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Abstract This article contributes a matrix approach by using Taylor approximation to obtain the
numerical solution of one-dimensional time-dependent parabolic partial differential equations
(PDESs) subject to nonlocal boundary integral conditions. We first impose the initial and boundary
conditions to the main problems and then reach to the associated integro-PDEs. By using opera-

tions; tional matrices and also the completeness of the monomials basis, the obtained integro-PDEs will
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Krylov subspace iterative
methods;
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be reduced to the generalized Sylvester equations. For solving these algebraic systems, we apply a
famous technique in Krylov subspace iterative methods. A numerical example is considered to show
the efficiency of the proposed idea.
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1. Introduction

One dimensional parabolic partial differential equations
(PDESs) have an extensive application in the study of problems
in engineering and applied sciences. It should be mentioned
that, such PDEs together with classical boundary conditions
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have received considerable attention in research works. How-
ever, these PDEs with nonlocal boundary conditions were
studied by researchers in the literature, but extensions and
modifications of the existing methods should be explored to
obtain more accurate solutions. The usual numerical methods
for PDEs subject to the nonlocal boundary conditions are
finite difference methods [1-3], Galerkin techniques [4], collo-
cation approaches [5], Tau schemes [6] and reproducing kernel
space methods [7]. Moreover, some other new methods were
considered in [8—11].

It should be noted that, in all of the research works that are
based on the operational matrices, the basic PDEs (with clas-
sical boundary conditions) were finally transformed into the
matrix—vector algebraic system Ax = b, which can be solved
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Numerical solution of time-dependent diffusion equations

by robust iterative solvers such as Krylov subspace iterative
methods (e.g., restarted GMRES and Bi-CGSTAB methods).
For this purpose, one can use simple MATLAB commands
for applying these iterative solvers. On the other hand, if the
PDEs contain nonlocal boundary conditions, they may be
transformed into the associated generalized Sylvester equa-
tions by using operational matrices. Since for solving such gen-
eralized Sylvester equations, there is no MATLAB commands,
we should extend Krylov subspace iterative methods. More-
over, Taylor matrix approaches have had no results for solving
PDE:s subject to non-classical boundary conditions. These are
basic motivations of the paper. In this paper, we present a new
matrix method for solving one-dimensional parabolic time-
dependent diffusion equation

ou i+K(m) O<x<l, 0<t<1 (1)
ot ox? R o

with the initial condition

u(x,0) = f(x), 0<x<, (2)

and the nonlocal boundary conditions

u(0, t)=/0 p(x)u(x, 1)dx,

u(l,t):/0 W(x)u(x, t)dx

where K, f, p and ¢ are known functions, while the function u
should be determined. It should be mentioned that we develop
a new matrix approach, which was previously examined in [12—
15], for solving one-dimensional parabolic PDEs with nonlocal
boundary conditions. Some straightforward manipulations,
enable us to impose the initial and boundary conditions (2)
and (3) to the main problem. Thus, completeness of monomi-
als basis together with the operational matrices of differentia-
tion and integration can be used to reduce the main problem to
the associated generalized Sylvester equations. Actually this is
the first operational matrix approach for which the final asso-
ciated algebraic system (i.e., generalized Sylvester equations)
will be considered with more details.

0<t<,
3)

0<tr<,

2. Method of the solution

In this section, the basic Eq. (1) subject to the initial and
boundary conditions (2) and (3) will be transformed into the
associated integro-PDE by some straightforward manipula-
tions. Then, completeness of monomials basis together with
the operational matrices of differentiation and integration
can be used to reduce the main problem to the associated gen-
eralized Sylvester equations. For this purpose, we should recall
the operational matrices as follows

M
117 TJo o o0 0T 1 ]
X 1 0 0 0 X
X(x) = _lo 2 o 0 7 (4)
xN—I )C’V—l
L x| 10 0 N 0] | xV |

87
P
——
1 010 -0
. . ¥ 00 % - 0 Y
/X(x’)dx':/ L dY = . o,
0 0 IN—1 0 0 % V-1
N 000 0] L x"
(5)

where M and P are operational matrices of differentiation
and integration, respectively. It should be recalled that
[} X(x)XT(x)dx = Q, where Q = hilb(N+ 1) is the Hilbert
matrix of dimension N+ 1. Throughout of the paper, Q
denotes the hilbert matrix of dimension N + 1 and we do not
show its index for clarity of presentation. Now, one can rewrite
the basic Eq. (1) in the form

— K(x,1).

So direct integration from both sides of the above equation
with respect to x in the interval [0, x] yields

u(x, 1) = u,(0,1) + / U (X, 1) dX
0

(X, 1) = u,(x, 1)

— 1, (0,1) + / (. 1) — K, 1)) (6)
0
On the other hand, by assuming u(0,7) = A(f), one can
write
u(x, 1) = A(t) + / u (X', 1)dx'. (7)
0

From (6) and (7) one can conclude that

u(x, 1) = A(1) + x1s (0, ) + /0 ) /0 )

We suppose that u(1,¢)
B(t) = u(1,1)

:A(t)+ux(0,t)+/l /x(u,(x/,t)—K(x’,

The above equation can be rewritten in the form

uy(0,1) = B(1)

_ (A(z)+/01 /O (w (¥, 1)

Replacing (9) into (8) yields

u(x, 1) = (1 — x)A(1) + xB(t) — x/o /0 (u(x', 1)

—K(¥, £))dx'dx + /0 /0 (u(x", 1)

K(X", 1))dx"dx'. (10)

For imposing the initial condition (2), we should differenti-
ate both sides of (10) with respect to ¢ in the following form

M0 _ D11 - 2400 + xB()

fx/o /0 (u,(x', 1) — K(x

+ / / (u,(x", t) _ K(x//,[))dx//dx/
0 0

= B(r), and hence

1))dx'dx.

— K(X, t))d)ddx). 9)

' 1))dx'dx
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and then integrating both sides of the above equation with
respect to ¢ in the interval [0, 7] as follows

u(x, 1) —u(x,0) = /0 %((1 — x)A(t) + xB(t)
x/f) /9 (u, (X', 1) — K(', 1)) dx'dx
n / / (", 1) — KO, 1) dx"dx'

In other words

u(x, 1) = flx)+ /0[ % ((1 — x)A(1) + xB(1)

— x/o1 /Ox (u (X', 1) — K(x', 1))dx' dx
+ /0 ' /0 (u (¥, 1) — K(x", t))dx”dx’) . (11)

In this stage, we should approximate all the existing (known
and unknown) functions in terms of their truncated Taylor
expansions in the form
u(x, t) = X' (x)UX(1), (12)
J1x) = XT(x)FX(0),

K(x,t) ~ X" (x)KX(2),
p(x) = p"X(x),

W(x) = ¥ X(x),
- x= X',
x = XT(x)a

It should be noted that F € RV - g o gIVFDx(N+D)
pT € RGN YT ¢ RUOHD o VDX gpg g e VDX

i i 1 Y00 1 YR00) T
are known, in which F;; = T awior K = i “axor s Ply

2Oyl =0 for all ij=0,1,....Nf=[1 —10 -0
and a=[010 ---0". However, Uec RV WD s apn
unknown matrix and should be determined.

By using (12), one can approximate the boundary condi-
tions (3) as follows

A1) = u(0, 1) = /0 ' p(eu(x, £y = % T X ()X (x) UX(1)dx
= p"QUX(1), (13)
B() = u(l, 1) = /0 e, ) = % XX (2) UX(1)dx
—yToUX().

By using approximation terms (12) and (13) and replacing
in (11) we have

XT(x)UX(1) = XT(x)FX(1) + XT(x) YMPX(1). (15)
where~l~] is an_approximation of U and Y = BpTQU+
QU — awPT(UM — K) + (P") (UM — K). Since monomi-
als form a complete basis, one can factorize both of the vectors
X7(x) and X(¢) from (15) for obtaining the following equation

U=F+pp"QUMP + oy "QUMP — othT< UM — K) MP
+(PTY ( UM — K> MP.
The above equation can be rewritten in the following form
U=C+pp"QUMP + oy " QUMP — awP" UM P
+ (P UM?P, (16)
where C = F+ owP”KMP — (P")’KMP.
By assumptions A; = —fp7Q, B = MP, 4> = —a)’ 0,
= M*P,

By = MP, Ay = awP”, By = M*P, A, =—(P")’, B,
Eq. (16) can be rewritten as follows

(7+A1&B]+A2&Bz+AxﬁB}+A4ﬁB4:C, (17)

which is a generalized Sylvester equation. For solving this gen-
eralized Sylvester equation, we use the global GMRES method
that is selected from [17].

We note that the Sylvester Eq. (17) has a unique solution if

the matrix <IN+I ® Iyy1 + 24 BT ® A,~> is nonsingular.

=1
Throughout this paper, we assume that this condition is veri-
fied. As [16], we use the modified global Arnoldi algorithm
to construct an F-orthonormal basis Vi, V5, - -, V}; of the cor-
responding matrix Krylov subspace. This algorithm is
described as follows:

Algorithm 1. Modified Global Arnoldi algorithm for matrix
equation U+ Y1, 4,UB; = C.

1. Set Vi = V/||V||
2. Forj=1,2,...,k, Do:

3. Compute W=7V, +Z?:]Ail{fBi
4. Fori=1,2,...,j, Do
5. h[j = <W7 VI')F
6. W=W—h;V;
7. End Do
8. My = Wl If A1 = O then Stop
9. Vi =W/hyp,
10. End Do
Let Vi = [V, Va, -+, Vi] € RVTDANED ang H, € RikrDxk

denotes the upper Hessenberg matrix with nonzero entries 7y,

Y
t

XT(x)UX(1) ~ XT(x)FX(1) + / g X7(x) (ﬁpTQU +oy"QU — awP"(UM — K) + (PT)' (UM — K))X(z) dr, (14)
0

where w = fol X (x)dx = [l i ,NLH} Now, one can apply which are defined by the modified global Arnoldi algorithm,

operational matrices of differentiation and integration (see
(4) and (5)) for obtaining

XT(x)UX(1) = XT(x)FX(t) + X" (x) YMPX(1).
In other words

and also Hy € R is the matrix obtained from H; by deleting
its last row.

As seen in [17], to save memory and CPU-time require-
ments, the Global GMRES method should be used in a
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Table 1 Absolute values of the error |ey(x, 7)|(= |u(x, ) — uy(x, ?)|) at the selected points of numerical example.
(x,1) N=6 N=10 N=14 N=18 N=22 N=26
(0,0) 0 0 0 0 0 0
(0.1,0.1) 5.187e—002 3.499¢—004 7.722e—007 6.420e—010 2.431e—013 1.110e—016
(0.2,0.2) 9.538¢—002 6.652¢—004 1.478e—006 1.234¢—009 4.696e—013 2.220e—016
(0.3,0.3) 1.300e—001 9.398e—004 2.103e—006 1.764e—009 6.723e—013 5.551e—016
(0.4,0.4) 1.553¢—001 1.168¢e—003 2.635¢—006 2.220e—009 8.495¢—013 0
(0.5,0.5) 1.705¢e—001 1.347¢e—003 3.065¢—006 2.595e—009 9.965¢—013 2.220e—016
(0.6,0.6) 1.741e—001 1.468¢—003 3.385¢—006 2.882¢—009 1.110e—012 4.440e—016
(0.7,0.7) 1.639¢—001 1.502¢—003 3.560e—006 3.070e—009 1.190e—012 4.440e—016
(0.80.8) 1.369¢—001 1.372¢—003 3.423¢—006 3.061e—009 1.214¢e—012 8.881e—016
(0.9,0.9) 8.971e—002 8.860e—004 2.237e—006 2.145¢—009 9.225¢—013 2.220e—016
(1.0,1.0) 1.900e—002 3.745¢—004 2.650e—006 3.812¢—009 2.076e—012 1.554e—015
Error History eN(x,t)=u(x,t)—uN(x,t) of the Numerical Example for N=12
x 107

0 0
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Error history ey(x, #)(= u(x, t) — uy(x, t)) of numerical example for N = 12.

Error History eN(x,t)=u(x,t)—uN(x,t) of the Numerical Example for N=16
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Error history ey(x, t)(= u(x, t) — uy(x, t)) of numerical example for N = 16.
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restarted mode. This means that we have to restart the algo-
rithm every k inner iterations, where £ is a fixed integer. The
restarted Global GMRES algorithm for solving the linear
matrix Eq. (17), denoted by GIGMRES(k) and summarized
as follows: (we note that 7, is the last component of the
vector g, = || Rol|Qxer).

Algorithm 2. Global GMRES(k) algorithm for matrix equa-
tion U+ >} 4,UB; = C.

1. Choose ?o, a tolerange ¢ and itr = 0, and compute
Ry=C—Uy— Yt 4,UyB

2. Compute 0 = ||Ro||z, and ¥V} = Ry/0

3. Construct the F-orthonormal basis Vi, V>, ..., Vi by modified
global Arnoldi algorithm

4. Determine y; as solution of the least square problem:
min},ew Hﬁel - Hkyﬂz

5. Compute Uy = Ug + Vi (3 ® In+1)

6. Compute Ry =y Vir1(QFfexr1 ® Inp1), and || Ri | =
7.1 || Re]|p < & Stop

8. Uy = Uk, Ry = Ry, itr =itr + 1, go to 2.

Vi1l

3. Numerical experiments

In this part of paper, a numerical example is provided to show
the effectiveness of the presented method. In this example, the
associated Sylvester matrix equations are solved by using
Global GMRES(10) algorithm. It should be noted that this
algorithm is written in MATLAB 7:12:0 software with the
Digits environment variable assigned to be 20 to determine
the unknown matrix U and hence the approximated solution
X7(x)UX(r). All calculations are run on a Pentium 4 PC lap-
top with 2 GHz of CPU and 2 GB of RAM. The proposed
scheme obtain high order accuracy for dealing with the men-
tioned PDEs which are enough smooth. The readers can see
the efficiency of the proposed method from the provided fig-
ures and table in the following example.

3.1. Numerical example

We consider the PDE (1) together with the initial conditions
(2) and (3) with the assumptions

Sf(x) = sin(nx) + cos(nx),

K(x,t) = (n* — 1)e”"(sin(nx) + cos(nx)),
p(x) = 2sin(mx),

Y(x) = — cos(nx),

which has the exact solution u(x, ) = e~'(sin(nx) + cos(nx)).
For solving this problem, we use different values of N such
as 6, 10, 12, 14, 16, 18, 22 and 26 and obtain the numerical
solution uy(x,7) = X7 (x) UX(z). It should be mentioned that,
the tolerance in all of these values of N for solving the associ-
ated generalized Sylvester equation via GMRES(10) is chosen
to be 107'°. Moreover, the initial matrix is taken to be the zero
matrix. The numerical results are provided in Table 1 and
Figs. 1 and 2. These results confirm the efficiency of the pro-
posed idea.

4. Conclusions and future works

Operational matrices of differentiation and integration
together with the completeness of monomials basis have been
utilized to numerically solve a class of one-dimensional para-
bolic partial differential equations (PDEs) by a new frame-
work. The proposed approach reduces the main problem to
the generalized linear Sylvester matrix equations. By using
the idea of global GMRES(10) method, an iterative algorithm
is proposed to solve the obtained Sylvester matrix equations. A
numerical example has illustrated to show the efficiency and
applicably of the presented method. In our future research
works, we will solve two-dimensional equations with nonlocal
boundary conditions.
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