[w∗(2�)K(2�, f ; �A)]p.

Asimilar estimate also holds for the differenceT (f N1)−T (f N2). Consequently,T (f N)→
g in the�(p)

(�0,�1)
(M(�)B�) quasi-norm. On the other hand,f N → f in �A�,p for some fixed

�, whenceT (f N)→ T (f ) inB�, and thereforeT (f
N)→ T (f ) also in�(p)

(�0,�1)
(M(�)B�).

Thusg = T (f ) and the theorem is proved.�

The following corollary will be useful in applications.

Corollary 2.4. Let0 < �0 < 1,0 < 	 < � < 1, 0< p�� �B. LetT : �A�0+	,p → �B	,∞,
be a bounded linear operator with‖T ‖ �A�0+	,p→�B	,∞ �M(	) for all 	. Letw∗�,0 < 	 <

� < �, be the corresponding weight functionw∗, i.e.

1

w∗�(t)
=



∑
0<	��

[
t�0+	

M(	)

]p∗


1/p∗

, t > 0. (54)

ThenT can be extended as a bounded linear operator

T : �Aw∗� ,p → B0 +
〈
(B0, B1)�,p

〉
. (55)

Proof. Direct consequence of Theorem2.15and Corollary2.1. �

3. �(p) methods of extrapolation

In this section we turn to the construction of the�(p) methods of extrapolation. As in the
case of the�(p)methods, we shall consider continuous and discrete definitions.
Let 0< p�∞, 0��0 < �1�1, � = (�0, �1), and suppose that{∫�[M(�)]pd�}1/p <

∞, whereM(�) is positive and continuous on the interval�. Then we let

�(p)

�∈�(M(�) �A�,p)=�(p)(M(�) �A�,p)

=

f ∈

⋂
�∈�

�A�,p : ‖f ‖�(p)(M(�) �A�,p)
<∞


 ,



72 G.E. Karadzhov, M. Milman / Journal of Approximation Theory 133 (2005) 38–99

where

‖f ‖�(p)(M(�) �A�,p)
:=

{∫
�
[M(�)‖f ‖ �A�,p

]pd�
}1/p

.

It follows that for 0< �0 < �1 < 1 (in general the space�(p) could be trivial),

A0 ∩ A1 ⊂ �(p)(M(�) �A�,p).

Replacing integrals by series we can give a “discrete’’ definition of�(p) methods. Let
� = �0 + 2−n1, � = �1− 2n0 be sufficiently close to�0 and�1 respectively. Suppose that{∑

�∈� [M(�)]p}1/p <∞. Let

�(p)� (M(�) �A�,p) =
{
f ∈

⋂
n∈I

�A�n,p : ‖f ‖�(p)(M(�) �A�,p)
<∞

}
,

where

‖f ‖�(p)(M(�) �A�,p)
:=



∑
�∈�

[M(�)‖f ‖ �A�,p
]p



1/p

.

In a similar manner we define one-sided spaces. Indeed suppose that
{∑

�∈(�0,�]

[M(�)]p
}1/p

<∞. Then we let

�(p)−�0,�
(M(�) �A�,p) =


f ∈

⋂
n�n1

�A�n,p : ‖f ‖�(p)−(M(�) �A�,p)
<∞


 ,

where

‖f ‖�(p)−(M(�) �A�,p)
:=




∑
�∈(�0,�]

[M(�)‖f ‖ �A�,p
]p



1/p

.

Analogously, suppose that
{∑

�∈[�,�1) [M(�)]p
}1/p

<∞. Then we let

�(p)+�,�1
(M(�) �A�,p) =


f ∈

⋂
n�n0

�A�n,p : ‖f ‖�(p)+(M(�) �A�,p)
<∞


 ,

where

‖f ‖�(p)+(M(�) �A�,p)
:=




∑
�∈[�,�1)

[M(�)‖f ‖ �A�,p
]p



1/p

.

As was the case for the�(p) method, we now show that only the behavior ofM(�) at the
end points is important.
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Remark 3.1. For any�0 < � < � < �1 we have

�(p)

�0,�1
(M(�) �A�,p) = �(p)

�0,�
(M(�) �A�,p) ∩ �(p)

�,�1
(M(�) �A�,p). (56)

Proof. It is plain that

�(p)

�0,�1
(M(�) �A�,p) = �(p)

�0,�
(M(�) �A�,p) ∩ �(p)

�,�1
(M(�) �A�,p) ∩ �(p)

�,�(M(�) �A�,p).

Hence it is sufficient to prove that

�(p)

�0,�
(M(�) �A�,p) ∩ �(p)

�,�1
(M(�) �A�,p) ⊂ �(p)

�,�(M(�) �A�,p). (57)

SinceM(�) is continuous we see that

�(p)

�,�(M(�) �A�,p) = �(p)

�,�(
�A�,p)

and the space on the right-hand side can be computed explicitly by Remark3.6below:

�(p)

�,�(
�A�,p) = �AW�,p ∩ �AW�,p, W�(t) = t−�(1+ | ln t |)−1/p. (58)

Therefore,

�(p)

�0,�
(M(�) �A�,p) ⊂ �(p)

�−
,�(
�A�,p) = �AW�−
,p ∩ �AW�,p

and

�(p)

�,�1
(M(�) �A�,p) ⊂ �(p)

�,�+
(
�A�,p) = �AW�+
,p ∩ �AW�,p .

Hence

�(p)

�0,�
(M(�) �A�,p) ∩ �(p)

�,�1
(M(�) �A�,p) ⊂ �AW�,p ∩ �AW�,p .

Thus (57) and hence (56) are proven. �

Analogous result is valid for the discrete method.

Remark 3.2.

�(p)� (M(�) �A�,p) = �(p)−
(�0,�)

(M(�) �A�,p) ∩ �(p)+
(�,�1)

(M(�) �A�,p).

Proof. We proceed as in the proof of Remark3.1, but now instead of (58) we use

�(p)�,�(
�A�,p) = �A�,p ∩ �A�,p. �

Remark 3.3. We can apply the�(p) construction to any scale{A�}�∈� of compatible
quasi-Banach spaces, i.e., such that there exist quasi-Banach spaces�A and�A such that
�A ⊂ A� ⊂ �A, and the quasi-norms of the embeddings are uniformly bounded with
respect to� ∈ �. In this fashion it follows that�(p)(M(�)A�) ⊃ �A.
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Remark 3.4. Let {A�} be a scale of quasi-Banach spaces satisfying

A� ⊃ A� ∩ A�, � < � < �.

Then

�(p)� (M(�)A�) = �(p)−
(�0,�)

(M(�)A�) ∩ �(p)+
(�,�1)

(M(�)A�).

Analogously to Remark2.5we have the following result about equivalency of continuous
anddiscretedefinitions.Namely, if thepair(A0, A1) is orderedand theweightM(	)satisfies
the same property as in Remark2.5, then

�(p)

0,�(M(	)	−1/p �A	,r ) = �(p)−0,� (M(	) �A	,r ).

3.1. Characterization of�(p) spaces

Using Fubini and the definition of theK-method of interpolation, it is readily seen that

�(p)(M(�) �A�,p) = �AW,p, (59)

where the weight functionW is defined by the formula

W(t) =
{∫

�
[t−�M(�)]pd�

}1/p

, p <∞, (60)

W(t) = sup
�

t−� M(�), p = ∞.

Note also that for a constant scale we have

�(p)(M(�)A) = A.

Analogously for the discrete constructions we have

�(p)(M(�) �A�,p) = �AV,p, (61)

where the weight functionV is defined by the formula

V (t) =
{∑

�

[t−�M(�)]p
}1/p

. (62)

Of course, ifp �= q, Fubini is not available for the computation of�(p)(M(�) �A�,q),

but we can get around this obstacle if the weightsM(�) are tempered and the scales under
consideration are normalized. Our next result extends a result in[17] for the casep = ∞.

Theorem 3.1. LetM(�) be tempered on the interval(0,1). Then

�(p)

0,1

(
M(�)

〈 �A�,r

〉)
= �(p)

0,1

(
M(�)

〈 �A�,q

〉)
.
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Proof. Without loss of generality assume thatq > r. In view of (30) it is sufficient to prove
the embedding

�(p)

0,1

(
M(�)

〈 �A�,∞
〉)
⊂ �(p)

0,1

(
M(�)

〈 �A�,r

〉)
.

We have

‖f ‖p
�(p)

�∈�

(
M(�)

〈 �A�,r

〉) ≈
∫ 1

0

[
M(�)

(∫ ∞

1
t−�rKr(t, f )dt/t

)1/r

[�(1−�)r]1/r
]p

d�

+
∫ 1

0


M(�)

(∫ 1

0
t−�rKr(t, f )dt/t

)1/r

[�(1−�)r]1/r


p

d�

= I + II.

To estimateI we make the change of variables� = 2�

I = 2
∫ 1/2

0

[
M(2�)[(1− 2�)2�r]1/r

(∫ ∞

1
t−2�rK(t, f ; �A)r dt

t

)1/r
]p

d�

� 2
∫ 1/2

0

[
M(2�)[(1−2�)2�r]1/r

[
sup
t
t−�K(t, f ; �A)

](∫ ∞

1
t−�r dt

t

)1/r
]p

d�

= 2
∫ 1/2

0

[
M(2�)[(1− 2�)2]1/r ‖f ‖ �A�,∞

]p
d�. (63)

SinceM is tempered and continuous we can replaceM(2�) byM(�) in (63). In this fashion
we see that

I �c

∫ 1

0
[M(�) ‖f ‖ �A�,∞]pd�.

The termII can be estimated using a similar analysis. First we splitII = L1+L2, where

L1 =
∫ 1/2

0


M(�)

(∫ 1

0
t−�rKr(t, f )dt/t

)1/r

[�(1− �)r]1/r


p

d�,

L2 =
∫ 1

1/2


M(�)

(∫ 1

0
t−�rKr(t, f )dt/t

)1/r

[�(1− �)r]1/r


p

d�.

The estimate ofL1 is the same as forI . To estimateL2 we use the change of variables
� = 2�− 1. Thus we obtain

II �c

∫ 1

0
[M(�) ‖f ‖ �A�,∞]pd�.
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Combining these estimates we find

‖f ‖
�(p)

�∈�

(
M(�)

〈 �A�,r

〉) �c ‖f ‖
�(p)

�∈�

(
M(�)

〈 �A�,∞
〉)

as we wished to show.�

For future applications we now state and prove a discrete version of Theorem3.1 (cf.
Theorem2.9above).

Theorem 3.2. Let0< p, q, r�∞, � = (0,1), and letM(�) be tempered on the interval
(0,1). Then

�(p)�∈�

(
M(�)

〈 �A�,r

〉)
= �(p)�∈�

(
M(�)

〈 �A�,q

〉)
.

Proof. As in the proof of Theorem2.9 it is enough to consider the embeddings at the end
points. More precisely, it is sufficient to prove the following embeddings:

�A	/2,∞ ∩ �A2	,∞ ⊂ 	1/r �A	,r if 	 ∼ 0 (64)

and

�A2	−1,∞ ∩ �A(1+	)/2,∞ ⊂ (1− 	)1/r �A	,r if 	 ∼ 1. (65)

In turn (64) and (65) will follow from

�A	/2,∞ ∩ �A2	,∞ ⊂ ( �A	/2,∞, �A2	,∞)1/3,r

and

�A2	−1,∞ ∩ �A(1+	)/2,∞ ⊂ ( �A2	−1,∞, �A(1+	)/2,∞)2/3,r .

Indeed, letB0 = �A	/2,∞, B1 = �A2	,∞, then by Holmsted’s formula we get

K(t, f ; �B)�ct−1/3K(t
2
3	 , f ; �A),

whence∫ ∞

0
t−r/3Kr(t, f ; �B)dt/t � c

∫ ∞

0
t−2r/3Kr(t

2
3	 , f ; �A) dt/t

= c	
∫ ∞

0
t−	rKr(t, f ; �A) dt/t.

Therefore,

( �A	/2,∞, �A2	,∞)1/3,r ⊂ 	1/r �A	,r .

Analogously, ifC0 = �A2	−1,∞, C1 = �A(1+	)/2,∞, then

K(t, f ; �C)�ct−
2
3
2	−1
1−	 K(t

2
3

1
1−	 , f ; �A).
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It follows that

( �A2	−1,∞, �A(1+	)/2,∞)2/3,r ⊂ (1− 	)1/r �A	,r .

The same proof gives�

Theorem 3.3. LetM(�) be tempered on the interval(0,1), and let0< �0 < �1 < 1.Then

�(p)

(0,�1)

(
M(�)

〈 �A�,r

〉)
= �(p)

(0,�1)

(
M(�)

〈 �A�,q

〉)
;

�(p)

(�0,1)

(
M(�)

〈 �A�,r

〉)
= �(p)

(�0,1)

(
M(�)

〈 �A�,q

〉)
.

In the case 0< �0 < �1 < 1 we have

Theorem 3.4. Let �A = (A0, A1) be a pair of quasi-Banach spaces, and letM be tempered
on the interval(�0, �1), 0< �0 < �1 < 1, |1/p− 1/r(�)|�c/| ln(�− �0)(�1− �)|. Then

�(p)

� (M(�) �A�,r(�)) = �(p)

� (M(�) �A�,p).

Analogous results are of course valid for one-sided spaces or the discrete method.

The analog of Corollary2.3 is

Corollary 3.1. LetM(�) be tempered on the interval0 < �0 < �1 < 1, and letr > p.
Then

�(p)

� (M(�)[(�− �0)(�1− �)]1/r−1/p �A�,r ) ⊂ �(p)

� (M(�) �A�,p).

The following example shows that in general Theorem3.4 is not true ifr �= p is fixed.

Example 3.1. Let Lp = Lp(0,1), 0 < p < r�∞, a > 0,0 < ε < �1 < 1, p0 =
(1− �1)p. Then

�(p)

(0,ε)(	
a−1/p(Lp0, L∞)�1−	,p) �= �(p)

(0,ε)(	
a−1/p(Lp0, L∞)�1−	,r ).

Proof. Let � > 0,1/r < a − � < 1/p. Definef (t) = t−1/p(1− ln t)�,0 < t < 1.
According to Theorem4.7below

�(p)

(0,ε)(	
a−1/p(Lp0, L∞)�1−	,p) = Lp(logL)−a

and

‖f ‖pLp(logL)−a =
∫ 1

0
(1− ln t)(−a+�)p dt

t
= ∞.

On the other hand,(Lp0, L∞)�1−	,r = Lq,r ,1/q = 1/p + 	/p0 (uniformly w.r.t. to
	 ∈ (0, ε)). Therefore

‖f ‖rLq,r ≈
∫ 1

0
er	 ln t/p0(1− ln t)�r

dt

t
=
∫ ∞

1
er	(1−s)/p0s�rds ≈ 	−�r−1.
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Consequently

‖f ‖p
�(p)

(0,ε)(	
a−1/p(Lp0,L∞)�1−	,r )

≈
∫ ε

0
	(a−�−1/r)p d	

	
<∞.

We also have (cf. Corollary3.1) �

Remark 3.5. Let Lp = Lp(0,1), 0 < p < r�∞, a > 0,0 < ε < �1 < 1, p0 =
(1− �1)p. Then

�(p)

(0,ε)(	
a−1/p	1/r−1/p(Lp0, L∞)�1−	,p) �= �(p)

(0,ε)(	
a−1/p(Lp0, L∞)�1−	,r ).

Proof. Let 1/r < � < 1/p,1/p − � < a�1/p − 1/r. Define f (t) = t−1/p(1 −
ln t)−�,0< t < 1. According to Theorem4.7

�(p)

(0,ε)(	
a−1/p(Lp0, L∞)�1−	,p) = Lp(logL)−a

and

‖f ‖pLp(logL)−a =
∫ 1

0
(1− ln t)(−a+�)p dt

t
<∞.

On the other hand,(Lp0, L∞)�1−	,r = Lq,r ,1/q = 1/p + 	/p0 (uniformly w.r.t. to
	 ∈ (0, ε)) and

‖f ‖rLq,r ≈
∫ 1

0
er	 ln t/p0(1− ln t)−�r dt

t
=
∫ ∞

1
er	(1−s)/p0s−�rds ≈ 1.

Hence

‖f ‖p
�(p)
0,ε (	

a−1/p	1/r−1/p(Lp0,L∞)�1−	,r )
≈
∫ 


0
	(a+1/r−1/p)pd	/	 = ∞. �

Now we characterize the�(p) spaces in the caseM = 1.

Remark 3.6. Let 0��0 < �1�1,Wj(t) = t−�j (1+ |ln t |)−1/p, j = 0,1. Then

�(p)

� ( �A�,p) = �AW0,p ∩ �AW1,p.

Proof. Use (60). �

Here is another variant:

Remark 3.7. Let 0< �0 < �1 < 1. Then for 0< q�∞,

�(∞)

� ( �A�,q) = �A�0,q ∩ �A�1,q .

Proof. Since �A�,q =
〈
(B0, B1)	,q

〉
, � = (1− 	)�0 + 	�1, Bj = �A�j ,q , we have

�(∞)

� ( �A�,q) ⊃ �A�0,q ∩ �A�1,q .
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Conversely, note that for all� ∈ (�0, �1),

‖f ‖ �A�,q
�‖f ‖�(∞)

� ( �A�,q )
.

We complete the proof by means of letting� → �j , j = 0 or j = 1 (if q < ∞ we use
Fatou’s lemma). �

An analogous result, with similar proof, is valid for the discrete method.

Remark 3.8. Let 0< �0 < �1 < 1. Then for 0< q�∞,

�(∞)

� ( �A�,q) = �A�0,q ∩ �A�1,q .

As we have seen, the�(p) space is an intersection of two “end’’ spaces,

�(p)(M(�) �A�,p) = �AW0,p ∩ �AW1,p, (66)

where the weightsW0, andW1 are given by

W0(t) =
{∫ �

�0
[t−�M(�)]pd�

}1/p

, W1(t) =
{∫ �1

�
[t−�M(�)]pd�

}1/p

.

These weights satisfy the following properties

W1(t)�cW0(t) if t > 1,

W0(t)�cW1(t) if 0 < t < 1.

It follows that

‖f ‖ �AW0,p∩ �AW1,p
≈
{∫ 1

0
[W1(t)K(t, f ; �A)]p dt

t
+
∫ ∞

1
[W0(t)K(t, f ; �A)]p dt

t

}1/p

.

Therefore in the computation of‖f ‖ �AW0,p∩ �AW1,p
the weightW1(t) plays a role only fort in

the range 0< t < 1 and the weightW0(t) plays a role only fort > 1.

3.2. Extrapolation theorems

We now write down a prototype extrapolation theorem for the�(p) method (analogous
results are valid for the discrete methods).

Theorem 3.5(� extrapolation theorem). Suppose that{A�} and{B�} are scales of spaces
such that�A ⊂ A� ⊂ �A, �B ⊂ B� ⊂ �B uniformly with respect to� ∈ �. LetT be an
operator(not necessarily linear) such thatT : A� → B� is bounded with quasi-norm1 for
all � ∈ �. Then, for all functionsM(�) such that{∫�[M(�)]pd�}1/p <∞, we have

T : �(p)(M(�)A�)→ �(p)(M(�)B�)

with quasi-norm1.

In the applications we need some variants of the previous results.
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Corollary 3.2. Let 0 < �0 < 1,0 < 	 < � < 1, 0 < p��B, and letT : �A�0+	,p →
�B	,∞, be a bounded linear operator with‖T ‖ �A�0+	,p→�B	,∞ �M(	) for all 	. Letw∗� be
given by

1

w∗�(t)
=



∑
0<	��

[
t�0+	

M(	)

]p∗


1/p∗

, t > 0. (67)

ThenT can be extended as a bounded linear operator

T : �(∞)
(0,�)(N(�) �Aw∗� ,p)→ �(∞)

(0,�)

(
N(�)

(
B0 +

〈 �B�,p

〉))
. (68)

Proof. Use Corollary2.4. �

In our applications to the theory of log Sobolev inequalities we shall need still another
type of extrapolation theorem involving the� and� methods.

Theorem 3.6(�− � extrapolation). Let {A�} and{B�} be scales of Banach spaces such
that �A ⊂ A� ⊂ �A, and B� ⊂ �B uniformly with respect to� ∈ (0, ε). Suppose
that {T (�)}�∈(0,ε) is a family of bounded linear operators, T (�) : A� → B� and let
‖T ‖A�→B�

= M(�), � ∈ (0, ε). Suppose thatM(�) satisfies
∫ ε

0 M(�)d�/� < ∞, and let
T̄ be theoperator definedon�A by T̄ = ∫ ε

0 T (�)d�/�.Then, (i) T̄ : �A → �B is abounded
operator. (ii)Suppose thatN(�) is a positive function satisfying{∫ ε

0 [N(�)]−p∗d�/�}1/p∗ <
∞, {∫ ε

0 [N(�)M(�)]p d�
� }1/p < ∞. Then, if �A is dense in�

(p)

(0,ε)(M(�)N(�)�−1/pA�), it

follows thatT̄ has a norm-one bounded extension

T̄ : �(p)

(0,ε)(M(�)N(�)�−1/pA�)→
∫
p,0,ε

(N(�)B�).

Proof. Follows immediately from the definitions.�

3.3. Duality

Now we give a duality result

Proposition 3.1. Let �A be a Banach pair and let1�p < ∞. If A0 ∩ A1 is dense in
Aj , j = 0,1 and �A∗ = (A∗0, A∗1) is the dual pair, then{∫

p,0,ε
(M(	) �A	+�0,p;J )

}∗
= �(p∗)

(0,ε)

(
	−1/p∗

M(	)
�A∗	+�0,p∗

)
.

Proof. According to Remark2.7, the left-hand side is the space{ �Av,p;J }∗ = �A∗h,p∗ ,where
(cf. [6]) h(t) = 1

v(1/t) . It remains to apply formula (59).
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4. Computations

4.1. �(p) spaces

LetM(�) = (� − �0)−a0(�1 − �)−a1, aj > 0, j = 0,1 with 0��0 < � < �1�1 (and
aj �0 if p��A). Our first goal will be to characterize the�(p) extrapolation spaces for the
scale{M(�)(A0, A1)�,p}�∈�. We will then apply the general results to explicitly compute
the corresponding�(p) extrapolation spaces for pairs ofLp spaces.

To apply the results of previous sections (e.g. Theorems2.2, 2.3, etc.) we need to compute
the weights{w0, w1} defined by,

[w0(t)]−1 =



∑
�0<�<�

[
t�

M(�)

]q


1/q

, 0< t < 1,

[w1(t)]−1 =



∑
�<�<�1

[
t�

M(�)

]q


1/q

, t > 1,

where14 q = p+ or q = ∞ and� = �0 + 2−n1, � = �1 − 2n0, wheren0 < 0, and
n1 > 0.
We shall treat in detail only the caseq < ∞. The necessary modifications for the case

q = ∞ are left to the reader.
It is readily seen (by monotonicity) that

c1

∫ �̃

�0
t�q(�− �0)a0q−1d��[w0(t)]−q

�c2

∫ �

�0
t�q(�− �0)a0q−1d�, 0< t < 1, �̃ = �− 2−n1−1

and

c1

∫ �1

�̃
t�q(�1− �)a1q−1d��[w1(t)]−q

�c2

∫ �1

�
t�q(�1− �)a1q−1d�, t > 1, �̃ = �+ 2n0−1.

By a change of variables we have to calculate the integrals:∫ 	0

0
t�0q t	q	a0q−1d	, 0< t < 1

and ∫ 	1

0
t�1q t−	q	a1q−1d	, t > 1.

14See (10).
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Set� = q| ln t |, then� →∞ ast → 0 ort →∞.We have to find the asymptotic properties
of the integral

I (�, a) =
∫ c

0
e−	�	aq−1d	.

We have

I (�, a) ≈ �−aq .

Therefore, fort near 0,

[w0(t)]−q ≈ t�0q | ln t |−a0q,
it follows that

w0(t) ≈ (1− ln t)a0t−�0, 0< t < 1. (69)

Similarly,

w1(t) ≈ (1+ ln t)a1t−�1, 1< t <∞. (70)

The previous discussion leads to

Theorem 4.1(�(p) space). Let0 < �0 < � < �1 < 1,0 < p�∞, ai > 0, i = 0,1. Let
wj(t) = (1+ | ln t |)aj t−�j , j = 0,1. Then

�(p)((�− �0)−a0(�1− �)−a1(A0, A1)�,p) = �Aw0,p + �Aw1,p.

Remark 4.1 (�(p) space,0< p�� �A). If 0 < p�� �A thenp+ = p∗ = ∞ and the same
proof shows that Theorem4.1remains valid foraj �0, j = 0,1.

Analogous results are valid for the one-sided extrapolation spaces�(p)− and�(p)+. For
example,

Theorem 4.2(�(p)− space). Let 0 < �0 < ���,0 < p�∞, a > 0, w0(t) = (1 +
| ln t |)at−�0. Then

�(p)−
(�0,�)

((�− �0)−a(A0, A1)�,p) = �Aw0,p + �A�,p.

Proof. We only need to compute the weight

[w(t)]−1 =



∑
�0<���

[t�(�− �0)a]q



1/q

,1< t <∞.

Let q <∞. Since� = �0 + 2−n1 and�n − �0 = 2−n we need to estimate:

I (t) :=
∑
n�n1

tq�n(�n − �0)qa, t > 1.
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We have

I (t)= tq�0
∑
n�n1

tq2
−n
2−qan

= tq�02−qan1
∑
k�0

tq2
−n12−k2−qak

= tq�02−qan1tq2−n1
∑
k�0

tq2
−n1(2−k−1)2−qak

= tq�2−qan1g(t),
where

g(t) :=
∑
k�0

tq2
−n1(2−k−1)2−qak.

Sinceg(t) ≈ 1 for t > 1 we getw(t) ≈ t−� if t > 1. The result follows. �

Theorem 4.3(�(p) space). Let 0 < �0 < � < �1 < 1,0 < p0�p�∞, a > 0, b > 0,
1/ri = (1− �i )/p0, i = 0,1. Let � be a	-finite measure space and let(Lp0, L∞) =
(Lp0(�), L∞(�)). Then

�(p)((�− �0)−a(�1− �)−b(Lp0, L∞)�,p) = Lr0,p(logL)a + Lr1,p(logL)b,

where the logarithmic Lorentz–Zygmund spacesLr,p(logL)a,0 < p, r�∞, a ∈ R, are
defined by the quasi-norm(cf. [4])

‖f ‖Lr,p(logL)a =
{∫ ∞

0
(1+ | ln t |)aptp/r [f ∗(t)]p dt

t

}1/p

.

Analogously

Theorem 4.4(�(p)− space). Let 0 < �0 < � < �,0 < p0�p�∞, a > 0, 1/r0 =
(1− �0)/p0, 1/r1 = (1− �)/p0. Then

�(p)−
(�0,�)

((�− �0)−a(Lp0, L∞)�,p) = Lr0,p(logL)a + Lr1,p.

Proof of Theorems4.3 and 4.4. It is sufficient to prove that for 0< ��1, w(t) = (1+
| ln t |)at−�, 1/r = (1− �)/p0, p�p0,

(Lp0, L∞)w,p = Lr,p(logL)a. (71)

Moreover, note that the embedding

(Lp0, L∞)w,p ⊂ Lr,p(logL)a (72)

is valid if � = 0. Using the well-known formula (cf.[5])

K(t, f ;Lp0, L∞) ≈
{∫ tp0

0
[f ∗(s)]p0ds

}1/p0

, p0 > 0 (73)



84 G.E. Karadzhov, M. Milman / Journal of Approximation Theory 133 (2005) 38–99

and the fact thatf ∗ decreases, we find

c‖f ‖(Lp0,L∞)w,p �
{∫ ∞

0
t−�p(1+ | ln t |)ap[f ∗(tp0)t]p dt

t

}1/p

.

Consequently

(Lp0, L∞)w,p ⊂ Lr,p(logL)a,1/r = (1− �)/p0. (74)

LetK(t, f ) = K(t, f ;Lp0, L∞). Then by (73),∫ ∞

0
t−�p(1+ | ln t |)ap[K(t, f )]p dt

t

�
∫ ∞

0
t (1−�)p(1+ | ln t |)ap

(∫ 1

0
[f ∗(stp0)]p0ds

)p/p0
dt

t
.

Applying Minkowski’s inequality (recall thatp�p0) and making the change of variables
stp0 = 	 we get∫ ∞

0
t−�p(1+ | ln t |)ap[K(t, f )]p dt

t

�c

{∫ 1

0

(∫ ∞

0
	p/r (1+ | ln(	/s)|)ap[f ∗(	)]p d	

	

)p0/p

s�−1ds
}p/p0

.

Now we use the elementary inequalities

1+ | ln 	− ln s|�(1+ | ln 	|)(1− ln s)

1+ | ln 	− ln s|�(1+ | ln 	|)(1− ln s)−1, 0< s < 1,

to conclude that

c‖f ‖p
(Lp0,L∞)w,p

�
∫ ∞

0
[f ∗(	)]p	p/r (1+ | ln 	|)ap d	

	

[∫ 1

0
s�−1(1− ln s)|a|pds

]p/p0
.

�c

∫ ∞

0
[f ∗(	)]p	p/r (1+ | ln 	|)ap d	

	
.

Therefore

(Lp0, L∞)w,p ⊃ Lr,p(logL)a,1/r = (1− �)/p0,

which, combined with (74), proves the desired result.�

Remark 4.2 (�(p) space,0< p = p0�1). If 0 < p = p0�1 then we can choosep+ =
p∗ = ∞ and the same proof shows that Theorem4.3remains valid fora�0, b�0.
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4.2. �(p) spaces

LetM(�) = (�−�0)a0−1/p(�1−�)a1−1/p, aj > 0, j = 0,1,0< p�∞,with 0��0 <
� < �1�1. In this sectionwecompute theextrapolationspaces�(p){M(�)(A0, A1)�,p}�∈�.

We thenapply the general results to explicitly compute the corresponding�(p) extrapolation
spaces for pairs ofLp spaces.
According to (66) if p <∞ (the casep = ∞ can be treated analogously)

�(p)((�− �0)a0−1/p(�1− �)a1−1/p �A�,p)) = �AW0,p ∩ �AW1,p,

where

[W0(t)]p =
∫ �

�0
(�− �0)a0p−1(�1− �)a1p−1t−�pd�,

[W1(t)]p =
∫ �1

�
(�− �0)a0p−1(�1− �)a1p−1t−�pd�.

Moreover, by the discussion that follows Remark3.8we only need to compute the weight
W0(t) for t > 1 and the weightW1(t) for 0< t < 1.
The arguments we gave during the course of the proof of Theorem4.1show that

W0(t) ≈ t−�0(1+ ln t)−a0 if 1 < t <∞,

W1(t) ≈ t−�1(1− ln t)−a1 if 0 < t < 1.

Thus we have

Theorem 4.5(�(p) space). Let0��0 < � < �1�1,0 < p�∞, ai > 0, i = 0,1,Wj (t)

= (1+ | ln t |)−aj t−�j , j = 0,1. Then

�(p)

�∈�((�− �0)a0−1/p(�1− �)a1−1/p �A�,p) = �AW0,p ∩ �AW1,p.

Remark 4.3 (�(∞) space). If p = ∞ the same proof shows that Theorem4.5 remains
valid for aj �0, j = 0,1.

Analogous results are valid for one-sided extrapolation spaces. For example,

Theorem 4.6(�(p)− space). Let 0��0 < ���1�1,0 < p�∞, a > 0,W0(t) = (1+
| ln t |)−at−�0. Then

�(p)−� ((�− �0)a �A�,p) = �AW0,p ∩ �A�1,p.

As a corollary we get the following results for logarithmic Lorentz spaces.
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Theorem 4.7(�(p) space). Let 0 < �0 < � < �1�1,0 < p0�p�∞, ai > 0, 1/ri =
(1− �i )/p0, i = 0,1. Then

�(p)

�∈�((�− �0)a0−1/p(�1− �)a1−1/p(Lp0, L∞)�,p)

= Lr0,p(logL)−a0 ∩ Lr1,p(logL)−a1.
Also,

�(p)�
−((�− �0)a(Lp0, L∞)�,p) = Lr0,p(logL)−a ∩ Lr1,p.

Remark 4.4 (�(∞) space). If p = ∞ the same proof shows that Theorem4.7 remains
valid for aj �0, j = 0,1.

5. Applications

5.1. Extrapolation theorems of Yano type

Theorem 5.1. Let �A, �B be pairs of quasi-Banach spaces, let 0 < aj , bj , sj < ∞ (j =
0,1), 0< �0 < � < �1 < 1, and letT be a linear operator satisfying

‖Tf ‖ �B�,sj
�c|�− �j |−aj+bj ‖f ‖ �A�,sj

.

Then

T : �Aw0,s0 + �Aw1,s1 → �Bv0,s0 + �Bv1,s1,

wherewj(t) = t−�j (1+ | ln t |)aj , vj (t) = t−�j (1+ | ln t |)bj (j = 0,1).

Proof. The assumptions, combined with Theorem2.15, imply

T : �Af0,s0 → �(s0)−
�0,�1

((�− �0)−b0 �B�,s0),

and

T : �Af1,s1 → �(s1)+
�0,�1

((�1− �)−b1 �B�,s1),

where

f0(t) =
{
t−�0(1− ln t)a0 0< t < 1,

t−�1 t > 1,

g0(t) =
{
t−�0(1− ln t)b0 0< t < 1,

t−�1 t > 1,

f1(t) =
{

t−�0 0< t < 1,
t−�1(1+ ln t)a1 t > 1,

g1(t) =
{

t−�0 0< t < 1,
t−�1(1+ ln t)b1 t > 1.
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Thus

T : �Af0,s0 + �Af1,s1 → �Bg0,s0 + �Bg1,s1.

By Theorem2.8,

�Af0,s0 + �Af1,s1 = �Aw0,s0 + �Aw1,s1

and

�Bg0,s0 + �Bg1,s1 = �Bv0,s0 + �Bv1,s1.

The desired result follows.�

Corollary 5.1. Let r0 < q < r1 < ∞, 0 < sj , aj , bj < ∞, (j = 0,1), and letT be a
sublinear operator satisfying

‖Tf ‖Lq,sj �c|q − rj |−aj+bj ‖f ‖Lq,sj .

Then

T : Lr0,s0(logL)a0 + Lr1,s1(logL)a1 → Lr0,s0(logL)b0 + Lr1,s1(logL)b1.

If sj = s�1, j = 0,1, we can prove the following result which can be considered a
generalization of Yano’s classical extrapolation theorem[29]. The abstract version of the
result is a consequence of Theorems2.4and4.2.

Theorem 5.2. Let a > 0,0 < 	 < � < 1, 0 < �0 < 1, 0 < s�� �B, and let �A, �B be
quasi-Banach pairs. Suppose thatT is a linear operator satisfying

‖Tf ‖ �B	,∞ �c	−a ‖f ‖ �A	(1−�0)+�0,s
.

Then

T : �Awa,s + �A�,s → B0 + �B�,s ,

wherewa(t) = t−�0(1+ | ln t |)a, � = �(1− �0)+ �0.

Corollary 5.2. LetT be a sublinear operator satisfying

‖Tf ‖Lq,∞ �c(q − s)−a ‖f ‖Lq,s , 0< s < q < p <∞, s�1, a > 0.

Then

T : Ls(logL)a + Lp,s → Ls + Lp,s,

whereLq,∞ := (Ls, L∞)	,∞, 1/q = (1− 	)/s.

Proof. Apply Theorem5.2 to �A = (Lp0, L∞), wherep0 = (1− �0)s,0 < �0 < 1 and
�B = (Ls, L∞).We use

Lq,s = (Lp0, L∞)	(1−�0)+�0,s , 1/q = (1− 	)/s = (1− 	(1− �0)− �0)/p0.



88 G.E. Karadzhov, M. Milman / Journal of Approximation Theory 133 (2005) 38–99

In particular,

Lp,s = (Lp0, L∞)�(1−�0)+�0,s , 1/p = (1− �)/s = (1− �(1− �0)− �0)/p0.

To conclude we apply Theorem5.2and use formula (71). �

The following result is a generalization of Theorem 4.1[15]. To simplify the statement
we shall considerLp spaces on finite measure spaces.

Corollary 5.3. LetT be a sublinear operator satisfying

‖Tf ‖Lrq �c(q − 1)−b ‖f ‖Lq,1 , 1< q < p <∞, r�1, a�b > 0.

Then

T : L(logL)a → Lr(logL)a−b.

Proof. Let

Lq,1 = (Lp0,L∞)	+�0,1,1/q = 1− 	/p0,1− �0 = p0.

ThenLrq = (Lrp0, L∞)	+�0,rq . Applying Theorems2.15, 4.4we get

T : L(logL)a → �(1)−(	b−a(Lrp0, L∞)	+�0,rq).

It remains to identify the space on the right-hand side. Ifa > b, we have

�(1)−(	b−a(Lrp0, L∞)	+�0,rq) ⊂ �(r)−(	b−a(Lrp0, L∞)	+�0,rq)

and by Theorems2.13, 4.4this is the same as

�(r)−(	b−a(Lrp0, L∞)	+�0,r ) = Lr(logL)a−b.

If a = b we have

�(1)−(Lrp0, L∞)	+�0,rq = �(1)−Lrq ⊂ �(1)−Lr ⊂ Lr.

The result follows. �

Another variant of these results can be proved using Corollary3.2(see[9,22] for similar
results for Banach pairs).

Theorem 5.3. Let �A, �B be quasi-Banach pairs, let a > 0,0 < 	 < � < 1, 0 < �0 < 1,
0< s�� �B , and letT be a linear operator satisfying

‖Tf ‖ �B	,∞ �c	−a ‖f ‖ �A	(1−�0)+�0,s
.

Then

sup
t>0

(1+ ln+ t)−aK(t, Tf ; �B)�c‖f ‖ �Av,s
,

wherev(t) = t−�0(1+ ln+ 1/t)a, t > 0.
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Proof. Using Corollary3.2we get

T : �(∞)
0,� (�a �Aw∗� ,s)→ �(∞)

0,�

(
�a

(
B0 +

〈 �B�,s

〉))
.

The weightw∗� can be estimated by

w∗�(t) ≈
{

t−�0(− ln t)a t < e−a/�,
t−�0−�(1−�0)�−a t > e−a/�.

Therefore

w∗�(t)�cv(t)�−a.

Consequently

�Av,s ⊂ �(∞)
0,� (�a �Aw∗� ,s).

Moreover, we have

B0 +
〈 �B�,s

〉
= �Bh�,s ,

where

h�(t) =
{

0 if 0 < t < 1,
t−� if t > 1.

As in the proof of Theorem3.1, we see that

�(∞)
0,� (�a �Bh�,s) = �(∞)

0,� (�a �Bh�,∞). �

The result followssince thequasi-norm in thespace�(∞)
0,� (�a �Bh�,∞) is givenbysupt>0(1+

ln+ t)−aK(t, f ; �B).

Corollary 5.4. Let 0 < p < q < p1 < ∞, a > 0, and s = p if p�1, or s = 1 if
p > 1. LetLq,∞ := (Lp, L∞)	,∞, 1/q = (1− 	)/p, and letT be a sublinear operator
such that

‖Tf ‖Lq,∞ �c(q − p)−a ‖f ‖Lq,s .

Then

T : Lp,s(log+ 1/L)a → (Lp, L∞)g,∞, where g(t) = (1+ ln+ t)−a,

and whereLp,s(log+ 1/L)a has the quasi-norm{∫ ∞

0
[u1/p(1+ ln+ 1/u)af ∗(u)]s du

u

}1/s

.

Another application of Theorem5.3gives
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Theorem 5.4. Let �A, �B be quasi-Banach pairs, let a > 0,0 < 	 < � < �1 < 1, 0 <

s�� �B, and letT be a linear operator satisfying

‖Tf ‖ �B1−	,∞ �c	−a ‖f ‖ �A�1−	,s
.

Then

sup
t>0

(1+ ln+ 1/t)−at−1K(t, Tf ; �B)�c‖f ‖ �Ah,s
,

whereh(t) = t−�1(1+ ln+ t)a.

Proof. Indeed, use the relations:

(B0, B1)1−	,∞ = (B1, B0)	,∞, (A0, A1)�1−	,s = (A1, A0)1−�1+	,s

and the formulaK(t, f ;B0, B1) = tK(1
t
, f ;B1, B0). �

Corollary 5.5. Let 0 < s < p0 < q < p < ∞, 0 < s�1, a > 0, Lq,∞ :=
(Ls, Lp)1−	,∞, 1/q = (1− 	)/p + 	/s. LetT be a sublinear operator such that

‖Tf ‖Lq,∞ �c(q − p)−a ‖f ‖Lq,s .

Then

T : Lp,s(log+ L)a → (Lp, L∞)g,∞, where g(t) = t−1(1+ ln+ 1/t)−a,

and whereLp,s(log+ L)a has the quasi-norm{∫ ∞

0
[u1/p(1+ ln+ u)af ∗(u)]s du

u

}1/s

.

Proof. Follows from the previous theorem, writingLq,s = (Lp0, L∞)�1(1−	),s where
1/p = �1/p0. �

Analogous results with similar proofs are valid for the�(p) spaces.

Theorem 5.5. Let �A, �B be quasi-Banach pairs, let 0 < �0 < � < �1 < 1, aj , bj , sj > 0,
(or aj , bj �0 if sj = ∞), (j = 0,1). Suppose thatT is an operator satisfying

‖Tf ‖ �B�,sj
�c|�− �j |−aj+bj ‖f ‖ �A�,sj

, (j = 0,1).

Then

T : �Av0,s0 ∩ �Av1,s1 → �Bw0,s0 ∩ �Bw1,s1,

wherewj(t) = t−�j (1+ | ln t |)−aj , vj (t) = t−�j (1+ | ln t |)−bj (j = 0,1).
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Proof. Let M0(�) = (� − �0)b0, M1(�) = (� − �0)a0, N0(�) = (�1 − �)b1, N1(�) =
(�1− �)a1. From the assumptions it follows that

T : �(s0)−�0,�1
(M0(�) �A�,s0)→ �(s0)−�0,�1

(M1(�) �B�,s0),

and

T : �(s1)+�0,�1
(N0(�) �A�,s1)→ �(s1)+�0,�1

(N1(�) �B�,s1).

Applying Theorem4.6, we readily obtain

T : �Agj ,sj → �Bfj ,sj , (j = 0,1),

whence

T : �Ag0,s0 ∩ �Ag1,s1 → �Bf0,s0 ∩ �Bf1,s1,

where

f0(t) =
{
t−�0(1+ ln t)−a0 t > 1,

t−�1 t < 1,

g0(t) =
{
t−�0(1+ ln t)−b0 t > 1,

t−�1 t < 1,

f1(t) =
{

t−�0 t > 1,
t−�1(1− ln t)−a1 t < 1,

g1(t) =
{

t−�0 t > 1,
t−�1(1− ln t)−b1 t < 1.

Consider the weightsuj (t) = t−�j (1+ | ln t |)cj , 0 < �0 < �1 < 1, cj ∈ R (j = 0,1).
We need the formula

‖f ‖ �Au0,s0∩ �Au1,s1
≈ I0 + I1, (75)

where

I
s0
0 =

∫ ∞

1
[u0(t)K(t, f ; �A)]s0 dt

t
, I

s1
1 =

∫ 1

0
[u1(t)K(t, f ; �A)]s1 dt

t
.

Indeed from

K(t, f ; �A)�c[u1(t)]−1I0, t < 1,

K(t, f ; �A)�c[u0(t)]−1I1, t > 1,

it follows that∫ ∞

1
[u1(t)K(t, f ; �A)]s1 dt

t
�cI

s1
1 ,

∫ 1

0
[u0(t)K(t, f ; �B)]s0 dt

t
�cI

s0
0 ,

and (75) follows.
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We therefore see that

�Bf0,s0 ∩ �Bf1,s1 = �Bw0,s0 ∩ �Bw1,s1

and

�Ag0,s0 ∩ �Ag1,s1 = �Av0,s0 ∩ �Av1,s1.

The theorem is proved.�

Corollary 5.6. LetT be an operator satisfying

‖Tf ‖Lq,sj �c|q − rj |−aj+bj ‖f ‖Lq,sj , (j = 0,1),

wherer0 < q < r1�∞, aj , bj > 0, (or aj , bj �0 if sj = ∞), (j = 0,1). Then

T : Lr0,s0(logL)−b0 ∩ Lr1,s1(logL)−b1 → Lr0,s0(logL)−a0 ∩ Lr1,s1(logL)−a1.

In the casesj = ∞, j = 0,1,we can prove a variant, which generalizes Yano’s theorem.
Again we start with an abstract version.

Theorem 5.6. Let �A, �B be quasi-Banach pairs, and letT be an operator satisfying
‖Tf ‖ �B1−	,∞ �c	−a ‖f ‖〈 �A1−	,s

〉 , 0< 	 < ��1, s > 0.

Then

T : �A1−�,∞ ∩ A1,∞ → �B1−�,∞ ∩ �Bwa,∞,

wherewa(t) = t−1(1+ | ln t |)−a.

Proof. We have to apply Theorem3.1:

‖Tf ‖�(∞)(	a �B1−	,∞)
�c ‖f ‖�(∞)( �A1−	,∞)

and Remark4.4.

Corollary 5.7. Let0< p < q <∞, s > 0, a > 0and letLq,∞ := (Lr, L∞)�,∞, 1/q =
(1− �)/r, r = min(p, s). LetT be an operator satisfying

‖Tf ‖Lq,∞ �cqa ‖f ‖Lq,s .

Then

T : Lp ∩ L∞ → Lp ∩ L∞(logL)−a if p�s

and

T : Lp,∞ ∩ L∞ → Lp,∞ ∩ L∞(logL)−a if p > s.
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Proof. We apply Theorem5.6to �A = �B = (Lr, L∞) and use Example2.2:〈
(Lr, L∞)1−	,s

〉 ⊂ Lq,s,1/q = 	/r, r�s.

If p�s thenr = p and 0< 	 < 1. In this case we use the relations

Lr = (Lr, L∞)0,∞, L∞ = (Lr, L∞)1,∞.

On the other hand ifp > s thenr = s and 0< 	 < � := s/p < 1. Then we use the relation

Lp,∞ = (Ls, L∞)1−�,∞.

Finally, we use also formula (71). �

5.2. Logarithmic Sobolev inequalities

We consider operators onL2(Rn) provided with a Gaussian measure. LetA be a self-
adjoint positive operator such thatPt = e−tA, t�0 is a hypercontractive semigroup on
Lp,1< p <∞. More precisely, there existsc > 0 such that

Pt : Lp → Lp is bounded for allt�0,1< p <∞ and‖Pt‖p�ce−ct , (76)

and

Pt : Lp → Lq(t), q(t)− 1= et (p − 1), is bounded uniformly for allt�0. (77)

For example, ifB = −�+|x|2 is the Hermite operator inRn then we consider the operator
A := UBU−1, whereUf := ex

2/2f is the unitary mapping:L2(Rn)→ L2(Rn, e−x2dx),
(cf. [1,26]), ande−tA is hypercontractive by Nelson’s theorem (cf.[2,26]).
In [1,2], the following theorem is proved for the Hermite operator inR.

Theorem 5.7. Let1< p <∞, a ∈ R, then

A−z : Lp(logL)a → Lp(logL)a+�,  z = �,

is a bounded operator.

We give an extrapolation proof of this theorem in an abstract setting. Our proof in fact is
valid for any hypercontractive semigroup. First we prove

Lemma 5.1. Let1< p <∞, a < 0, �+ a > 0, then

A−z : Lp(logL)a → Lp(logL)a+�,  z = �,

is a bounded operator.

Proof. We start with the formula

A−zf = 1

�(z)

∫ ∞

0
tz−1Ptf dt.
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For anyε > 0 consider the operator

Qf =
∫ ∞

ε

tz−1Ptf dt.

Since

Qf = Pε

∫ ∞

0
(t + ε)z−1Ptf dt,

it follows that for� > 0

Q : Lp → Lp+�.

Thus it is sufficient to consider the operator

Qzf =
∫ ε

0
�z−1P�f d�. (78)

Let 1 < p < ∞ be fixed, and choose�0 > 0 small enough so that1−�0
1−2�0 < p. Let

p0 = (1− �0)p and let 1/q = 1/p + �/p0, where 0< � < ε.We have

P� : Lq → Lq(�), q(�) = 1+ e�(q − 1).

If we write 1/q(�) = 1/p− ��(�)/p0 then,q(�)− q = �(2p− 1+O(�)) as� → 0, and
the choice of�0, p0, implies that�(0) = p0(2− 1/p)/p− 1> 0. Moreover,�(�) ≈ 1 for
0< � < ε providedε < �0 is small enough. We can also assure the property�0+ ��(�) <
�1 < 1 for all 0< � < ε. Write

Lq = (Lp0, L∞)�0−�,q , Lq(�) = (Lp0, L∞)�0+��(�),q(�).

Applying Theorem3.6withM(�) = ��, � > 0 andN(�) = �−a−�, a + � > 0, we get

Qz : �(p)

(0,ε)(�
−a−1/p(Lp0, L∞)�0−�,q)→ �(p)−

(0,ε) (�
−a−�(Lp0, L∞)�0+��(�),q(�)).

Applying Theorems2.13and3.4 it follows that

Qz : �(p)

(0,ε)(�
−a−1/p(Lp0, L∞)�0−�,p)→ �(p)−

(0,ε) (�
−a−�(Lp0, L∞)�0+�,p).

It remains to apply Theorems4.4and4.7to conclude the proof. �

Proof of Theorem 5.7. It remains to remove the restrictionsa < 0, a+ � > 0 imposed in
Lemma5.1. To this end we follow[1,2], where it is proved that

A−z : Lp(logL)a → Lp(logL)a, z = 0,1< p <∞, a ∈ R. (79)

Now we can interpolate the analytic familyA−z between (79) and Lemma5.1as in[20].
Theorem5.7 is proved. �
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5.3. Mappings of finite distortion

In this section we consider the continuity of mappings of finite distortion (cf.[16]).
Let f = (f1, . . . , fn) be a mapping in the Sobolev spaceW1,1

loc (�,Rn), where� is a
domain inRn, n�2. By definition[16], f is a map of finite distortion if there exists a
measurable functionK(x)�1 such that

|Df (x)|n�K(x)J (x, f ), a.e. (80)

Here|Df (x)| is the Euclidean norm of the differential off andJ (x, f ) = det Df (x)�0.
LetB = B(0, R) be a ball of radiusR and centered at the origin. We consider the functions
onB with a norm

‖u‖WLn = sup
0<s<1/2

s1/n‖u‖Ln(logL)−(s+1)/n . (81)

By definition,WLn is the closure ofLn with respect to this norm. Then,u ∈ WLn if and
only if

�(u, s) := s1/n‖u‖Ln(logL)−(s+1)/n → 0 as s → 0. (82)

Theorem 5.8. Let f be a mapping of finite distortion on the ballB, and let |Df (x)| ∈
WLn. Thenf is continuous, and moreover,

|f (x)− f (y)| �C(n,R)�
(
|Df | , 1

ln |ln |x − y||
)

(83)

if |x − y| is small andx, y ∈ B(0, R/2).

Remark 5.1. If f has finite distortion on the ballB and∫ ∞

0
[|Df |∗ (t)]n(1+ |ln t |)−1(1+ ln(1+ |ln t |))−1dt <∞

then|Df (x)| ∈ WLn and hencef is continuous. In particular, Theorem 1.4 of[16] follows.
Our method also gives a result similar to Theorem 1.6 of[16].

We are now ready for the proof of Theorem5.8.

Proof. Following [16], we first show that the coordinate functions, sayf1, are weakly
monotone. To see this we note thatWLn ⊂ Ln−ε for all 0< ε < 1. Then, by definition (cf.
[16]), we have to show that ifv := (f1−M)+ − (m− f1)

+ is a limit ofC∞0 functions in
the open ballB in the norm ofW1,n−ε, for some constantsm < M, thenv = 0. Now since
v = 0 on the set{x ∈ B : m�f1(x)�M} anddv = df1 on its complementE, it suffices
to prove thatDg(x) = 0, x ∈ E, whereg = (v, f2, . . . , fn). Applying Lemma 5.1 of[16],
we can write∫

E

|Dg(x)|n−	d��C(n,R)	
∫
B

|Df (x)|n−	dx,
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whered� := dx/K(x). In order to extrapolate this inequality we write

Ln−	 = (L1, L∞)�1− 	
n(n−	) ,n−	, 0< 	 < 1/2.

Then for� > 0 we have

‖Dg‖�(n)
(0,1/2)(	

�/n−1/n(L1,L∞)�1− 	
n(n−	) ,n−	)

�c‖Df ‖�(n)
(0,1/2)(	

�/n(L1,L∞)�1− 	
n(n−	) ,n−	)

.

LetLn
� be the Lebesgue spaceLn(E) with respect to the measure�. Theorems3.4and4.7

yield

‖Dg‖Ln
�(logL)−�/n �c�1/n‖Df ‖Ln(logL)−(�+1)/n . (84)

The condition|Df | ∈ WLn means that the right-hand side in (84) goes to zero as� → 0.
Applying Fatou’s lemma to the left-hand side in (84) we conclude thatDg = 0 onE.
Thus we have proved thatu := f1 is weakly monotone. Now we can use the oscillation
Lemma 7.2 of[16]. Let x0, y0 be fixed Lebesgue points ofu in the ballB(0, R/2) and let
a := (x0 + y0)/2, r := |x0 − y0|/2. Then for almost allt, r < t < R/2,( |u(x0)− u(y0)|

t

)n−	

�Ct−n+1
∫
S(a,t)

|∇u|n−	dx,

uniformly for 0< 	 < 1/2, whereS(a, t) is the boundary ofB(a, t), the ball of radiust
and centered ata. Consequently,

|u(x0)− u(y0)|n−	g(	, r, R)�C‖∇u‖n−	
Ln−	(B)

,

whereg(	, r, R) := ∫ R/2
r

t	−1dt. Sinceg(	, r, R)�C(R), uniformly with respect tor <
R/4,0< 	 < 1/2, we conclude that

|u(x0)− u(y0)|
(∫ R/2

r

t	−1dt
)1/n

�C(n,R)‖∇u‖Ln−	(B).

Therefore, using the� method of extrapolation as above, we get for� > 0,

|u(x0)− u(y0)|
(∫ 1/2

0
[1− (2r/R)	]	�−1d	

)1/n

�C(n,R)‖∇u‖Ln(logL)−(�+1)/n .

For r and� small, the integral above behaves like1−| ln r|
−�

� and the best choice for� is
� = 1

ln | ln r| asr → 0. Thus (83) follows and the theorem is proved.�

5.4. Logarithmic Sobolev spaces

In this section we show that the Sobolev spaces used by Donaldson and Sullivan in[12]
can be replaced by logarithmic Sobolev spaces. As we know, logarithmic Sobolev spaces
are built up over� spaces.
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For concreteness sake, we shall consider only the situation relevant to[12], but the results
are valid in much more generality. Let� be a convex bounded domain inRn and letE be a
Banach space of functions, locally integrable on�. Then the homogeneous Sobolev space,
W1E, is defined as a completion ofC∞0 (�) in the norm‖∇f ‖E. Analogously to Lemma
3.8[12], we have

Theorem 5.9.

W1�(1)−
(0,1)(	

−1/n∗Ln+	) ⊂ L∞(�), 1/n∗ + 1/n = 1.

Proof. Indeed, as in the proof of Lemma 3.8[12], we derive

|f (x)|�c

∫
�
|∇f (y)||x − y|1−ndy, x ∈ �. (85)

Let f ∈ W1E, with E = �(1)−
(0,1)(	

−1/n∗Ln+	), then we can write

∇f =
∑

g	, g	 ∈ Ln+	, (86)

with

‖∇f ‖E ≈
∑

	−1/n∗‖g	‖Ln+	 . (87)

Inserting (86) back in (85) and using Hölder’s inequality we get

|f (x)|�c
∑∫

�
|g	(y)||x − y|1−ndy,

|f (x)|�c
∑

‖g	‖Ln+	‖|x − y|1−n‖L(n+	)∗ .

Finally, since� is bounded, we have

‖|x − y|1−n‖L(n+	)∗ �c	−1/n∗ , x ∈ �,

and therefore

|f (x)|�c
∑

	−1/n∗‖g	‖Ln+	 .

The desired result now follows from (87).
Donaldson and Sullivan[12] consider the spaceŝLp, defined by

L̂p =
{
f =

∞∑
i=1

fi :
∞∑
i=1

�−i ‖fi‖2
Lp+εi (�)

<∞
}
,

whereε,� are fixed numbers in(0,1). Equipped with the norm

‖f ‖
L̂p = inf



( ∞∑
i=1

�−i ‖fi‖2
Lp+εi (�)

)1/2

: f =
∞∑
i=1

fi


 ,
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L̂p becomes a Banach space. In[12] this construction plays a crucial role: it allows the
authors to construct the Sobolev spacesW1L̂4, based on̂L4, where� is a domain inR4,

with the crucial property that (cf.[12, Lemma 3.8]):

W1L̂4 ⊂ L∞(�), � < ε3/4. (88)

To show that this result is a consequence of Theorem5.9, we first write� = εd and prove
the relation

L̂4 = �(2)−
(0,1)(	

−d/2L4+	). (89)

Indeed, usingmonotonicity of the scaleL4+	, we can replace the discrete definition given
above by a continuous one:

‖f ‖
L̂4 = inf



(∫ 1

0
	−d ‖f	‖2L4+	

d	
	

)1/2

: f =
∫ 1

0
f	

d	
	


 .

Hence (89) follows.
On the other hand, Hölder’s inequality implies the embedding

�(q)−
(0,1)(	

−bLp+	) ⊂ �(1)−
(0,1)(	

−aLp+	), b > a > 0, q > 1.

Thus

L̂4 ⊂ �(1)−
(0,1)(	

−aL4+	), d > 2a.

Finally, applying Theorem5.9we get

W1L̂4 ⊂ L∞(�)

if d > 3/2, hence if� < ε3/2 < ε3/4. �

In [12] the precise identification of theW1L̂4 spaces was not important, the authors just
needed suitable spaces, where (besides quasiconformal invariance) the crucial property (88)
was valid, to develop their theory. It follows that instead ofW1L̂4 we can use any of the
spacesW1�(q)−

(0,1)(	
−bL4+	), b > 3/4, q > 1. In particular we can use the space

W1�(4)−
(0,1)(	

−bL4+	) = W1L4(logL)b, b > 3/4,

that is, a logarithmic Sobolev space. Such an explicit characterization simplifies some of
the analysis in[12]. For example the elliptic theory (cf.[12, Lemma 2.16]) follows from
Sneiberg’s extrapolation Lemma for the real method (cf.[7,30]).
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