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1. Introduction and notation

By definition, an operator algebra is a subalgebra of B(H), the bounded linear operators on a Hilbert space H, which is
closed in the norm topology. It is a dual algebra if it is closed in the weak* topology (also known as the σ-weak topology).
In [11], the first author, Muhly, and Paulsen generalized Rieffel’s strong Morita equivalence of C∗-algebras [24], to general
operator algebras. At that time however, we were not clear about how to generalize Rieffel’s variant forW∗-algebras [23], to
dual operator algebras. Recently, two approaches have been suggested for this, in [9,17,18], each of which reflects (different)
important aspects of Rieffel’s W∗-algebraic Morita equivalence. For example, the notion introduced in [17,18] is equivalent
to the very important notion of (weak*) ‘stable isomorphism’ [20]. The fact remains, however, that neither approach seems
able to treat certain important examples, such as the second dual of a strong Morita equivalence. In the present paper we
examine a framework, part of which was suggested at the end of [9], which does include all examples hitherto considered,
and which represents a natural setting for the Morita equivalence of dual algebras. It is also one to which all the relevant
parts of the earlier theory of strong Morita equivalence (from e.g. [11,10]) transfers in a very clean manner, indeed which
may in some sense be summarized as ‘just changing the tensor product involved’ to one appropriate to the weak* topology.

Since many of the ideas and proofs are extremely analogous to those from our papers on related topics, principally [11,
1,10] and to a lesser extent [3–5,9], we will be quite brief in many of the proofs. That is, we assume that the reader is a little
familiar with these earlier ideas and proof techniques. We will often merely indicate the modifications to weak* topologies.
For a more detailed exposition see the second authors Ph. D. thesis [21], along with many other related results.

In Section 2, we develop some basic tensor product properties which we shall need. In Section 3, we define our variant of
Morita equivalence, and present some of its consequences. Section 4 is centered on the ‘weak linking algebra’, the key tool
for dealing with most aspects of Morita equivalence, and in Section 5 we prove that if M and N are weak* Morita equivalent
dual operator algebras, then the von Neumann algebras generated byM and N areMorita equivalent in Rieffel’sW∗-algebraic
sense.
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Turning to notation, if E, F are sets, then EF will mean the norm closure of the span of products zw for z ∈ E,w ∈ F. We
reserve the letters H and K for Hilbert spaces. We will assume that the reader is familiar with basic notions from operator
space theory, as may be found in any of the current texts on that subject, e.g. [15], and the application of this theory to
operator algebras, as may be found in e.g. [8]. We study operator algebras from an operator space point of view. Thus an
abstract operator algebra A is an operator space and a Banach algebra, forwhich there exists aHilbert spaceH and a completely
isometric homomorphism π : A → B(H).

We will often abbreviate ‘weak*’ to ‘w∗’. A dual operator algebra is an operator algebra M which is also a dual operator
space. Bywell known duality principles, anyw∗-closed subalgebra of B(H), is a dual operator algebra. Conversely, it is known
(see e.g. [8]), that for any dual operator algebra M, there exists a Hilbert space H and a w∗-continuous completely isometric
homomorphism π : M → B(H). In this case, the range π(M) is a w∗-closed subalgebra of B(H), which we may identify with
M in every way. In this paper M and N are dual operator algebras which are unital, that is we assume they each possess
an identity of norm 1. Nondual operator algebras in this paper, in contrast, will usually be approximately unital, that is,
they possess a contractive approximate identity (cai). A normal representation of M is a w∗-continuous unital completely
contractive homomorphism π : M → B(H).

For cardinals or sets I, J, we use the symbol MI,J(X) for the operator space of I × J matrices over X, whose ‘finite
submatrices’ have uniformly bounded norm. We write KI,J(X) for the norm closure of these ‘finite submatrices’. Then
Cw
J (X) = MJ,1(X), Rw

J (X) = M1,J(X), and CJ(X) = KJ,1(X) and RJ(X) = K1,J(X). We sometimes writeMI(X) for MI,I(X).
A concrete left operator module over an operator algebra A, is a subspace X ⊂ B(K,H) such that π(A)X ⊂ X for a completely

contractive representation π : A → B(H). An abstract operator A-module is an operator space X which is also an A-module,
such that X is completely isometrically isomorphic, via an A-module map, to a concrete operator A-module. Similarly for
right modules, or bimodules. Most of the interesting modules over operator algebras are operator modules, such as Hilbert
C∗-modules, and Hilbert modules (see next paragraph).

A concrete dual operator M–N-bimodule is a w∗-closed subspace X of B(K,H) such that θ(M)Xπ(N) ⊂ X, where θ and π
are normal representations of M and N on H and K respectively. An abstract dual operator M–N-bimodule is defined to be a
nondegenerate operator M–N-bimodule X, which is also a dual operator space, such that the module actions are separately
weak* continuous. Such spaces can be represented completely isometrically as concrete dual operator bimodules, and in fact
this can be done under even weaker hypotheses (see e.g. [8,9,14]). Similarly for one-sided modules (the case M or N equals
C). We use standard notation for module mapping spaces, e.g. CB(X,N)N (resp. w∗CB(X,N)N) are the completely bounded
(resp. and w∗-continuous) right N-module maps X → N. Important examples of left dual operator modules over M, are the
(completely contractive) normal Hilbert M-modules. By this, we mean a pair (H,π), where H is a (column) Hilbert space (see
e.g. 1.2.23 in [8]), and π : M → B(H) is a normal representation. The module action is expressed through the equation
m · ζ = π(m)ζ. The morphisms between Hilbert M-modules are the bounded M-module maps (‘intertwiners’).

If M is a dual operator algebra, then the maximal W∗-cover W∗

max(M) is a W∗-algebra containing M as a w∗-closed
subalgebra, and which is generated byM as aW∗-algebra, and which has the universal property: any normal representation
π : M → B(H) extends uniquely to a (unital) normal ∗-representation π̃ : W∗

max(M) → B(H) (see [13]). A normal
representation π : M → B(H) of a dual operator algebra M, or the associated space H viewed as an M-module, will be
called normal universal, if any other normal representation is unitarily equivalent to the restriction of a ‘multiple’ of π to a
reducing subspace (see [13]).

Lemma 1.1. A normal representation π : M → B(H) of a dual operator algebra M is normal universal iff its extension π̃ to
W∗

max(M) is one-to-one.

Proof. The (⇐) direction is stated in [13]. Thus any faithful normal representation ofW∗

max(M) restricts to a normal universal
representation π whose extension π̃ to W∗

max(M) is one-to-one. It is observed in [13] that any other normal universal
representation θ is quasiequivalent to π. It follows that the extension θ̃ to W∗

max(M) is quasiequivalent to π̃, and it is easy to
see from this that θ̃ is one-to-one. �

2. Some tensor products

We begin by recalling the definition of the Haagerup tensor product. Suppose X and Y are two operator spaces. Define
‖u‖n for u ∈ Mn(X ⊗ Y) as:

‖u‖n = inf {‖a‖‖b‖ : u = a � b, a ∈ Mnp(X), b ∈ Mpn(Y), p ∈ N}.

Here a� b stands for the n×nmatrix whose i, j-entry is
∑p

k=1 aik ⊗ bkj. The algebraic tensor product X⊗ Y with this sequence
of matrix norms is an operator space. The completion of this operator space in the above norm is called Haagerup tensor
product, and is denoted by X ⊗h Y. The completion of an operator space is an operator space, hence X ⊗h Y is an operator
space.

If X and Y are respectively right and left operator A-modules, then the module Haagerup tensor product X ⊗hA Y is defined
to be the quotient of X ⊗h Y by the closure of the subspace spanned by terms of the form xa�y−x�ay, for x ∈ X, y ∈ Y, a ∈ A.
Let X be a right and Y be a left operator A-module where A is an operator algebra. We say that a bilinear mapψ : X × Y → W
is balanced if ψ(xa, y) = ψ(x, ay) for all x ∈ X, y ∈ Y and a ∈ A. It is well known that the module Haagerup tensor product
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linearizes balanced bilinear maps which are completely contractive (or completely bounded) in the sense of Christensen
and Sinclair (see e.g. 1.5.4 in [8]).

If X and Y are two operator spaces, then the extended Haagerup tensor product X ⊗eh Y may be defined to be the subspace
of (X∗

⊗h Y∗)∗ corresponding to the completely bounded bilinear maps from X∗
× Y∗

→ C which are separately weak∗-
continuous. If X and Y are dual operator spaces, with preduals X∗ and Y∗, then this coincides with theweak∗ Haagerup tensor
product defined earlier in [12], and indeed X ⊗eh Y = (X∗ ⊗h Y∗)

∗. The normal Haagerup tensor product X ⊗
σh Y is the operator

space dual of X∗ ⊗eh Y∗. The canonical maps are complete isometries

X ⊗h Y → X ⊗eh Y → X ⊗
σh Y.

See [16] for more details.

Lemma 2.1. For any dual operator spaces X and Y , Ball(X ⊗h Y) is w∗-dense in Ball(X ⊗
σh Y).

Proof. Let x ∈ Ball(X ⊗
σh Y)\ Ball(X ⊗h Y)

w∗

. By the geometric Hahn-Banach theorem, there exists aφ ∈ (X ⊗
σh Y)∗, and t ∈ R,

such that Re φ(x) > t > Re φ(y) for all y ∈ Ball(X ⊗h Y). We view φ as a map X ⊗h Y → C. It follows that Re φ(x) > t > |φ(y)|
for all y ∈ Ball(X ⊗h Y), which implies that ‖φ‖ ≤ t. Thus |Re φ(x)| ≤ ‖φ‖‖x‖ ≤ t, which is a contradiction. �

Lemma 2.2. The normal Haagerup tensor product is associative. That is, if X, Y , Z are dual operator spaces then (X ⊗
σh Y)⊗

σh Z =

X ⊗
σh(Y ⊗

σh Z) as dual operator spaces.

Proof. This follows by the definition of the normal Haagerup tensor product and using associativity of the extended
Haagerup tensor product (e.g. see [16]). �

We now turn to the module version of the normal Haagerup tensor product, and review some definitions and facts
from [20]. Let X be a right dual operator M-module and Y be a left dual operator M-module. Let (X ⊗hM Y)∗

σ denote the
subspace of (X ⊗h Y)∗ corresponding to the completely bounded bilinear maps from ψ : X × Y → C which are separately
weak∗-continuous andM-balanced (that is,ψ(xm, y) = ψ(x,my)). Define themodule normal Haagerup tensor product X ⊗

σh
M Y

to be the operator space dual of (X ⊗hM Y)∗

σ . Equivalently, X ⊗
σh
M Y is the quotient of X ⊗

σh Y by the weak∗-closure of the
subspace spanned by terms of the form xm⊗y−x⊗my, for x ∈ X, y ∈ Y,m ∈ M. Themodule normal Haagerup tensor product
linearizes completely contractive, separately weak∗-continuous, balanced bilinear maps. That is, the universal property of
⊗
σh
M is: every completely contractive separately weak* continuous map u : X × Y → Z such that u(xm, y) = u(x,my) for

m ∈ M, x ∈ X, y ∈ Y, yields a weak* continuous complete contraction ũ : X ⊗
σh
M Y → Z, whose composition with the

canonical map ⊗ : X × Y → X ⊗
σh
M Y, equals u (see [20, Proposition 2.2]). The map ⊗ here is a completely contractive,

separately weak∗-continuous, balanced bilinear map.

Lemma 2.3. Let X1, X2, Y1, Y2 be dual operator spaces. If u : X1 → Y1 and v : X2 → Y2 are w∗-continuous, completely
bounded, linear maps, then the map u ⊗ v extends to a well defined w∗-continuous, linear, completely bounded map from
X1 ⊗

σh X2 → Y1 ⊗
σh Y2, with ‖u ⊗ v‖cb ≤ ‖u‖cb ‖v‖cb.

Proof. This follows by considering preduals of the maps, and using the functoriality of the extended Haagerup tensor
product [16]. �

Corollary 2.4. Let N be a dual algebra, let Y1 and Y2 be dual operator spaces which are left N-modules, and let X1, X2 be dual
operator spaces which are right N-modules. If u : X1 → X2 and v : Y1 → Y2 are completely bounded, w∗-continuous, N-module
maps, then the map u ⊗ v extends to a well defined linear, w∗-continuous, completely bounded map from X1 ⊗

σh
N Y1 → X2 ⊗

σh
N Y2,

with ‖u ⊗ v‖cb ≤ ‖u‖cb‖v‖cb.

Proof. Lemma 2.3 gives a w∗-continuous, completely bounded, linear map X1 ⊗
σh Y1 → X2 ⊗

σh Y2 taking x⊗ y to u(x)⊗ v(y).
Composing this map with the w∗-continuous, quotient map X2 ⊗

σh Y2 → X2 ⊗
σh
N Y2, we obtain a w∗-continuous, completely

boundedmapX1 ⊗
σh Y1 → X2 ⊗

σh
N Y2. It is easy to see that the kernel of the lastmap contains all termsof form xn⊗N y−x⊗N ny,

with n ∈ N, x ∈ X1, y ∈ Y1. This gives a map X1 ⊗
σh
N Y1 → X2 ⊗

σh
N Y2 with the required properties. �

Lemma 2.5. If X is a dual operator M–N-bimodule and if Y is a dual operator N–L-bimodule, then X ⊗
σh
N Y is a dual operator

M–L-bimodule.

Proof. To show e.g. it is a left dual operator M-module, use the canonical maps

M⊗h(X ⊗
σh Y) → M⊗

σh(X ⊗
σh Y) → (M⊗

σh X)⊗
σh Y → X ⊗

σh Y.

Composing the mapM⊗
σh(X ⊗

σh Y) → X ⊗
σh Y above with the canonical mapM× (X ⊗

σh Y) → M⊗
σh(X ⊗

σh Y), one sees the
action of M on X ⊗

σh Y is separately weak* continuous (see also [20]). That (a1a2)z = a1(a2z) for ai ∈ M, z ∈ X ⊗
σh Y, follows

from the weak* density of X ⊗ Y, and since this relation is true if z is finite rank. It follows from 3.3.1 in [8], that X ⊗
σh Y is an

operator M-module. By 3.8.8 in [8], X ⊗
σh
N Y is a dual operator M-module. �

There is clearly a canonical map X ⊗hM Y → X ⊗
σh
M Y, with respect to which:
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Corollary 2.6. For any dual operator M-modules X and Y , the image of Ball(X ⊗hM Y) is w∗-dense in Ball(X ⊗
σh
M Y).

Proof. Consider the canonical w∗-continuous quotient map q : X ⊗
σh Y → X ⊗

σh
M Y. If z ∈ X ⊗

σh
M Y with ‖z‖ < 1, then there

exists z′ ∈ X ⊗
σh Y with ‖z′‖ < 1 such that q(z′) = z. By Lemma 2.1, there exists a net (zt) in Ball(X ⊗h Y) such that zt

w∗

→ z′.
Then q(zt)

w∗

→ q(z′) = z. �

Lemma 2.7. For any dual operator M-modules X and Y , and m, n ∈ N, we have Mmn(X ⊗
σh
M Y) ∼= Cm(X)⊗

σh
M Rn(Y) completely

isometrically and weak* homeomorphically. This is also true with m, n replaced by arbitrary cardinals or sets: MIJ(X ⊗
σh
M Y) ∼=

Cw
I (X)⊗

σh
M Rw

J (Y).

Proof. We just prove the case thatm, n ∈ N, the other being similar (or can be deduced easily from Proposition 2.9). First we
claim that Mmn(X ⊗

σh Y) ∼= Cm(X)⊗
σh Rn(Y). Using facts from [16] and basic operator space duality, the predual of the latter

space is

Cm(X)∗ ⊗eh Rn(Y)∗
∼= (Rm ⊗h X∗)⊗eh(Y∗ ⊗h Cn)

∼= (Rm ⊗eh X∗)⊗eh(Y∗ ⊗eh Cn)

∼= Rm ⊗eh(X∗ ⊗eh Y∗)⊗eh Cn

∼= Rm ⊗h(X∗ ⊗eh Y∗)⊗h Cn

∼= (X∗ ⊗eh Y∗)
_
⊗(Mmn)∗.

We have used for example 1.5.14 in [8], 5.15 in [16], and associativity of the extended Haagerup tensor product [16]. Now
(X∗ ⊗eh Y∗)

_
⊗(Mmn)∗ is the predual of Mmn(X ⊗

σh Y), by e.g. 1.6.2 in [8]. This gives the claim. If θ is the ensuing completely
isometric isomorphism Cm(X)⊗

σh Rn(Y) → Mmn(X ⊗
σh Y), it is easy to check that θ takes [x1 x2 . . . xm]

T
⊗ [y1 y2 . . . yn] to the

matrix [xi ⊗ yj]. Now Cm(X)⊗
σh
M Rn(Y) = Cm(X)⊗

σh Rn(Y)/N where N = [xt ⊗ y − x ⊗ ty]−w∗ with x ∈ Cm(X), y ∈ Rn(Y), t ∈ M.
Let N′

= [xt ⊗ y − x ⊗ ty]−w∗ where x ∈ X, y ∈ Y, t ∈ M, then clearly θ(N) = Mmn(N′). Hence

Cm(X)⊗
σh Rn(Y)/N ∼= Mmn(X ⊗

σh Y)/θ(N) = Mmn(X ⊗
σh Y)/Mnm(N′),

which in turn equals Mmn(X ⊗
σh Y/N′) = Mmn(X ⊗

σh
M Y). �

Corollary 2.8. For any dual operator M-modules X and Y , and m, n ∈ N, we have that Ball(Mmn(X ⊗hM Y)) is w∗-dense in Ball
(Mmn(X ⊗

σh
M Y)).

Proof. If η ∈ Ball(Mmn(X ⊗
σh
M Y)), then by Lemma 2.7, η corresponds to an element η′

∈ Cm(X)⊗
σh
M Rn(Y). By Corollary 2.6,

there exists a net (ut) in Cm(X)⊗hM Rn(Y) such that ut
w∗

→η′. By 3.4.11 in [8], ut corresponds to u′

t ∈ Ball(Mmn(X ⊗hM Y)) such

that u′

t
w∗

→η. �

Proposition 2.9. The normal module Haagerup tensor product is associative. That is, if M and N are dual operator algebras, if X is
a right dual operatorM-module, if Y is aM–N-dual operator bimodule, and Z is a left dual operator N-module, then (X ⊗

σh
M Y)⊗

σh
N Z

is completely isometrically isomorphic to X ⊗
σh
M (Y ⊗

σh
N Z).

Proof. We define X ⊗
σh
M Y ⊗

σh
N Z to be the quotient of X ⊗

σh Y ⊗
σh Z by the w∗-closure of the linear span of terms of the

form xm ⊗ y ⊗ z − x ⊗ my ⊗ z and x ⊗ yn ⊗ z − x ⊗ y ⊗ nz, with x ∈ X, y ∈ Y, z ∈ Z,m ∈ M, n ∈ N. By extending the
arguments of Proposition 2.2 in [20] to the threefold normal module Haagerup tensor product, one sees that X ⊗

σh
M Y ⊗

σh
N Z

has the following universal property: if W is a dual operator space and u : X × Y × Z → W is a separately w∗-continuous,
completely contractive, balanced, trilinear map, then there exists a w∗-continuous and completely contractive, linear map
ũ : X ⊗

σh
M Y ⊗

σh
N Z → W such that ũ(x⊗M y⊗N z) = u(x, y, z). We will prove that (X ⊗

σh
M Y)⊗

σh
N Z has the above universal

property defining X ⊗
σh
M Y ⊗

σh
N Z. Let u : X × Y × Z → W be a separately w∗-continuous, completely contractive, balanced,

trilinear map. For each fixed z ∈ Z, define uz : X × Y → W by uz(x, y) = u(x, y, z). This is a separately w∗-continuous,
balanced, bilinear map, which is completely bounded. Hence we obtain a w∗-continuous completely bounded linear map
u′

z : X ⊗
σh
M Y → W such that u′

z(x⊗M y) = uz(x, y). Define u′
: (X ⊗

σh
M Y) × Z → W by u′(a, z) = u′

z(a), for a ∈ X ⊗
σh
M Y. Then

u′(x⊗M y, z) = u(x, y, z), and it is routine to check that u′ is bilinear and balanced over N. We will show that u′ is completely
contractive on (X ⊗hM Y)× Z, and then the complete contractivity of u′ follows from Corollary 2.8. Let a ∈ Mnm(X ⊗hM Y) with
‖a‖ < 1 and z ∈ Mmn(Z) with ‖z‖ < 1. We want to show ‖u′

n(a, z)‖ < 1. It is well known that we can write a = x�M y where
x ∈ Mnk(X) and y ∈ Mkm(Y) for some k ∈ N, with ‖x‖ < 1 and ‖y‖ < 1. Hence ‖u′

n(a, z)‖ = ‖un(x, y, z)‖ ≤ ‖x‖‖y‖‖z‖ < 1,
proving u′ is completely contractive. By Proposition 2.2 in [20], we obtain a w∗-continuous, completely contractive, linear
map ũ : (X ⊗

σh
M Y)⊗

σh
N Z → W such that ũ((x⊗M y)⊗N z) = u′(x⊗M y, z) = u(x, y, z). This shows that (X ⊗

σh
M Y)⊗

σh
N Z has

the defining universal property of X ⊗
σh
M Y ⊗

σh
N Z. Therefore (X ⊗

σh
M Y)⊗

σh
N Z is completely isometrically isomorphic and w∗-

homeomorphic to X ⊗
σh
M Y ⊗

σh
N Z. Similarly X ⊗

σh
M (Y ⊗

σh
N Z) = X ⊗

σh
M Y ⊗

σh
N Z. �

Lemma 2.10. If X is a left dual operator M-module then M⊗
σh
M X is completely isometrically isomorphic to X.

Proof. As in Lemma 3.4.6 in [8], or follows from the universal property. �
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3. Morita contexts

We now define two variants of Morita equivalence for unital dual operator algebras, the first being seemingly more
general than the second. There are many equivalent variants of these definitions, some of which we shall see later.

Throughout this section, we fix a pair of unital dual operator algebras, M and N, and a pair of dual operator bimodules X
and Y; X will always be a M–N-bimodule and Y will always be an N–M-bimodule.

Definition 3.1. We say that M is weak* Morita equivalent to N, with equivalence bimodules X and Y, if M ∼= X ⊗
σh
N Y as

dual operator M-bimodules (that is, via a completely isometric w∗-homeomorphism which is also a M-bimodule map), and
similarly if N ∼= Y ⊗

σh
M X as dual operator N-bimodules. We call (M,N, X, Y) a weak* Morita context in this case.

For the next definition, we suppose that we have separately weak∗-continuous completely contractive bilinear maps
(·, ·) : X × Y → M, and [·, ·] : Y × X → N, and we will work with the 6-tuple, or context, (M,N, X, Y, (·, ·), [·, ·]).

Definition 3.2. We say thatM isweaklyMorita equivalent to N, if there exists a 6-tuple as above, and existw∗-dense operator
algebras A and B in M and N respectively, and there exists a w∗-dense operator A–B-submodule X′ in X, and a w∗-dense B–A-
submodule Y ′ in Y, such that the ‘subcontext’ (A, B, X′, Y ′), togetherwith restrictions of the pairings (·, ·) and [·, ·], is a (strong)
Morita context in the sense of [11, Definition 3.1]. In this case, we call (M,N, X, Y) (or more properly the 6-tuple above the
definition), a weak Morita context.

Remark Some authors use the term ‘weak Morita equivalence’ for a quite different notion, namely to mean that the
algebras have equivalent categories of Hilbert space representations.

Weak Morita equivalence, as we have just defined it, is really nothing more than the ‘weak∗-closure of’ a strong Morita
equivalence in the sense of [11]. This definition includes all examples that have hitherto been considered in the literature:

Examples:
(1) We shall see in Corollary 3.4 that every weak Morita equivalence is an example of weak* Morita equivalence.
(2) We shall see in Section 4 that every weakMorita equivalence arises as follows: Let A, B be subalgebras of B(H) and B(K)

respectively, for Hilbert spaces H, K, and let X ⊂ B(K,H), Y ⊂ B(H, K), such that the associated subset L of B(H ⊕ K)
with A, B, X, Y as ‘corners’, is a subalgebra of B(H ⊕ K), for Hilbert spaces H, K. This is the same as specifying a list of
obvious algebraic conditions, such as XY ⊂ A. Assume in addition that A possesses a cai (et) with terms of the form xy,
for x ∈ Ball(Rn(X)) and y ∈ Ball(Cn(Y)), and B possessing a cai with terms of a similar form yx (dictated by symmetry).
Taking the weak* (that is, σ-weak) closure of all these spaces clearly yields a weak Morita equivalence of Aw∗ and B

w∗.
(3) Every weak* Morita equivalence arises similarly to the setting in (2). The main difference is that A, B are unital, and (et)

is not a cai, but et → 1A weak*, and similarly for the net in B.
(4) VonNeumann algebraswhich areMorita equivalent in Rieffel’sW∗-algebraic sense from [23], are clearlyweaklyMorita

equivalent. We state this in the language of TROs.We recall that a TRO is a subspace Z ⊂ B(K,H)with ZZ∗Z ⊂ Z. Rieffel’s
W∗-algebraic Morita equivalence of W∗-algebras M and N is essentially the same (see e.g. [8, Section 8.5] for more
details) as having a weak* closed TRO (that is, a WTRO) Z, with ZZ∗ weak* dense in M and Z∗Z weak* dense in N. Recall
that Z∗Z denotes the norm closure of the span of products z∗w for z,w ∈ Z. Here (ZZ∗, Z∗Z, Z, Z∗) is the weak* dense
subcontext.

(5) More generally, the ‘tight Morita w∗-equivalence’ of [9, Section 5], is easily seen to be a special case of weak Morita
equivalence. In this case, the equivalence bimodules X and Y are ‘selfdual’. Indeed, this selfduality is the reason for the
approach taken in [9, Section 5].

(6) The second duals of strongly Morita equivalent operator algebras are weakly Morita equivalent. Recall that if A and B
are approximately unital operator algebras, then A∗∗ and B∗∗ are unital dual operator algebras, by 2.5.6 in [8]. If X is a
non-degenerate operator A–B-bimodule, then X∗∗ is a dual operator A∗∗–B∗∗-bimodule in a canonical way. Let (·, ·) be a
bilinear map from X × Y to A that is balanced over B and is an A-bimodule map. Then notice that by 1.6.7 in [8], there
is a unique separately w∗-continuous extension from X∗∗

× Y∗∗ to A∗∗, which we still call (·, ·). Now the weak Morita
equivalence follows easily from the Goldstine lemma.

(7) Any unital dual operator algebra M is weakly Morita equivalent to MI(M), for any cardinal I. The weak* dense strong
Morita subcontext in this case is (M,KI(M), RI(M), CI(M)), whereas the equivalence bimodules X and Y above are Rw

I (M)
and Cw

I (M) respectively.
(8) TRO equivalent dual operator algebras M and N, or more generally ∆-equivalent algebras, in the sense of [17,18], are

weakly Morita equivalent. If M ⊂ B(H) and N ⊂ B(K), then TRO equivalence means that there exists a TRO Z ⊂ B(H, K)
such thatM = [Z∗NZ]w

∗ and N = [ZMZ∗
]
w∗

. Eleftherakis shows that onemay assume that Z is aWTRO and 1Nz = z1M = z
for z ∈ Z. Define X and Y to be the weak* closures ofMZ∗N and NZM respectively. Define A and B to be, respectively, Z∗NZ
and ZMZ∗. Define X′ and Y ′ to be, respectively, the norm closures of Z∗YZ∗ and ZXZ. Since Z is a TRO, Z∗Z is a C∗-algebra,
and so it has a contractive approximate identity (et) where et =

∑n(t)
k=1 x

t
ky

t
k for some ytk ∈ Z, and xtk = (ytk)

∗. It is easy
to check that (et) is a cai for A, and a similar statement holds for B. Indeed it is clear that (A, B, X′, Y ′) is a weak∗-dense
strong Morita subcontext of (M,N, X, Y). Hence M and N are weakly Morita equivalent. We remark that it is proved
in [20] that, in our language, M and N are weak* Morita equivalent.
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(9) Examples of weak and weak* Morita equivalence may also be easily built as at the end of [6, Section 6], from a weak*
closed subalgebra A of a von Neumann algebra M, and a strictly positive f ∈ M+ satisfying a certain ‘approximation in
modulus’ condition. Then the weak linking algebra of such an example is Morita equivalent in the same sense to A (see
Section 4), but they are probably not always weak* stably isomorphic.

(10) A beautiful example from [19] (formerly part of [17]): two ‘similar’ separably acting nest algebras are clearly weakly
Morita equivalent by the facts presented around [19, Theorem 3.5] (Davidson’s similarity theorem), indeed in this case
the ‘subcontext’ (seeDefinition 3.2) equals the ‘context’, and the algebras are even stronglyMorita equivalent. However,
Eleftherakis shows they need not be ‘∆-equivalent’ (that is, weak* stably isomorphic [20]).

In the theory of strongMorita equivalence, and also in our paper, it is very important thatN has some kind of ‘approximate
identity’ (fs) of the form

fs =

ns∑
i=1

[ysi , x
s
i ], ‖[ys1, . . . , y

s
ns
]‖‖[xs1, . . . , x

s
ns
]
T
‖ < 1, (3.1)

and similarly that M has some kind of ‘approximate identity’ (et) of form

et =

mt∑
i=1

(xti , y
t
i), ‖[xt1, . . . , x

t
mt

]‖‖[yt1, . . . , y
t
mt

]
T
‖ < 1. (3.2)

Here xsi , x
t
i ∈ X, ysi , y

t
i ∈ Y. Indeed, by [11], xsi , xti , ysi , yti may be chosen in X′ and Y ′ in the case of weak Morita equivalence.

In what follows, we say, for example, that (·, ·) is a bimodule map if m(x, y) = (mx, y) and (x, y)m = (x, ym) for all
x ∈ X, y ∈ Y,m ∈ M.

Theorem 3.3. (M,N, X, Y) is a weak*Morita context iff the following conditions hold: there exists a separatelyweak∗-continuous
completely contractive M-bimodule map (·, ·) : X × Y → M which is balanced over N, and a separately weak∗-continuous
completely contractive N-bimodule map [·, ·] : Y × X → N which is balanced over M, such that (x, y)x′

= x[y, x′
] and

y′(x, y) = [y′, x]y for x, x′
∈ X, y, y′

∈ Y; and also there exist nets (fs) in N and (et) in M of the form in (3.1) and (3.2) above,
with fs → 1N and et → 1M weak*.

Proof. (⇐) Under these conditions, we first claim that if π : X ⊗
σh
N Y → M is the canonical (w∗-continuous) M–M-bimodule

map induced by (·, ·), then π(u)x⊗N y = u(x, y) for all x ∈ X, y ∈ Y, and u ∈ X ⊗
σh
N Y. To see this, fix x⊗N y ∈ X ⊗

σh
N Y. Define

f , g : X ⊗
σh
N Y → X ⊗

σh
N Y: f (u) = u(x, y) and g(u) = π(u)x⊗N y where u ∈ X ⊗

σh
N Y. We need to show that f = g. Since X ⊗hN Y

is w∗-dense in X ⊗
σh
N Y, and f , g are w∗-continuous, it is enough to check that f = g on X ⊗hN Y. For u = x′

⊗N y′, we have

u(x, y) = x′
⊗N y′(x, y) = x′

⊗N[y
′, x]y = x′

[y′, x] ⊗N y = (x′, y′)x⊗N y = π(u)x⊗N y,

as desired in the claim.
To see that M ∼= X ⊗

σh
N Y, we shall show that π above is a complete isometry. Since M is the weak* closure of the span of

the range of (·, ·), it will follow from the Krein-Smulian theorem that πmaps onto M. Choose an approximate identity (et)
for M of the form in (3.2). Define ρt : M → X ⊗

σh
N Y: ρt(m) =

∑nt
i=1 mxti ⊗N yti . For [ujk] ∈ Mn(X ⊗

σh
N Y), we have by the last

paragraph that

ρt ◦ π([ujk]) =

[
nt∑
i=1
π(ujk)x

t
i ⊗N yti

]
=

[
nt∑
i=1

ujk(x
t
i , y

t
i)

]
= [ujket]

w∗

→[ujk],

the convergence by [20, Lemma 2.3]. Since ρt is completely contractive, we have

‖[ujket]‖ = ‖(ρt ◦ π)([ujk])‖ ≤ ‖π([ujk])‖.

As [ujk] is the w∗-limit of the net ([ujket])t , by Alaoglu’s theorem we deduce that ‖[ujk]‖ ≤ ‖π([ujk])‖. Similarly, N ∼= Y ⊗
σh
M X.

(⇒) The existence of the nets (fs) and (et) follows from Corollary 2.6. Define (·, ·) to be the composition of the canonical
map X × Y → X ⊗

σh
N Y with the isomorphism of the latter space with M. Similarly one obtains [·, ·], and these maps have all

the desired properties except the relations (x, y)x′
= x[y, x′

] and y′(x, y) = [y′, x]y. To obtain these we have to adjust (·, ·)
by multiplying it by a certain unitary in M, as in the proof of [5, Proposition 1.3]. Indeed that proof transfers easily to our
present setting, and in fact becomes slightly simpler, since in the latter proof the map called T is weak* continuous in our
case, and w∗CBM(M) ∼= M. �

Corollary 3.4. Every weak Morita context is a weak* Morita context.

Proof. Let (M,N, X, Y, (·, ·), [·, ·]) be a weak Morita context with strong Morita subcontext (A, B, X′, Y ′). If (fs) is a cai for B it
is clear that fs → 1N weak*. Indeed if a subnet fsα → f in the weak∗-topology in N, then bf = b for all b ∈ B. By weak∗-density
it follows that bf = b for all b ∈ N. Similarly f b = b. Thus f = 1N . By Lemma 2.9 in [11] we may choose (fs) of the form
(3.1), and similarly A has a cai (et) of form in (3.2). That (x, y)x′

= x[y, x′
] and y′(x, y) = [y′, x]y for x, x′

∈ X, y, y′
∈ Y, follows

by weak* density, and from the fact that the analogous relations hold in X′ and Y ′. Similarly one sees that (·, ·) and [·, ·] are
balanced bimodule maps. �
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A key point for us, is that the condition involving (3.1) in Theorem 3.3 becomes a powerful tool when expressed in terms
of an ‘asymptotic factorization’ of IY (resp. IY′ ) through spaces of the form Cn(M) (resp. Cn(A) in the case of a weak Morita
equivalence). Indeed, define ϕs(y) to be the column [(xsj , y)]j in Cns(M), for y in Y, and define ψs([aj]) =

∑
j y

s
jaj for [aj] in

Cns(M). Thenψs(ϕs(y)) = fsy → yweak* if y ∈ Y (or in norm if y ∈ Y ′, in the case of a weak Morita equivalence, in which case
we can replace Cns(M) by Cns(A)). Similarly, (3.1) may be expressed in terms of an ‘asymptotic factorization’ of IX through
spaces of the form Rn(M) (or IX′ through Rn(A) in the ‘weak Morita’ case), Similarly, the condition involving (3.2) may be
expressed in terms of an ‘asymptotic factorization’ of IY through spaces of the form Rn(N) (or IY′ through Rn(B) in the ‘weak
Morita’ case), or of IX through Cn(N).

Henceforth in this section, let (M,N, X, Y, (·, ·), [·, ·]) be as in Theorem 3.3. We will also refer to this 6-tuple as the weak*
Morita context.

Theorem 3.5. Weak* Morita equivalent dual operator algebras have equivalent categories of dual operator modules.

Proof. Write MR for the category of left dual operator modules over M. The morphisms here are the w∗-continuous
completely bounded M-module maps. If Z ∈ NR and if F (Z) = X ⊗

σh
N Z, then F (Z) is a left dual operator M-module by

Lemma 2.5. That is, F (Z) ∈ MR. Further, if T ∈ w∗CBN(Z,W), for Z,W ∈ NR, and if F (T) is defined to be I⊗N T : F (Z) →

F (W), then by the functoriality of the normal module Haagerup tensor product we have F (T) ∈ w∗CBM(F (Z),F (W)), and
‖F (T)‖cb ≤ ‖T‖cb. Thus F is a contractive functor from NR to MR. Similarly, we obtain a contractive functor G from MR to
NR. Namely, G(W) = Y ⊗

σh
M W, for W ∈ MR, and G(T) = I⊗M T for T ∈ w∗CBM(W, Z) with W, Z ∈ MR. Similarly, it is easy

to check that these functors are completely contractive; for example, T 7→ F (T) is a completely contractive map on each
space w∗CBN(Z,W) of morphisms. It is more complicated to show that the map T → F (T) is weak* continuous: a proof of
this emerged during a conversation with Jon Kraus; we will present this elsewhere. If we compose F and G, we find that for
Z ∈ NR we have G(F (Z)) ∈ NR. By Proposition 2.9 and Lemma 2.10, we have

G(F (Z)) ∼= Y ⊗
σh
M (X ⊗

σh
N Z) ∼= (Y ⊗

σh
M X)⊗

σh
N Z ∼= N⊗

σh
N Z ∼= Z.

where the isomorphisms are completely isometric. The rest of the proof follows as in Theorem 3.9 in [11]. �

Remark We imagine that the ideas of [5] show that the converse of the last theorem is true, and hope to pursue this in
the future.

We shall adopt the convention from algebra of writing maps on the side opposite the one on which ring acts on the
module. For example a left A-module map on X will be written on the right and a right A-module map will be written on the
left. The pairings and actions arising in the weak* Morita context give rise to eight maps:

RN : N → CBM(X, X), xRN(b) = x · b

LN : N → CB(Y, Y)M, LN(b)y = b · y

RM : M → CBN(Y, Y), yRM(a) = y · a

LM : M → CB(X, X)N, LM(a)x = a · x

RM
: Y → CBM(X,M), xRM(y) = (x, y)

LN : Y → CB(X,N)N, LN(y)x = [y, x]

RN
: X → CBN(Y,N), yRM(x) = [y, x]

LM : X → CB(Y,M)M, LM(x)y = (x, y).

The first four maps are completely contractive since module actions are completely contractive. Also the maps LN and
LM are homomorphisms and RN and RM are anti-homomorphisms. Similar proofs to the analogous results in [11] show that
RM, LN , RN , and LM are completely contractive.

Theorem 3.6. If (M,N, X, Y, (·, ·), [·, ·]) is a weak* Morita context, then each of the maps RM , RN , LM and LN is a weak* continuous
complete isometry. The range of RM is w∗CBM(X,M), with similar assertions holding for RN , LM and LN . The map LN (resp. RN) is a
w∗-continuous completely isometric isomorphism (resp. anti-isomorphism) onto the w∗-closed left (resp. right) ideal w∗CB(Y)M
(resp. w∗CBM(X)). Similar results hold for LM and RM .

Proof. Most of this can be proved directly, as in [11, Theorem 4.1]. Instead we will deduce it from the functoriality
(Theorem 3.5). For example, because of the equivalence of categories via the (completely contractive) functor F = Y ⊗

σh
M −,

we have completely isometrically:

M ∼= w∗CBM(M) ∼= w∗CBN(F (M)) ∼= w∗CBN(Y),

and the composition of these maps is easily seen to be RM . Thus RM is a complete isometry. Similar proofs work for the other
seven maps. To see that LN is w∗-continuous, for example, let (bt) be a bounded net in N converging in the w∗-topology of
N to b ∈ N. Then LN(bt) is a bounded net in CB(Y)M . As the module action is separately w∗-continuous, it is easy to see that
LN(bt) converges to LN(b) in thew∗-topology. Thus LN is aw∗-continuous isometrywithw∗-closed range, by the Krein-Smulian
theorem. To see that its range is a left ideal simply use the weak∗-density of the span of terms [y, x] in N, and the equation
TLN([y, x])(y′) = LN[Ty, x](y′) for T ∈ CB(Y, Y)M , y′

∈ Y. We leave the variants for the other maps to the reader. �
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Remarks (1) Note that in the case of weak Morita equivalence, CBA(X′) is an operator algebra ([11], Theorem 4.9). It is
not true in general that CBM(X) is an operator algebra, as we show in [21]. Nonetheless, the above shows that w∗CBM(X) is a
dual operator algebra (∼= N).

(2) In fact w∗CB(Y)M (resp. w∗CBM(X)) equals the one-sided operator space multiplier algebra (see [8, Chapter 4]) M`(Y)
(resp. Mr(X)). See [7].

Theorem 3.7. If M and N are weak* Morita equivalent dual operator algebras, then their centers are completely isometrically
isomorphic via a w∗-homeomorphism.

Proof. By Theorem 3.6 there is a w∗-continuous complete isometry RM : M → w∗CBN(Y). The restriction of RM to Z(M) maps
intow∗CB(Y)M ∼= N, and sowe have defined aw∗-continuous completely isometric homomorphism θ : Z(M) → N. One easily
sees that θ(a)(y) = ya, for a ∈ Z(M). It is also easy to see that this implies that θmaps into Z(N), and to argue, by symmetry,
that θmust be an isomorphism. �

Lemma 3.8. In the case of weak Morita equivalence, if Z is a left dual operator M-module, then the canonical map from Y ′
⊗hA Z

into Y ⊗
σh
M Z is completely isometric, and it maps the ball onto a w∗-dense set in Ball (Y ⊗

σh
M Z).

Proof. The canonical map here is completely contractive, let us call it θ. On the other hand, let (fs) be as in (3.1), and let
ϕs,ψs be as defined just below Corollary 3.4, with ψs(ϕs(y)) = fsy → y. Then for u ∈ Mn(Y ′

⊗A Z), we have

‖θn(u)‖ ≥ ‖(ϕs ⊗ I)n(θn(u))‖ = ‖(ϕs ⊗ I)n(u)‖ ≥ ‖fsu‖.

Taking a limit over s, gives ‖θn(u)‖ ≥ ‖u‖.
Let u ∈ Ball(Y ⊗

σh
M Z). By Corollary 2.6, there exists a net (ut) in the image of Ball(Y ⊗hM Z) such that ut

w∗

→ u. We may
assume that each ut is of the form w� z, for w ∈ Ball(Rn(Y)), z ∈ Ball(Cn(Z)). We rewrite (3.1) and the lines below it, namely
write each fs in the form [y, x] (in suggestive notation), for y ∈ Ball(Rm(Y ′)) and x ∈ Ball(Cm(X′)). Notew� z is the weak* limit
of terms fsw � z, and fsw � z = y � v, where v is a column with kth entry

∑
j[xk,wj]zj. It is easy to check that ‖v‖ ≤ 1. �

Proposition 3.9. Weak* Morita equivalence is an equivalence relation.

Proof. This follows the usual lines, for example the transitivity follows from associativity of the tensor products and
Lemma 2.10. �

Remark Concerning transitivity of weak Morita equivalence, it is convenient (and probably necessary) to consider
Definition 3.2 as defining an equivalence between pairs (M, A) and (N, B), as opposed to just between M and N. That is
we also consider the weak∗-dense operator subalgebras. Then it is fairly routine to see that weak Morita equivalence is an
equivalence relation [21].

Theorem 3.10. Weak*Morita equivalent dual operator algebras have equivalent categories of normal Hilbertmodules. Moreover,
the equivalence preserves the subcategory of modules corresponding to completely isometric normal representations.

Proof. If H is a normal Hilbert M-module, let K = Y ⊗
σh
M Hc. By the discussion just below Corollary 3.4, combined with

Corollary 2.4, there are nets of maps ϕs : K → Cns(M)⊗
σh
M Hc ∼= Cns(H

c), and mapsψs : Cns(H
c) → K, withψs(ϕs(z)) = fsz → z

weak* for all z ∈ K. Here (fs) is as in (3.1). Let Λ be the directed set indexing s, and let U be an ultrafilter with the property
that limU zs = limΛ zs for scalars zs, whenever the latter limit exists. Let HU be the ultraproduct of the spaces Cns(H

c), which
is a columnHilbert space, as is well known and easy to see. Define T : K → HU by T(x) = (ϕs(x))s, for x ∈ K. This is a complete
contraction. To see that it is an isometry, note that for any x ∈ K,ρ ∈ Ball(K∗), we have

|ρ(x)| = lim
U

|ρ(ψs(ϕs(x)))| ≤ lim
U

‖ϕs(x)‖ = ‖T(x)‖.

Similarly, T is a complete isometry, as we leave to the reader to check. Thus K is a (column) Hilbert space.
That K = Y ⊗

σh
M Hc is a normal Hilbert N-module now follows from Lemma 2.5. Finally, suppose that M is a weak*

closed subalgebra of B(H), we will show that the induced representation ρ of N on K is completely isometric. Certainly
this map is completely contractive. Let [bpq] ∈ Md(N), [ykl] ∈ Ball(Mm(Y)), [ζrs] ∈ Ball(Mg(Hc)), [xij] ∈ Ball(Mn(X)). We have
‖[ykl ⊗ ζrs]‖ ≤ 1 with respect to the operator space projective tensor product matrix norm, and hence also with respect to
⊗
σh
M . Thus,

‖[ρ(bpq)]‖ ≥ ‖[bpqykl ⊗ ζrs]‖ ≥ ‖[(xij, bpqykl)ζrs]‖.

Taking the supremum over all such [ζrs], gives

‖[ρ(bpq)]‖ ≥ sup{‖[(xij, bpqykl)]‖ : [xij] ∈ Ball(Mn(X))} = ‖[bpqykl]‖,

by Theorem 3.6. Taking the supremum over all such [ykl] ∈ Ball(Mm(Y)) gives ‖[ρ(bpq)]‖ ≥ ‖[bpq]‖, by Theorem 3.6
again. �
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The last result shows that weak* Morita equivalent operator algebras have equivalent categories of normal
representations. It would be very interesting to characterize when two operator algebras have equivalent categories of
normal representations; it seems quite possible that this happens iff they are weak* Morita equivalent.

Corollary 3.11. If H is a normal Hilbert module overM, then Y ⊗
σh
M Hc is a column Hilbert space. Also, the image of Ball(Y ⊗hM Hc)

is norm dense in Ball(Y ⊗
σh
M Hc). In the case of weak Morita equivalence, Y ⊗

σh
M Hc

= Y ′
⊗hA Hc

= Y ′ _
⊗AHc completely isometrically.

Here _
⊗M is as in 3.4.2 of [8].

Proof. For the second assertion, by Corollary 2.6 the image of Ball(Y ⊗hM Hc) is weakly dense, and hence norm dense by
Mazur’s theorem. In the case of weak Morita equivalence, if η ∈ H 	 [AH] and (et) is a cai for A, then

〈η,η〉 = lim
t

〈etη,η〉 = 0.

Thus A acts nondegenerately on H. The assertions involving Y ′ now follow from Lemma 3.8 andMazur’s theorem again. Since
− ⊗h Hc

= −
_
⊗Hc (see e.g. [15, Proposition 9.3.2]), we may replace ⊗hM here by _

⊗M (see 3.4.2 of [8] for this notation). �

4. The weak linking algebra

In this section again, (M,N, X, Y, (·, ·), [·, ·]) is a weak* Morita context. Suppose that M is represented as a weak∗-closed
nondegenerate subalgebra of B(H), for a Hilbert space H. Then by Corollary 3.11, K = Y ⊗

σh
M Hc is a column Hilbert space.

Define a right M-module map Φ : Y → B(H, K) by Φ(y)(ζ) = y⊗M ζ where y ∈ Y and ζ ∈ H. It is easy to see that Φ is a
completely contractive N–M-bimodule map. It is weak∗-continuous, since if we have a bounded net yt → y weak∗ in Y, and
if ζ ∈ H, then yt ⊗M ζ → y⊗M ζ weakly. That is, Φ(yt) → Φ(y) in the WOT, and it follows that Φ is weak∗-continuous. If
‖Φ(y)‖ ≤ 1, and if ζ ∈ Ball(H(n)), and [xij] ∈ Ball(Mn(X)), then

‖[(xij, y)]ζ‖ = ‖[xij ⊗ Φ(y)]ζ‖ ≤ ‖Φ(y)‖.

Taking the supremum over such ζ, and then over such [xij], we obtain from Theorem 3.6 that ‖y‖ ≤ 1. Thus Φ is an isometry,
and a similar but more tedious argument shows that Φ is a complete isometry. By the Krein-Smulian theorem we deduce
that the range of Φ is weak∗-closed. A similar argument, which we leave to the reader, shows that the map Ψ : X → B(K,H),
defined by Ψ(x)(y ⊗ ζ) = (x, y)ζ, is a w∗-continuous completely isometric M–N-bimodule map. See also [7, Section 3.1] for
more on the above points. Aswe said in Theorem3.10, the induced normal representationN → B(K) is completely isometric.

We use the above to define the direct sum M⊕
c Y as follows. For specificity, the reader might want to take H to be a

universal normal representation of M, that is the restriction to M of a one-to-one normal representation of W∗

max(M). Define
a map θ : M ⊕ Y → B(H, K ⊕ H) by θ((m, y))(ζ) = (mζ, y⊗M ζ), for y ∈ Y,m ∈ M, ζ ∈ H. One can quickly check that θ is a
one-to-one, M-module map, and that θ is a weak∗-continuous complete isometry when restricted to each of Y and M. Also,
W = Ran(θ) is easily seen to be weak∗-closed. We norm M⊕

c Y by pulling back the operator space structure from W via θ.
Thus M⊕

c Y may be identified with the weak∗-closed right M-submodule W of B(H,H ⊕ K); and hence it is a dual operator
M-module. In a similar way, we define M⊕

r X to be the canonical weak∗-closed left M-submodule of B(H ⊕ K,H).
We next define the ‘weak linking algebra’ of the context, namely

Lw
=

{[
a x
y b

]
: a ∈ M, b ∈ N, x ∈ X, y ∈ Y

}
,

with the obvious multiplication. As in [11, Lemma 5.6], one easily sees that there is at most one possible sensible dual
operator space structure on this linking algebra. Indeed ifΛ is the set indexing t in the net in (3.2), and if β, t ∈ Λ, then define
θβ,t on the linear space Lw to be the map θβ in [11, p. 45], but with all the yβi replaced by yti . Then a simple modification of
the argument in [11, p. 50-51], and using semicontinuity of the norm in the weak* topology, yields that any ‘sensible’ norm
assigned to Lw must agree with supβ,t ‖θβ,t(·)‖.

To see that such a dual operator space structure does exist, one only needs to view Lw as a subalgebra R of B(H ⊕ K),
using the obvious pairings X × K → H (induced by (·, ·)), Y × H → K, and N × K → K (this is the induced representation of
N on K from Theorem 3.10). It is easy to check that (M,R,M⊕

r X,M⊕
c Y) is also a weak* Morita context (this follows from

norm equalities of the kind in e.g. the centered equations in [11, Theorem 5.12]). This all may be most easily visualized by
picturing both contexts as 3 × 3-matrices, namely as subalgebras of B(H ⊕ H ⊕ K). Theorem 3.6 gives R ∼= w∗CB(M⊕

c Y)M
completely isometrically and w∗-homeomorphically.

Note that in a weak Morita situation, the linking operator algebra of the strong Morita context (A, B, X′, Y ′) can
be identified completely isometrically as the obvious weak* dense subalgebra L of R (see e.g. [1, Proposition 6.10]).
Incidentally, at this point we have already proved the assertion made at the start of Example (2) in Section 3, and indeed
that every weak Morita equivalence arises as the weak* closure of a strong Morita equivalence, or can be viewed as the
weak*-closure, in some representation, of the linking operator algebra of a strong Morita equivalence. We have a strong
Morita context (A,L, A⊕

r X′, A⊕
c Y ′) (see [11,10]), which can be viewed as a subcontext of (M,R,M⊕

r X,M⊕
c Y). Thus the

latter is a weak Morita context.
Extracting from the last paragraphs, we have:
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Corollary 4.1. M is weak* Morita equivalent to the weak linking algebra Lw. Indeed this is a weak Morita equivalence if
(M,N, X, Y) is a weak Morita context.

It is often useful here to know that:

Proposition 4.2. With notation as in Theorem 3.10, we have (M⊕
c Y)⊗

σh
M Hc ∼= (H ⊕ K)c as Hilbert spaces.

Proof. Wewill just sketch this, since it is not used here. By Corollary 4.1, and Theorem3.10,we have that L = (M⊕
c Y)⊗

σh
M Hc

is a column Hilbert space. Moreover, the projections from M⊕
c Y onto M and Y respectively, induce by Corollary 2.4,

projections P and Q from L onto M⊗
σh
M Hc ∼= Hc, and K, respectively, such that P + Q = I. �

Mimicking the proof of [11, Theorem 5.1] we have:

Theorem 4.3. Let (M,N, X, Y) be a weak* Morita context. Then there is a lattice isomorphism between the w∗-closed M-
submodules of X and the lattice of w∗-closed left ideals in N. The w∗-closed M–N-submodules of X corresponds to the w∗-closed
two-sided ideals in N. Similar statements for Y follows by symmetry. In particular, M and N have isomorphic lattices of w∗-closed
two-sided ideals.

We next show, analogously to [11, Section 6], that ifM and N areW∗-algebras, then they areMorita equivalent in Rieffel’s
sense iff they areweakly (or equivalently,weak*)Morita equivalent in our sense. Indeedwe already have remarked (Example
(4) in Section 3) that Rieffel’s Morita equivalence is an example of our weak Morita equivalence. The following gives the
converse, and more:

Theorem 4.4. Let (M,N, X, Y) be a weak* Morita context where N is a W∗-algebra. Then M is a W∗-algebra, and there is a
completely isometric isomorphism i : X → Y such that X becomes a W∗-equivalence M–N-bimodule (see e.g. 8.5.12 in [8])
with inner products defined by the formulas M〈x1, x2〉 = (x1, i(x̄2)) and 〈x1, x2〉N = [i(x̄1), x2].

Proof. First we represent the linking algebra on a Hilbert space H ⊕ K as above. We rechoose the net (et) such that et → IH
strongly, so that e∗

t et → IH weak*, and similarly for the net (fs). To accomplish this, note that the WOT-closure of the convex
hull of the (et) equals the SOT-closure, by elementary operator theory. However it is easy to see that the form in (3.2) is
preserved if we replace es by convex combinations of the et . Now one can follow the proof of [11, Theorem 6.2] to deduce
that the adjoint of any y ∈ Y is a limit of terms in X. That is Y ⊂ X∗. Similarly, X ⊂ Y∗. So X = Y∗, and so it follows that M is a
W∗-algebra, and X is aWTRO (this termwas defined in Example (4) in Section 3) setting up aW∗-algebraMorita equivalence.
We leave the rest as an exercise. �

The following is the nonselfadjoint analogue of a theorem of Rieffel. A special case of it is mentioned, with a proof sketch,
at the end of [9].

Theorem 4.5. Let H be a universal normal representation for M, and let K be the induced representation of N studied above. Then
M′ ∼= N′; that is there is a completely isometric w∗-continuous isomorphism θ : BM(H) ∼= BN(K). Writing R for either of these
commutants, we have X ∼= BR(K,H) and Y ∼= BR(H, K) completely isometrically and as dual operator bimodules.

Proof. One uses the equivalence of categories to see that BM(H) ∼= BN(F (H)) = BN(K) completely isometrically, in the
notation of Theorem 3.5. That is, M′ ∼= N′ as asserted. The isomorphism θ here is essentially defined by the relation
θ(T)Φ(y) = Φ(y)T for all y ∈ Y, T ∈ M′. HereΦ is as in the discussion at the start of Section 4. It follows easily from this that if
Tt → T weak* inM′, then θ(Tt)(y⊗ζ) → θ(T)(y⊗ζ)weakly. By the second assertion of Corollary 3.11, θ is weak* continuous,
even a weak* homeomorphism, by the Krein-Smulian theorem. Now mimic the proof of 8.5.32 and 8.5.37 in [8]. The main
point to bear in mind is that sinceM is weak* Morita equivalent to the weak linking algebra Lw, the induced representation
of Lw is also a universal normal representation, by easy category theoretic arguments. Thus by [13] it satisfies the double
commutant theorem. Carefully computing the first, and then the second, commutants of Lw (as in 8.5.32 in [8] or [22]), and
using the double commutant theorem, gives the result. �

Example 4.6. If M and N are finite dimensional then weak* Morita equivalence equals strong Morita equivalence, and
coincides also with the equivalence of [17,18,20], that is, weak* stable isomorphism. Indeed if (M,N, X, Y) is a weak* Morita
context, then it is clearly a strong Morita context in this case. By [11, Lemma 2.8] we can factor the identity map IY through
Cn(M) for some n ∈ N, so that Y is finite dimensional. Similarly, X is finite dimensional. To see that this implies that M and N
are weak* stably isomorphic, note that in this situation, since M ∼= X ⊗

σh
N Y, there is a norm 1 element in X ⊗h Y mapping to

1M . Similarly for 1N , and it is evident that one has what is called a ‘quasi-unit of norm 1’ in [11, Section 7]. By [11, Corollary
7.9], M and N are stably isomorphic, and taking second duals and using e.g. (1.62) in [8], we see that they are weak* stably
isomorphic. In the infinite dimensional case however, all these notions are distinct.
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5. Morita equivalence of generated W∗-algebras

From [10] or [1], we know that a strong Morita equivalence of operator algebras in the sense of [11] ‘dilates’ to, or is a
subcontext of, a strongMorita equivalence in the sense of Rieffel, of containing C∗-algebras. This happens in a very tidy way.
More particularly, suppose that (A, B, X, Y) is a strong Morita context of operator algebras A and B. Then any C∗-algebra C
generated by A induces a C∗-algebra D generated by B, and C and D are strongly Morita equivalent in the sense of Rieffel [23],
with equivalence bimodule the ‘C∗-dilation’ (see [3]) C ⊗hA X. Moreover the linking algebra for A and B is (completely
isometrically) a subalgebra of the linking C∗-algebra for C and D. We see next that all of this, and the accompanying theory,
will extend to our present setting. Although onemay use any ‘W∗-cover’ in the arguments below, for specificity, themaximal
W∗-algebraW∗

max(M) from [13] will take the place of C above, and the ‘maximalW∗-dilation’W∗

max(M)⊗
σh
M X will play the role

of the C∗-dilation. One can develop a theory for this ‘W∗-dilation’ in a general setting analogously to [3,10], but we shall not
take the time to do this here (see [21]). We will however state that just as in [3], any (left, say) dual operator M-module
is completely isometrically embedded in its ‘maximal W∗-dilation’, via the M-module map x 7→ 1 ⊗ x, which is weak*
continuous.

Throughout this section, (M,N, X, Y) is a weak* Morita context. We shall show that the ‘left’ and ‘right’ W∗-dilations
coincide, and constitute a bimodule implementing the W∗-algebraic Morita equivalence between W∗

max(M) and W∗

max(N).

Theorem 5.1. The W∗-dilation Y ⊗
σh
M W∗

max(M) is a right C∗-module over W∗

max(M).

Proof. With H a normal universal Hilbert M-module as usual, we may view W∗

max(M) as the von Neumann algebra R
generated by M in B(H). Let K = Y ⊗

σh
M Hc as usual, and let Z = Y ⊗

σh
M W∗

max(M). Note that

Z ⊗
σh
W∗

max(M) H
c ∼= Y ⊗

σh
M W∗

max(M)⊗
σh
W∗

max(M) H
c ∼= Y ⊗

σh
M Hc

= K.

This allows us to define a completely contractive weak∗-continuous φ : Z → B(H, K) given by φ(y ⊗ a)(ζ) = y ⊗ aζ, for
y ∈ Y, a ∈ R, ζ ∈ H. Note that φ restricted to the copy of Y is just the map Φ at the start of Section 4. We are following
the ideas of [2, p. 286–288]. It is clear that φ is a R-module map. By the discussion just below Corollary 3.4, combined
with Corollary 2.4, there are nets of maps ϕs ⊗ I : Z → Cns(M)⊗

σh
M W∗

max(M) ∼= Cns(W
∗

max(M)), and maps ψs ⊗ I, with
(ψs ⊗ I)(ϕs ⊗ I)(z) = fsz → z weak* for all z ∈ Z. Here (fs) is as in (3.1), and the last convergence follows from e.g. [20,
Lemma 2.3]. We have ‖[fszij]‖ ≤ ‖[(ϕs ⊗ I)(zij)]‖ ≤ ‖[φ(zij)]‖. This follows, as in [2, p. 287], from the fact that there is a
sequence of weak* continuous complete contractions

B(H, K) → B(H, Cnt (M)⊗
σh
M W∗

max(M)⊗
σh
W∗

max(M) H
c) ∼= B(H, Cnt (H

c))

that maps φ(y ⊗ a) to ϕs(y)a, for y ∈ Y, a ∈ R, and hence maps φ(z) for z ∈ Z, to (ϕs ⊗ I)(z). As in [2, p. 287], it follows that φ
is a complete isometry.

Define 〈z,w〉 = φ(z)∗φ(w) for z,w ∈ Z. To see that this is an R-valued inner product on Z, we will use von Neumann’s
double commutant theorem (this is a well known idea (see e.g. [22])). Note that if ∆(A) = A ∩ A∗ is the ‘diagonal’ of a
subalgebra A of B(H), then R′

= ∆(M′), the ‘prime’ denoting commutants. The proof of Theorem 4.5 shows that there is a
completely isometric isomorphism θ : M′

→ N′, such that Φ(y)T = θ(T)Φ(y) for y ∈ Y, T ∈ M′, where Φ(y)(ζ) = y ⊗ ζ ∈ K,
for ζ ∈ H. By 2.1.2 in [8], θ restricts to a ∗-isomorphism from ∆(M′) = R′ onto ∆(N′). It follows that, in the notation of
Theorem 5.1, if y ∈ Y, a ∈ R, ζ ∈ H, T ∈ ∆(M′) then

φ(y ⊗ a)(Tζ) = y ⊗ aTζ = y ⊗ Taζ = Φ(y)T(aζ) = θ(T)Φ(y)(aζ) = θ(T)φ(y ⊗ a)(ζ).

Hence if w, z ∈ Z and T ∈ R′ then

φ(z)∗φ(w)T = φ(z)∗θ(T)φ(w) = (θ(T∗)φ(z))∗φ(w) = (φ(z)T∗)∗φ(w) = Tφ(z)∗φ(w),

so that φ(z)∗φ(w) ∈ R′′
= R.

Thus Z is a right C∗-module over W∗

max(M), completely isometrically isomorphic to the WTRO Ran(φ). �

Theorem 5.2. Suppose that (M,N, X, Y) is a weak* Morita context. Then W∗

max(M) and W∗

max(N) are Morita equivalent W∗-
algebras in the sense of Rieffel, and the associated equivalence bimodule is Y ⊗

σh
M W∗

max(M). Moreover, Y ⊗
σh
M W∗

max(M) ∼=

W∗

max(N)⊗
σh
N Y completely isometrically. Analogous assertions holdwith Y replaced by X. Finally, theW∗-algebra linking algebra for

this Morita equivalence contains (as a weak* closed subalgebra) the linking algebraLw defined earlier for the context (M,N, X, Y).

Proof. We use the idea in [1, p. 406–407] and [10, p. 585–586]. Let H, K be as in the proof of Theorem 5.1. We consider the
following subalgebras of B(H ⊕ K):[

W∗

max(M) W∗

max(M)X
YW∗

max(M) YW∗

max(M)X

]
,

[
XW∗

max(N)Y XW∗

max(N)
W∗

max(N)Y W∗

max(N)

]
.

Let L1 and L2 denote the weak* closures of these two subalgebras. These are dual operator algebras which are the linking
algebras for a Morita equivalence of the type in the present paper. Thus by Theorem 4.4, they are actually selfadjoint.
Moreover both of these can now be seen to equal the von Neumann algebra generated by Lw, and so they are equal to
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each other. Hence the weak* closures of YW∗

max(M) andW∗

max(N)Y coincide, and this constitutes an equivalence bimodule (or
WTRO) setting up a W∗-algebraic Morita equivalence between W∗

max(M) and W∗

max(N). As we said, the W∗-algebraic linking
algebra here is justL1 = L2, and this clearly contains the algebrawe calledR in the discussion in the beginning of Section 4,
that is Lw, as a subalgebra.

Finally, notice that the map φ in the proof of the last theorem is a completely isometric W∗

max(M)-module map from
Z = Y ⊗

σh
M W∗

max(M) onto the weak* closure W of YW∗

max(M) in B(H, K). Similar considerations, or symmetry, shows that
V = W∗

max(N)⊗
σh
N Y agrees with the weak* closure of W∗

max(N)Y, which by the above equals W, and thus agrees with Z.
Similarly for the modules involving X. �

Remark Theorems 4 and 5 of [10] have obvious variants valid in our setting, with arbitrary W∗-dilations in place of
W∗

max(M). Similarly, one can show as in [10] that W∗

max(L
w) = L1. See [21] for details.
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