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1. Introduction

Chiral perturbation theory (ChPT) is a well-established low-
energy effective field theory (EFT) of quantum chromodynamics 
in the vacuum sector [1,2]. The extension of this method to also 
include heavy degrees of freedom beyond the Goldstone bosons 
is a non-trivial task, which requires both the construction of the 
relevant most general Lagrangian and a suitable renormalization 
procedure, resulting in a self-consistent expansion scheme for ob-
servables. While for the nucleon and the �(1232) resonance the 
problem of a self-consistent momentum expansion was solved us-
ing various approaches (see, e.g., Refs. [3,4] for a review), the treat-
ment of the ρ meson is more complicated. This is mainly due 
to the fact that the ρ meson decays into two pions, with van-
ishing masses in the chiral limit. As a consequence of this decay 
mode, loop diagrams, when evaluated at energies of the order of 
the ρ-meson mass, develop large power-counting-violating imagi-
nary parts. These parts cannot be absorbed in the redefinition of 
the parameters of the Lagrangian, as long as the usual renormal-
ization procedure is used. Despite this feature, the heavy-particle 
approach was considered in Refs. [5–9], treating the vector mesons 
as heavy static matter fields.

A self-consistent solution to the power-counting problem for 
chiral EFT with explicit vector-meson degrees of freedom is pro-
vided by the complex-mass scheme (CMS) [10–16], which is an 
extension of the on-mass-shell renormalization scheme to unstable 
particles. As applications of this approach in chiral EFT with heavy 
degrees of freedom, the masses and widths of the ρ meson and 
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the Roper resonance were discussed in Refs. [17,18], respectively, 
as well as electromagnetic properties in Refs. [19–21]. Different ap-
proaches to the inclusion of spin-1 fields have been discussed in, 
for example, Refs. [22–26].

In the present work, we consider the vector form factor of 
the pion in the time-like region up to q2 ∼ 1 GeV2 in chiral EFT 
with vector mesons as dynamical degrees of freedom using the 
CMS. Historically, the existence of a neutral vector meson with 
isospin zero — nowadays called the ω meson — was predicted 
by Nambu [27] to explain the electromagnetic structure of the 
nucleon. An isoscalar piece was needed to compensate the con-
tribution to the mean square charge radii originating from the 
pion cloud. Shortly afterwards, Frazer and Fulco [28] realized that, 
within a dispersion-theoretical treatment of the form factors, an 
isovector resonance would explain some features of the isovec-
tor electromagnetic form factors of the nucleon. The concept of 
the ρ-meson dominance model of the pion form factor was es-
tablished by Gell-Mann and Zachariasen [29]. For an overview of 
the vector-meson dominance hypothesis, see Refs. [30,31]. In re-
cent years, the pion vector form factor has attracted considerable 
interest, in particular because of its impact on the determination of 
the hadronic contribution to the anomalous magnetic moment of 
the muon [32]. From the theoretical side, numerous descriptions of 
the pion vector form factor exist. For example, in Ref. [33–35] this 
quantity has been evaluated beyond the one-loop order in ChPT 
and in Refs. [36,37] the pion vector form factor has been studied 
in the space-like region within lattice QCD and ChPT, while a new 
approach to the parametrization of the pion vector form factor has 
been presented in Ref. [38].

In this work, we fit the parameters of the effective theory to 
the τ decay and describe the pion form factor data. However, 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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to describe the data from e+e− → π+π− process we need to take 
into account the isospin symmetry breaking. This is done by in-
cluding the ρ0–ω–γ mixing.

2. Lagrangian

To begin with, we specify the Lagrangian of pions (πa) and ρ
mesons (ρμ

a ) relevant for the calculation of the vector form factor 
of the pion [17,39]:

L = F 2

4
Tr

[
DμU

(
DμU

)†] + F 2M2

4
Tr

(
U † + U

)

+ i
l6
2

Tr
[

f Rμν DμU
(

DνU
)† + f Lμν

(
DμU

)†
DνU

]

− 1

2
Tr

(
ρμνρ

μν
) +

[
M2

ρ + cxM2 Tr(U † + U )

4

]

× Tr

[(
ρμ − iΓμ

g

)(
ρμ − iΓ μ

g

)]

+ idx Tr
[
ρμνΓμν

] − f V√
2

Tr
{
ρμν f μν

+
} + · · · , (1)

where the individual elements are defined as

U = u2 = exp

(
iτaπa

F

)
,

DμU = ∂μU − ivμU + iU vμ,

f Rμν = f Lμν = ∂μvν − ∂ν vμ,

ρμ = τaρaμ

2
,

ρμν = ∂μρν − ∂νρμ − ig[ρμ,ρν ],
Γμ = 1

2

[
u†∂μu + u∂μu† − i

(
u† vμu + uvμu†)],

Γμν = ∂μΓν − ∂νΓμ + [Γμ,Γν ],
f+μν = u(∂μvν − ∂ν vμ)u† + u†(∂μvν − ∂ν vμ)u. (2)

In Eq. (1), the ellipses stand for terms containing more fields and 
higher orders of derivatives. In fact, at the beginning all the fields 
and parameters of Eqs. (1) and (2) should be regarded as bare 
quantities which are usually indicated by a subscript 0. However, 
to increase the readability of the expressions we have omitted this 
index. The external electromagnetic four-vector potential Aμ en-
ters into vμ = −eAμτ3/2 [e2/(4π) ≈ 1/137, e > 0]. In Eq. (1), 
F denotes the pion-decay constant in the chiral limit, M2 is the 
lowest-order expression for the squared pion mass, Mρ is the 
ρ-meson mass in the chiral limit, g , cx , dx , and f V are cou-
pling constants. Demanding that the dimensionless and dimension-
ful couplings are independent, the consistency condition for the 
ρππ coupling [40] leads to the Kawarabayashi–Suzuki–Riazuddin–
Fayyazuddin (KSRF) relation [41,42],

M2
ρ = 2g2 F 2. (3)

To carry out the renormalization, we use the CMS, which 
we implement by the following substitution in the effective La-
grangian:

ρ
μ
0 = √

Zρρμ, Zρ = 1 + δZρ,

πa
0 = √

Zππa, Zπ = 1 + δZπ ,

Mρ0 = MR + δMR ,

cx0(1 + δZρ) = cx + δcx,
g0 = g + δg,

F0 = F + δF ,

dx0 = dx + δdx,

f V 0 = f V + δ f V . (4)

We choose the renormalized mass of the vector meson as the 
pole of the propagator in the chiral limit, M2

R = (Mρ − iΓ/2)2. The 
loop expansions of δZρ , δZπ , δMR , δcx , δg , δF , δdx , and δ f V gen-
erate counter terms. We include M2

R in the ρ-meson propagator 
and treat the counter terms perturbatively. The finite parts of the 
counter terms are fixed such that the loop diagrams with external 
vector mesons are subtracted at their complex “on-shell” points in 
the chiral limit, specified by the pole position of the vector meson 
propagator.

The power-counting rules turn out to be more involved than 
in standard ChPT in the vacuum sector. We use the rules speci-
fied in Ref. [17]. To determine the chiral order of a given diagram, 
we need to consider all possible flows of the external momenta 
through the internal lines of the diagram. Counting the powers as-
signed to the propagators and vertices discussed below, we then 
determine the chiral order for each flow of external momenta. The 
chiral order of the diagram is defined as the smallest amongst 
these orders.

Let q generically denote small quantities with the dimension 
of a mass such as the pion mass, which we count as O(q1). The 
property small is with reference to a scale, which we take to be 
the mass of the ρ meson (∼770 MeV), and which we count as 
O(q0). The width of the ρ meson counts as O(q1). Pion propaga-
tors that do not carry large external momenta count as O(q−2), 
whereas pion propagators carrying large momenta count as O(q0). 
In contrast, a vector meson propagator not carrying a large ex-
ternal momentum counts as O(q0), and as O(q−1) if it carries 
a large external momentum. Vertices generated by the effective 
Lagrangian of Goldstone bosons L(n)

π count as O(qn) if no large 
external momenta are flowing through them and as O(q0) other-
wise. Finally, a loop integration in n dimensions counts as O(qn).

3. Pion form factor

At one-loop order, the pion form factor is given by the following 
expression:

F
(
q2) = F tree(1 + δZπ ) + F1loop, (5)

where F tree and F1loop are the contributions of the tree and one-
loop diagrams, respectively, and 1 + δZπ is the wave function 
renormalization constant of the pion at one-loop order. The ex-
plicit expression for δZπ is given in Appendix A.

The tree-level contributions to the electromagnetic form factor 
of the pion are shown in diagrams t1 and t2 of Fig. 1. The corre-
sponding expressions are given by

Dt1 = (cxM2
π + M2

R − gdxq2)(cxM2
π + M2

R − g Dxq2)

2F 2
π g2(cxM2

π + M2
R − q2)

, (6)

Dt2 = 2F 2
π g2 + 2q2l6 g2 − cxM2

π − M2
R

2F 2
π g2

, (7)

where Dx = dx − √
2 f V .

The one-loop contributions to the pion form factor relevant for 
this work are shown in diagrams l1–l11 in Fig. 1. The correspond-
ing expressions are given in Appendix A.
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Fig. 1. Tree and one-loop diagrams contributing to the electromagnetic form factor 
of the pion. The dashed, curly, and wiggly lines correspond to pions, vector mesons, 
and the vector source, respectively.

4. ρ0–ω–γ mixing

As emphasized in Ref. [43], the ρ0–ω–γ mixing plays an im-
portant role in describing the pion form factor extracted from 
e+e− → π+π− data. Within the formalism of QFT, the above mix-
ing is taken into account by solving a system of coupled equa-
tions for the dressed propagators. We parameterize the proper 
self-energy contributions as

iΠμν
xy (p) = i

[
Π1,xy

(
p2)gμν + Π2,xy

(
p2)pμpν

]
, (8)

where x and y stand for either ρ , ω or γ , and solve the system 
of equations for the dressed propagators. The dressed propagator 
is given by the solution to the equation

Sαβ
xy (p) = Sαβ

0,xy(p) − Sαγ
0,xv(p)Π

γ δ
v w(p)Sδβ

wy(p), (9)

where the matrix containing the undressed propagators is given by

Sαβ

0 (p) =
⎛
⎜⎝

Sαβ

0,ρ(p) 0 0

0 Sαβ

0,ω(p) 0

0 0 Sαβ

0,γ (p)

⎞
⎟⎠ , (10)

and

Sαβ

0,ρ/ω(p) = − 1

p2 − z2
ρ/ω

(
gαβ − pα pβ

z2
ρ/ω

)
, (11)

Sαβ

0,γ (p) = − 1

p2

(
gαβ − pα pβ

p2

)
, (12)

where z2
ρ/ω denotes the position of the pole of the dressed ρ-

or ω-meson propagator.1 Neglecting the γ –ω mixing, the dressed 
propagator of the ρ0 meson has the form

Sαβ

ρ0 (p) := Sαβ
ρρ (p) = −[

gαβ D1
ρρ

(
p2) + pα pβ D2

ρρ

(
p2)], (13)

1 In the complex-mass scheme, the undressed propagator involves, strictly speak-
ing, the position of the pole of the dressed propagator in the chiral limit. For the 
present calculation, the difference between using the physical position of the pole 
instead of its chiral limit results in higher-order terms.
where

D1
ρρ

(
p2) = N(p2)

D(p2)
, (14)

with

N
(

p2) = −[
p2 − Π1,γ γ

(
p2)][p2 − z2

ω − Π1,ωω

(
p2)], (15)

D
(

p2) = −(
p2)3 + [

z2
ρ + z2

ω + Π1,γ γ

(
p2) + Π1,ρρ

(
p2)

+ Π1,ωω

(
p2)](p2)2 − {[

Π1,γ γ

(
p2) + Π1,ωω

(
p2)]z2

ρ

− Π2
1,ργ

(
p2) − Π2

1,ρω

(
p2) + z2

ω

[
z2
ρ + Π1,γ γ

(
p2)

+ Π1,ρρ

(
p2)] + Π1,ρρ

(
p2)Π1,ωω

(
p2)

+ Π1,γ γ

(
p2)[Π1,ρρ

(
p2) + Π1,ωω

(
p2)]}p2

− z2
ωΠ2

1,ργ

(
p2) − Π1,γ γ

(
p2)Π2

1,ρω

(
p2)

+ z2
ρ z2

ωΠ1,γ γ

(
p2) + z2

ωΠ1,γ γ

(
p2)Π1,ρρ

(
p2)

+ [
Π1,γ γ

(
p2)Π1,ρρ

(
p2) − Π2

1,ργ

(
p2)]Π1,ωω

(
p2)

+ z2
ρΠ1,γ γ

(
p2)Π1,ωω

(
p2). (16)

We do not give the explicit form of D2
ρρ(p2), because due to the 

current conservation it does not contribute to the calculation of 
the form factor of the pion.

In the following, the ρ0-ω-γ mixing is only taken into account 
at tree level. This amounts to putting Π1,xx(p2) to zero in Eqs. (15)
and (16), and keeping only Π1,ργ and Π1,ρω:

D1, tree
ρρ

(
p2)

= p2(p2 − z2
ω)

(p2)3 − (p2)2(z2
ρ + z2

ω) + p2[−Π2
1,ργ (p2) − Π2

1,ρω(p2) + z2
ωz2

ρ ] + z2
ωΠ2

1,ργ (p2)
.

For a transverse self-energy, we define the functions Πργ and Πρω

by Π1,xy(p2) = −p2Π2,xy(p2) = p2Πxy(p2). In fact, at tree level 
the functions Πργ and Πρω are constants and we denote them 
as mixing parameters. We allow the renormalized mixing param-
eters to become complex, thus incorporating the contributions of 
the loop diagrams in the renormalization of the mixing parame-
ters. Finally, by substituting −D1, tree

ρρ (p2) for 1/(cxM2
π + M2

R − q2), 
in Eq. (6), we obtain the following expression for the tree-level di-
agrams:

1 + 1

2F 2
π g2

[
(z2

ω − q2)(z2
ρ − gdxq2)(z2

ρ − g Dxq2)

(q2)2(1 − Π2
ργ − Π2

ρω) − q2[z2
ρ + z2

ω(1 − Π2
ργ )] + z2

ρ z2
ω

+ 2g2l6q2 − z2
ρ

]
.

5. Fits

We perform simultaneous fits of the coupling constants and the 
complex mixing parameters Πργ and Πρω to the τ decay [44]
and e+e− scattering data [45], where we use a range in q2 up 
to 1.125 GeV2 and 0.845 GeV2, respectively. For the pion mass 
and the pion decay constant we use Mπ = 0.1395 GeV and Fπ =
0.0922 GeV. Moreover, we make use of the KSRF relation [Eq. (3)] 
to eliminate g , and set Dx = 0 as suggested in Ref. [46]. The loop 
diagrams are subtracted at the physical pion mass, instead of being 
subtracted at the chiral limit. This eliminates numerical instabil-
ities and the difference is of higher order for the calculation at 
hand. The coupling g always appears quadratically except for the 
combination gdx and g Dx in the tree-level contribution. Our result 
for dx corresponds to a positive value of g .
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Fig. 2. Fits to the pion form factor data extracted from τ decay [44] (left) and e+e− scattering [45] (right). The systematic and statistical errors were added in quadrature for 
the τ decay data. In the first (second) row the ω mass is fixed (floating).

Table 1
Fit parameters for the simultaneous fits of the pion vector form factors. Data is taken from [44,45].

Fit dx × 10−2 l6 × 10−4 Πρω × 10−2 Πργ × 10−2 Mρ [GeV] Γ [GeV] Mω [GeV] χ2
red(dof)

1 −2.98(4) 3.4(4) 0.90(3) − i1.38(3) −6.7(5) − i1.6(4) 0.7621(3) 0.1421(5) – 1.54(88)

2 −2.95(4) 3.4(4) 1.05(4) − i1.34(3) −6.6(6) − i1.4(4) 0.7622(3) 0.1419(5) 0.7838(2) 1.32(88)
In the first fit, we fix zω = (0.7827 − i0.0085/2) GeV. In the 
second fit, we allow for a floating ω mass, resulting in an im-
proved description with only a modest change of 1.1 MeV in the 
ω mass. In Table 1, we show the results for the fit parameters ob-
tained for these two fits. The fitted values for the ρ mass and the 
width are consistent with earlier determinations of the ρ-meson 
pole parameters, e.g. Refs. [47–53]. Inserting the fit results for the 
ρ mass into Eq. (3), we obtain g = 5.85. Making use of universal-
ity, i.e., g = gρππ [40], such a value is in good agreement with 
gρππ = 5.92 ± 0.12 extracted from a recent analysis of pion–pion 
scattering phase shifts [53]. The results for the pion form fac-
tor are plotted in Fig. 2 together with the experimental data and 
the form factor at tree order for the same values of the parame-
ters.

The expansion of the pion form factor at small momentum 
transfer reads

F
(
q2) = 1 + 1

6

〈
r2
π

〉
q2 + . . . , (17)

where rπ is the electric charge radius of the pion. For the two fits 
in Table 1 we obtain
〈
r2
π

〉Fit1 = 0.464(3) fm2, (18)〈
r2
π

〉Fit2 = 0.463(3) fm2, (19)

where only fit errors are taken into account. These values are com-
parable with previous determinations, cf. Ref. [54] and references 
therein.

6. Conclusions

We have calculated the vector form factor of the pion in the 
framework of chiral EFT with vector mesons included as dynamical 
degrees of freedom. To renormalize the loop diagrams, we applied 
the CMS. Within this renormalization scheme, the given EFT has 
a consistent power counting. By fitting the available parameters 
of the Lagrangian, a satisfactory description of the data extracted 
from τ− → ντπ

−π0 decay has been obtained. On the other hand, 
to achieve a reasonable accuracy in describing the form factor ex-
tracted from e+e− → π+π− data, it is necessary to incorporate 
the ρ0–ω–γ mixing. We included this mixing only at the tree 
level. While a satisfactory fit to the data has been obtained by 
fitting the mixing parameters, more work needs to be done to 
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incorporate the isospin-symmetry-breaking effects in a systematic 
fashion. This is subject of a future project. From our results we 
conclude that a chiral EFT with explicitly incorporated resonance 
states is a promising candidate for a successful phenomenological 
description of data beyond the low-energy region of ChPT.
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Appendix A

The loop functions A0, B0, and C0 contributing to the pion form 
factor diagrams are defined as follows:

A0
(
m2) = (2π)4−n

iπ2

∫
dnk

k2 − m2 + i0+ ,

B0
(

p2,m2
1,m2

2

)

= (2π)4−n

iπ2

∫
dnk

[k2 − m2
1 + i0+][(p + k)2 − m2

2 + i0+] ,

C0
(

p2
1, (p2 − p1)

2, p2
2,m2

1,m2
2,m2

3

)

= (2π)4−n

iπ2

∫
dnk

[k2 − m2
1 + i0+][(p1 + k)2 − m2

2 + i0+][(p2 + k)2 − m2
3 + i0+] ,

where n is the space–time dimension.
To one-loop order, the wave function renormalization constant 

of the pion, 1 + δZπ , is given by

δZπ = 1

96F 4
π g2π2

(
3(M2

R + cxM2
π )2

M2
R M2

π

{
M2

R

[−M2
π + A0

(
M2

π

)

+ (
M2

R − M2
π

)
B0

(
M2

π , M2
R , M2

π

)]
− (

M2
R − 3M2

π

)
A0

(
M2

R

)}

+ [
3
(
M2

R + cxM2
π

) − 4F 2
π g2]A0

(
M2

π

))
. (20)

The contributions of the loop diagrams to the form factor read

Dl1 = 5(8F 2
π g2 − 7M2

R)A0(M2
π )

384F 4
π g2π2

,

Dl2+l3 = 3M4
R [A0(M2

π ) − A0(M2
R) + (M2

R − 4M2
π )B0(M2

π , M2
R , M2

π )]
128F 4

π g2 M2
ππ2

,

Dl4 = − M6
R

128F 6
π g4M2

ππ2(M2
R − q2)(q2 − 4M2

π )

× (
M2

R

{(
M2

R − 4M2
π + 2q2)M2

π

× [
2B0

(
q2, M2

π , M2
π

) + (
2M2

R − 4M2
π + q2)

× C0
(
M2

π , M2
π ,q2, M2

π , M2
R , M2

π

)]
+ (

4M2
π − q2)[A0

(
M2

R

) − A0
(
M2

π

)]
+ [

16M4
π − 6q2M2

π + M2
R

(
q2 − 6M2

π

)]
× B0

(
M2

π , M2
R , M2

π

)} + (
M2

πq2 − 4M4
π

)
A0

(
M2

R

))
,

Dl5 = M2
R

2304F 4
π g2M2

ππ2(M2
R − q2)(q2 − 4M2

π )

× [
18M4

R

(
4M2

π − q2)A0
(
M2

π

)

+ 18M4
R

[−16M4
π + (

8M2
R + 6q2)M2

π − M2
Rq2]

× B0
(
M2

π , M2
π , M2

R

)
− 18M2

π M4
R

(−2M2
R + 8M2

π − q2)(2M2
R + q2)

× C0
(
M2

π , M2
π ,q2, M2

R , M2
π , M2

R

)
− 2M2

π

(
4M2

π − q2)(12M4
R − 8q2M2

R + (
q2)2)

+ 6
(
4M2

π − q2)[M2
π

(
10M2

R + q2) − 3M4
R

]
A0

(
M2

R

)
− 3M2

π

[
24M6

R + 28q2M4
R − 18

(
q2)2

M2
R − (

q2)3

+ M2
π

(−64M4
R + 72q2M2

R + 4
(
q2)2)]

× B0
(
q2, M2

R , M2
R

)]
,

Dl6 = 5M4
R A0(M2

π )

384F 4
π g2π2(M2

R − q2)
,

Dl7 = M4
R (3M2

R − 4F 2
π g2)[12M2

π − 2q2 + 6A0(M2
π ) + 3(4M2

π − q2)B0(q2, M2
π , M2

π )]
2304F 6

π g4π2(M2
R − q2)

,

Dl8 = M4
R A0(M2

π )

32F 4
π g2π2(M2

R − q2)
,

Dl9 = −3M4
R [5M2

R − 6A0(M2
R)]

128F 2
ππ2(M2

R − q2)2
,

Dl10 = M8
R [2(q2 − 6M2

π ) − 6A0(M2
π ) + 3(q2 − 4M2

π )B0(q2, M2
π , M2

π )]
1152F 6

π g4π2(M2
R − q2)2

,

Dl11 = − 1

1152F 2
ππ2(M2

R − q2)2

[
9M6

R − 48q2M4
R + 20

(
q2)2

M2
R

− 2
(
q2)3 + 6

(
3M4

R + 8q2M2
R + (

q2)2)
A0

(
M2

R

)
+ 3

(
48M6

R + 68q2M4
R − 16

(
q2)2

M2
R − (

q2)3)
× B0

(
q2, M2

R , M2
R

)]
. (21)
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