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Abstract

We attempt to describe soft hadron interactions in the framework of saturation models, one based upon the Balitsky–
Kovchegov non-linear equation and another one due to Golec-Biernat and Wüsthoff. Forpp, Kp, andπp scattering the
relevant hadronic wave functions are formulated, and total, elastic cross-sections, and the forward elastic slope are calculated
and compared to experimental data. The saturation mechanism leads to reasonable reproduction of the data for the quantities
analyzed, except for the forward elastic slope, where the predicted increase with energy is too moderate.
 2003 Published by Elsevier Science B.V.

1. Introduction

Understanding the high energy behaviour of to-
tal hadronic cross-sections within the framework of
QCD is one of the intriguing problems of high en-
ergy physics. The main difficulty lies in the fact that
presently most applications of QCD are based on per-
turbation theory which is only applicable for “hard”
processes (i.e., it needs a “hard” scale), while hadronic
processes near the forward direction are “soft” and
non-perturbative by definition. On the other hand, the
past few years have seen much activity in the success-
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ful application of QCD to DIS processes. For values
of Q2 � 2 GeV2, the use of perturbative QCD seems
to be trustworthy. For very smallQ2 one can rely on
Regge theory (e.g., [1]) which provides a reasonable
description of the data. The construction of a very
promising bridge between these two theoretical frame-
works has been pioneered by the concept of high par-
ton densities and saturation. Models based upon this
idea have been successful in describing the DIS cross-
section for all values ofQ2 and energiesx � 0.01.
[2–4].

The goal of this Letter is an attempt to apply the
dipole picture and the physics of high parton densi-
ties to soft hadronic cross-sections. We want to ex-
plore to what extent the high energy hadronic asymp-
totic behaviour can be explained by the saturation hy-
pothesis, which—so far—has been tested in the con-
text of deep inelastic scattering at smallx and inγ –γ
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scattering. The idea of saturation concerns the interac-
tions between partons from different cascades, which
in the linear evolution equations (DGLAP and BFKL)
are not included, and which become more important
with increasing energy. The parton saturation phenom-
enon then introduces a characteristic momentum scale
Qs(x), which is a measure of the density of the sat-
urated gluons. It grows rapidly with energy, and it is
proportional to 1

xλ
[5–7] with λ � 0.2. Parton satura-

tion effects are expected to set in at low values ofQ2

andx, where the parton densities are sufficiently large.
At this stage we do not discern how to relate the

dipole picture to the additive quark model which has
been successful in explaining and relating different
hadronic total cross-sections. Instead, we consider
this study as being exploratory, and we will not
attempt to draw any conclusions concerning this rather
fundamental issue.

The basis of our endevour is the successful fit [4]
to the F2 structure function data for all values of
Q2 and x � 0.01, within the framework of QCD,
achieved by using an approximate solution to the
Balitsky–Kovchegov (BK) [8] non-linear evolution
equation, and adding a correcting function to improve
the DGLAP behaviour at largeQ2. Although soft
physics is not explicitly included, agreement with
experiment is found for all parameters associated
with F2, in particular for the logarithmic slopeλ ≡
∂ lnF2/∂(ln1/x), a value ofλ≈ 0.08 was obtained at
very low x andQ2 well below 1 GeV2, i.e., in the
saturation region. This agrees with the value of the
intercept of the “soft” pomeron, associated with the
Donnachie–Landshoff (DL) model [9].

In this Letter we start from the hypothesis that
also in hadron–hadronscattering at high energies color
dipoles might be the correct degrees of freedom, even
when large transverse distances come into play. We
start from the well known expression for DIS cross-
sections

σ
γ ∗p
T ,L

(
x,Q2)

(1.1)

=
∫
d2r⊥ dz

∣∣ψT,L(Q, r⊥, z)∣∣2σdipole(x, r⊥),

whereQ2 denotes the virtual photon’s four momen-
tum squared,ψT,L its wave function,W2 the energy
squared in the photon–proton system andz, (1−z) the
momentum fraction taken by the quark (antiquark) re-

spectively.r⊥ is the transverse distance between theq

and q̄, and x = Q2

(W2+Q2)
. There are two main ele-

ments in Eq. (1.1): (a) the wave function of the vir-
tual photon, and (b) the dipole cross-section, which
describes the interaction of theqq̄ with the proton tar-
get, through the exchange of a gluon ladder. In the DIS
case the wave function for the virtual photon is well
known, whereas for the hadron case this is not so. We
discuss the question of the hadronic wave functions in
Section 3.

It would be naive for us to expect that our treat-
ment is able to yield the complete hadronic cross-
section. We have, at least, two reasons for this state-
ment: first, at large impact parameter we have to in-
clude the non-perturbative contributions even for the
so-called “hard” processes [10–12] since this behav-
iour is defined by the spectrum of hadrons [13]; sec-
ond, at present the impact parameter dependence of
the interaction is only treated approximately. In [2],
the dipole cross-section has a built-in sharp cutoff inb
at the value of the proton radius; in other cases [4] the
equation is first solved forb = 0, and then an ansatz
is made regarding factorization and the assumed b de-
pendence of the dipole cross-section. For hadronic in-
teractions the impact parameter dependence is known
to be important, and neither a sharp (in particular: en-
ergy independent cutoff) nor the method of calculat-
ing saturation atb= 0, and assuming that theb-shape
does not change with energy, is, at best, a very rough
approximation to the physical situation.

The content of the Letter is as follows. In Sec-
tion 2 we discuss the numerical solution of the BK
equation [8], and the changes that must be made to
adapt this for the calculation of hadron–hadron cross-
sections. In Section 3 we present the details of our cal-
culation. Section 4 is devoted to the overall picture,
including comparison of the model predictions with
experimental data. Section 5 contains a discussion of
our results and our conclusions. In Appendix A we ex-
plain why the results for the forward elastic slope are
so shallow.

2. The master equation

In [4] an approximate solution to the BK non-linear
evolution equation [8] was obtained using numerical
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Fig. 1.Ñ(b= 0) versusτ = r⊥Qs(x).

techniques. Below we briefly review the method used
and the main results obtained. For more details of the
method of solution we refer to [4].

The solution of the BK equation which we denote
by Ñ , takes into account the collective phenomena of
high parton density QCD. Starting from an initial con-
dition which contains free parameters we have numeri-
cally solved the non-linear evolution equation, restrict-
ing ourselves to the pointb = 0. The parameters have
been fitted to theF2 data [4], and the resulting approx-
imate solution is displayed in Fig. 1.

Theb-dependence of the solution is restored using
the ansatz:

(2.1)Ñ(r⊥, x;b)=
(
1− e−κ(x,r⊥)S(b)),

whereκ is related to theb = 0 solution

(2.2)κ(x, r⊥)= − ln
(
1− Ñ(r⊥, x, b= 0)

)
.

The Gaussian form for the profile function in impact
parameter space was assumed, i.e.,

(2.3)S(b⊥)= 1

πR2
proton

exp

(
− b2⊥
R2

proton

)
,

whereR2
proton= 3.1 GeV−2 refers to the radius of the

target proton. The dipole–proton cross-section (from
Eq. (2.4) of [4]) is given by:

(2.4)σdipole(r⊥, x)= 2
∫
d2b⊥ Ñ(r⊥, b⊥, x).

Another popular saturation model was proposed
by Golec-Biernat and Wüstoff [2] which we will
denote by GBW. The following dipole cross-section

is assumed to be:

(2.5)σ̂ (r⊥, x)dipole= σ0

[
1− exp

(
− r2⊥

4R2
0

)]

with R2
0(x)[GeV−2] = ( x

x0
)λ. The values of the para-

meters which were determined by fitting to DIS data
at HERA for x � 0.01, are:σ0 = 23 mb,λ = 0.29
and x0 = 3 × 10−4. The r⊥ dependence is taken as
Gaussian, which leads to a constant cross-sectionσ0
for larger⊥ (or smallQ2), i.e., for “soft” interactions.

The dipole cross-section of the GBW saturation
model andÑ are closely related. Both models include
the effects of gluon saturation, preserve unitarity, and
describe the physics associated with “long distances”.
WhereasÑ has some support from QCD,̂σdipole
of the GBW model has more the character of a
phenomenological model.

Unlike the GBW σ̂dipole, the dipole cross-section
obtained from the solution of the BK equation is
not saturated as a function ofx. This emanates from
the integration overb. With the assumed Gaussian
profile function it leads to a logarithmic growth with
decreasingx. The Froissart-like behaviourσdipole ∝
ln2(1/x) [13] is crucially dependent on the fact that the
large impact parameter behaviour of the dipole cross-
section is exponential, rather than Gaussian.

Starting from our dipole cross-sections we obtain
our master equation for the hadron–proton cross-
section

(2.6)σH–proton(x)=
∫
d2r⊥

∣∣ψH (r⊥)∣∣2σdipole(r⊥, x),

whereψH (r⊥) represents the wave function of the
hadron which scatters off the target proton. The form
taken forψH (r⊥) is discussed in the next section.

For both saturation models ((2.4) and (2.5)) the
energy dependence of the hadron–proton cross-section
enters only throughx-dependence of the dipole cross-
section, the latter being adjusted or constructed to
describe DIS data of theF2 structure function. The
way in which thex-dependence of the dipole cross-
section determines the energy dependence of the
hadron cross-sections is strongly influenced by theb-
slope. Note, however, that there is nox in hadron–
hadron collisions. In order to relatex to the energy
of the process we will need to introduce an additional
non-perturbative scale, denoted below asQ2

0.
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3. Details of calculation

3.1. Hadronic wave function

There is no established method for calculating
hadronic wave functions within the framework of
QCD. The Heidelberg group Dosch et al. [14] us-
ing the stochastic vacuum model, have calculated
hadronic cross-sections, after making an ansatz re-
garding the form of the hadronic wave functionψH (r).
We adopt their ansatz and utilize hadronic wave func-
tions of similar shape to those used in [14].

Based on experimental evidence of the flavour de-
pendence of hadronic cross-sections, which decrease
with increasing number of strange quarks, the authors
of [14] hypothesized that the cross-sections depend on
the sizes of the hadrons in the process.

For the hadron transverse wave function we take a
simple Gaussian form, the square of the wave function
is given by

(3.1)
∣∣ψM(r⊥)∣∣2 = 1

πS2
M

exp

(
− r

2⊥
S2
M

)
,

whereSM is a parameter related to the meson size.
We have usedSπ = 1.08 fm andSK = 0.95 fm. These
SM were found from experimental values for the elec-
tromagnetic radii, namely,Rπ = 0.66± 0.01 fm and
RK = 0.58± 0.04 fm [15]. For meson wavefunction

of the form (3.1)SM =
√

8
3RM .

The proton’s wave function squared is given by

(3.2)
∣∣ψp(r1⊥, r2⊥)

∣∣2 = 1

(πSp)2
exp

(
− r

2
1⊥ + r2

2⊥
S2
p

)
,

where Sp = 1.05 fm, which corresponds toRp =
0.862± 0.012 fm [15]. For proton wave function of

the form (3.2)Sp =
√

3
2Rp .

For meson–proton scattering, the meson is treated
as a quark–antiquark pair (i.e., a colour dipole), and
therefore the calculation follows that of DIS, i.e., the
interaction of a colour dipole with a proton target,
with the meson wave function replacing that of the
virtual photon. However, for the scattering of a baryon
projectile, we represent the baryon as constituted of
two colour dipoles, one dipole formed around two
quarks, and the second dipole from the center of
mass of these two quarks to the third quark in the
baryon. Generally speaking the parameterSp in (3.2)

can be different for these two dipoles. For example,
in the non-relativistic additive quark model (AQM)
we expectSp for the first dipole to be larger by the
factor 4/3 compared to the second dipole. In (3.2),
for simplicity, they are choosen to be identical. It will
be shown below that the hadron cross-sections are
mostly determined by the saturation domain where the
sensitivity to the wave function and, in particular, to
the choice ofSp is quite weak.

In AQM, the 2
3 ratio betweenπ–p andp–p cross-

sections is due to quark counting. In our model, at
very high energies when the dipole cross-section is
independent of the dipole size, the predicted ratio is1

2,
given by the number of dipoles in the pion relative to
those in the proton. In our approach the high energy
interaction is blind with respect to the flavours of
the interacting quarks, and the ratioσMptot /σ

pp
tot = 1/2,

seems to disagree with the data. Experimentally, at
an energy of

√
s = 20 GeV, σπptot /σ

pp
tot ≈ 0.6. We

expect the secondary Regge trajectories to give a
smaller contribution toK+p interaction, as there are
no resonances in thes channel of this reaction, the
same is also true for proton–proton scattering. The

predicted ratioσK
+p

tot /σ
pp
tot = 1/2 is in reasonably

good agreement with the experiment data.

3.2. Method of calculation

All the parameters inN(r⊥, b⊥, x)were taken from
the fit of

(3.3)F2
(
Q2, x

) = Q2

4π2αelem
σγ

∗p(Q2, x
)

made to the experimental DIS data, (see [4] for
details). In the DIS case the variablex is well defined
in terms ofQ2 and W2, in the hadronic case we
redefinex to be x = Q2

0/s, where s denotes the
energy squared in the center of mass system of the
hadrons, andQ2

0 is a parameter which we adjust
to be compatible with the data. The value ofQ2

0
is determined by the longitudinal part of the wave
function, for which at present we do not have a
reasonable model. In general we would expect the
scaleQ0 to increase with increasing hadron masses,
and thus vary from hadron to hadron. In this study
we will fit this parameter separately for each projectile
hadron.
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In the colour dipole picture (which is equivalent
to two gluon exchange), one can hopefully only
reproduce the asymptotic energy dependence, i.e.,
the pomeron contribution. At lower energies where
most of the data for meson baryon scattering is
available, there are also contributions from secondary
trajectories. The evaluation of these contributions is
beyond the scope of our model.

4. Comparison of our model predictions with data

Our model contains a parameterQ2
0, (which can

be considered as a scale factor) from the definition of

x = Q2
0

W2 , in analogy with the variable in DIS,x ≈ Q2

W2 .
The energy dependence of the hadronic cross-sections
can be adjusted by choosing a suitable value for
this variable. We found that the valueQ2

0 = 3.5 ×
10−3 GeV2, gives good agreement with the data for
σtot(K

+p). See Fig. 2(a). TheK+p channel was
chosen as it is exotic, having no resonances ins
channel and therefore by duality the secondary Regge
trajectory contributions are small. By replacing the
wave function of theK+ meson in Eq. (3.1) by that
of the π meson, we obtainσtot for the π−p. We
display our prediction and the data in Fig. 2(a). We
have chosen to showσtot(π

−p) compared to data,
as there are more data in this channel than in the
π+p channel. The cross-sectionsσπ+p and σπ−p
only differ due to the contribution of the secondary
trajectories. The parameters used forσtot(π

−p) are
Q2

0 = 1 × 10−3 GeV2, and a Regge contribution of
27× ( s

s0
)−0.45 mb (s0 = 1 GeV2) which has a smaller

residue than that suggested by the DL model.
We note that the predicted energy dependence for

σtot(π
−p) is more moderate than the data, and at

an energy ofplab = 400 GeV, we underestimate the
experimental data by approximately 7%.

We compare our results with those of the GBW
model, by replacingσdipole in Eq. (2.6), by the GBW
dipole σ̂ (x, r⊥)dipole given in Eq. (2.5). We wish to
stress that the GBW saturation model was formulated
for, and applied to DIS reactions [2]. The responsibil-
ity of extending the model to hadronic interactions is
ours. The GBW model does not contain any explicit
b-dependence, but one can consider the constant cross-
section to be the result after integration over the im-

(a)

(b)

Fig. 2. (a)K+p andπ−p total cross-sections. The full line is the
prediction of our model and the dotted line using the Golec-Biernat
Wüsthoff dipole. (b)p̄p andpp total cross-sections. The full lines
are the model predictions with a Gaussian profile. The dashed line
is the result of using aK1 profile, and the dotted line using the
Golec-Biernat Wüsthoff dipole. Data compilation from Ref. [16].

pact parameter (with a sharp impact parameter cutoff
put into the exponent in (2.5)). It is clear that at as-
ymptotic energies (where one can neglect the contribu-
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tion of secondary trajectories), the GBW cross-section
for σtot(Mp) � 23 mb, andσtot(Bp) � 46 mb, as we
have one (two) dipoles interacting with the proton tar-
get for Mp (Bp) scattering. In Fig. 2(a) we show
the result (dotted line) obtained using the GBW form
for the dipole Eq. (2.5) for theK+p channel, with
Q

2(GBW)
0 = 0.27 GeV2, and using the same form of

the hadronic wave function as discussed in Section 3.1.
For π−p channel we used the almost maximal pos-
sible dipole cross-section, putQ2

0 = 5 × 10−4 GeV2,
and add a secondary trajectory with 11× ( s

s0
)−0.45 mb.

Due to the argument presented above, the GBW model
cannot be adjusted to these data at all.

Forσtot(p̄p) (see Fig. 2(b)) the energy dependence
predicted by the model is not as steep as the exper-
imental data, yielding a value forσtot(p̄p) ≈ 65 mb
(instead of 72 mb) at Tevatron energies. I.e., a deficit
of 10%, however, this is over a much wider energy
range than in theπ−p case. Forσtot(pp) (where data
is only available over a narrower range of energy) we
achieve a very good reproduction of the experimental
data, this is displayed in Fig. 2(b). For thepp andpp̄
channels we takeQ2

0 = 0.03 GeV2, and following [9]
have a Regge contribution of 98.4× ( s

s0
)−0.45 mb for

σtot(p̄p) and 56× ( s
s0
)−0.45 mb forσtot(pp).

To get a handle on the theoretical uncertainties of
our treatment we have also calculatedσtot(p̄p), using
a profile function

(4.1)S(b)= 2

πR2
proton

( √
8b

Rproton

)
K1

( √
8b

Rproton

)
,

which corresponds to the Fourier transform of the
“dipole” form factor in the momentum transfer rep-
resentation:

(4.2)F“dipole” (t)=
(

1− R2
protont

8

)−2

.

The result of our calculations with the “dipole” form
factor for σtot(p̄p) is shown by the dashed line
in Fig. 2(b). For this calculation we tookQ2

0 =
0.06 GeV2. For the comparison with theF2 data [4], a
value ofR2

proton= 4.46 GeV−2 was used.
We repeat the same procedure for thep̄p channel

for the GBW model as we did forσtot(K
+p) explained

above, now with parametersQ2(GBW)
0 = 0.7 GeV2,

and a Regge contribution of 20× ( s
s0
)−0.45 mb,

(adjusted to the data), and taking the same form for

Fig. 3. p̄p forward elastic slope. Data compilation from Ref. [16].

the baryon wave function. The results are shown as a
dotted line in Fig. 2(b).

We also calculate the forward slope of the elastic
cross-section, i.e.,B, which is defined as

dσ

dt
= dσ

dt

∣∣∣∣
t=0
e−Bt

and is related to the sizes of the particles participating
in the reaction.B = B0 +B ′ where

B ′ =
∫
d2r⊥ |ψH(r⊥)|2b2⊥N(r⊥, b⊥, x) db2⊥

σtot

(4.3)= 1

2

〈
b2⊥

〉
.

Fig. 3 displaysB = B0 + B ′ with B0 = 7.8 GeV−2.
B0 is related to the formfactors of the hadrons. Its
value was chosen with an eye on the data, and is close
to that used by Schuler and Sjöstrand [17].

The results we obtain are disappointing, but un-
derstandable and demonstrate the weak point of our
model viz. the assumption of the oversimplified form
for the impact parameter dependence of the amplitude
(see Appendix A). The elastic slope (unlikeσtot) is
sensitive to theb⊥ distribution, and our assumption
that the major contribution comes from small values
of b⊥ is obviously wrong. We will expand on this dif-
ficulty in Section 5 and Appendix A.
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Using the relation

σelastic= (σtot)
2

16πB

we check our model’s predictions forσelastic for the
p̄p channel, where the data extends to high energies.
The model produces a very good description of the
elasticp̄p cross-section (see Fig. 4(a)). Inσelastic, the
deficiency in the energy rise ofσtot is to some extend
compensated by the inadequacy ofB.

We find it of interest to investigate how close we
are to a black disc picture for dipole–proton scattering,
which we do by utilizing the Pumplin bound [19],
which follows from unitarity considerations and can
be written as:

RD = σelastic+ σdiff

σtot

=
∫
d2r⊥ d2b⊥ |ψH(r⊥)|2N2(r⊥, b⊥, x)

σtot
� 1

2
.

In Fig. 4(b) we display the ratioRD and the experi-
mental data. The model’s predictions agrees with the
data, and suggests that even at Tevatron energies we
are 20% away from the black disc limit of1

2.

5. Discussion and conclusions

Our treatment has two parameters:

(a) R2
h which is taken from the electromagnetic radius

of the hadron (following the Heidelberg prescrip-
tion);

(b) the parameterQ2
0, (introduced after Eq. (3.3),

is adjusted by comparing with the data for the
different channels. It is worth mentioning that, as
expected, the obtained values forQ0 reflect the
mass hierarchy of the projectile hadrons.

In addition, we require the contribution of sec-
ondary trajectories at lower energies.

We would like to emphasis that our approximate
solution to the BK equation [4] is obtained for impact
parameterb = 0, and then an ansatz is made regarding
the b dependence of the profile functionS(b). In the
original fit to theF2 data [4],S(b) was taken to be
a Gaussian, (which is equivalent to assuming that the
dependence upont , the momentum transfer squared,

(a)

(b)

Fig. 4. Forp̄p scattering; (a) elastic cross-section (b) the ratioRD .
Data compilation from Refs. [16,18].

is exponential). It is this Gaussian shape of the profile
function which produces a cross-section with a ln( 1

x
)

dependence. We have shown that taking a “dipole”
behaviour in thet representation we would have a
profile function S(b) ∼ b

R
K1(

b
R
), and the resulting

cross-sections would asymptotically have a ln2( 1
x
)
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dependence. A reflection of this fact is that the energy
dependence of the cross-section (see dashed line of
Fig. 2) is much steeper, which is more in accord with
the data. Since the original fit to the DISF2 data
was made with a Gaussian profile inb space, for
consistency one should redo the fit with a different
profile. This is a task for the future. We summarize
our main results:

• We obtain a reasonable value of the total cross-
sections;

• The predicted energy increase is too moderate.
Both the value of the cross-section and the energy
dependence depend on the assumedb-dependence
of the profile function. For illustration we have
compared with the saturation model of [2]: be-
cause of the sharp cutoff inb built into this model,
the energy dependence is even weaker. This em-
phasizes the need to improve, in all saturation
models theb-shape of the profile function;

• The difference betweenσK+p and σπp at high
energy needs an explanation, which cannot be
answered within the framework of our model;

• The slow increase of the slopeB, is the result of
having an almost black disc picture for dipole–
proton scattering [20] and not a consequence of
a particular form for theb-profile;

• RD = σelastic+σdiff
σtot

tends to1
2, which is the black

disc limit. We reproduce the experimental values
for this ratio, which we consider as a success of
the model.

In general the approach works better than one
would expect, even in the region of long distances.
The results obtained are not very sensitive to the
input parameters of the projectile hadron, namely, the
wavefunction and the parameterQ2

0. Our use of the
saturation models has some predictive power, provided
we have enough information about projectile wave
function.

Nevertheless, there are serious shortcomings in ap-
plying the dipole picture with the concept of saturation
to hadronic cross-sections. The crucial feature seems
to be theb-dependence of the dipole cross-section
which needs further investigation. On a more funda-
mental level, it is not clear at all, how to relate the
dipole picture to the additive quark model: at present

these two approaches look almost orthogonal to each
other.
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Appendix A

Our results can be easily checked in the asymptotic
limit where we have (for simplicity of argument the
following discussion is presented at some fixedr⊥,
while r⊥ integrations are implicitly assumed):

(A.1)σMp = 2π

b2
0(x)∫
db2⊥ = 2πb2

0(x),

where b2
0(x) is a result of our ansatz on theb⊥

behaviour viz.

(A.2)σdipole–p(r⊥, x;b⊥)= 2
(
1− e−Ω/2)

with

Ω = ln
[
1−N(r⊥, x;b⊥ = 0)

]
e
− b2⊥
R2 .

b2
0(x) can be calculated from the equation

Ω(r⊥, x;b⊥ = b0(x))

2
= 1,

i.e.,

b2
0(x)=R2 ln

[
1

2
ln

(
1−N(r⊥, x;b⊥ = 0)

)]
,

whereσ tot
πp = 2πb2

0(x) andσ tot
pp = 4πb2

0(x). The fac-
tor 2 between the cross-sections is due to the fact that
we have two dipoles in the proton and one in the me-
son.
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The elastic slope is given by Eq. (4.3)

(A.3)B ′ = b4
0(x)/2

2b2
0(x)

= b2
0(x)

4
.

The energy dependence ofB ′ can now be calculated

dB ′

d ln(1/x)
= 1

4

db2
0(x)

d ln(1/x)
= 1

16π

dσ tot
pp(x)

d ln(1/x)
.

From this formula it is clear that we have an increase
of B with 1

x
which is slower than that ofσ tot

pp(x),
and obviously not in accord with the experimental
data. Though the above argument was presented for
the Gaussian profile, similar conclusions would be
obtained for an alternative profile function.
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